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Let En ⊂ L2n
1 be the n-dimensional subspace which appeared in Kašin’s theorem such that

L2n
1 = En⊕E⊥n and the L2n

1 and L2n
2 norms are universally equivalent on both En and E⊥n .

In this paper, we introduce and study some properties concerning extension and weak
Grothendieck’s theorem (WGT). We show that the Schatten space Sp for all 0 < p ≤∞
does not verify the theorem of extension. We prove also that Sp fails GT for all 1 ≤ p ≤
∞ and consequently by one result of Maurey does not satisfy WGT for 1 ≤ p ≤ 2. We
conclude by giving a characterization for spaces verifying WGT.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

This work was inspired by the celebrated theorem of Kašin [5]. We use his decomposition
cited in the abstract and which states that L2n

1 (this space is of dimension 2n and which
will be defined in the sequel) can be decomposed into two orthogonal n-dimensional sub-
spaces “respecting” the inner product induced by the norm of L2n

2 and on each the norms
of L2n

1 and L2n
2 are universally equivalent on these subspaces. It is interesting to observe

that the constants of equivalence are independent of n. Recently this was investigated
by Anderson [1] and Schechtman [15]. We will say that a Banach space X verifies weak
Grothendieck’s theorem if π2(X , l2)= B(X , l2). Let {ϕi}1≤i≤n be a sequence of orthogonal
random variables in L2n

2 , which generates En. Consider 0 < p ≤∞. Let u : En→ Snp be a lin-
ear operator and let ũ be any extension of u. In this paper we show that ‖ũ‖ ≥ C

√
n, where

C is an absolute constant. We prove that Sp fails extension theorem for all 1≤ p ≤∞. We
also show that Sp does not verify GT for 1 ≤ p ≤∞ and consequently fails WGT for all
1 ≤ p ≤ 2 by using one result of Maurey. We end this work by giving a characterization
for operators satisfying WGT.

We start the first section by recalling some necessary notations and definitions such
as the definition of cotype q-Kašin as studied in [9] and which is inspired by the Kašin
decomposition. We introduce also the property of weak Grothendieck’s theorem.

In section two, we recall the Schatten spaces Sp which are the noncommutative ana-
logues of the lp-spaces and we give some properties concerning these spaces. After this,
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2 Weak Grothendieck’s theorem

we show that the space Sp fails the property of extension for all 0 < p ≤∞ and GT for all
1≤ p ≤∞. We deduce that the space Sp does not verify WGT for all p, 1≤ p ≤ 2. We do
not know if Sp is of cotype 2-Kašin for 1≤ p ≤ 2 like the classical cotype. We know that
the Schatten space Sp is of cotype 2 for 1≤ p ≤ 2 as the usual lp-spaces; see [16]. By an-
other method which is not adjustable to our case we have proved in [10] that Lp([0,1],dx)
and lp for 0 < p < 1 fail the extension property.

In Section 4, we characterize the spaces which satisfy weak Grothendieck’s theorem.

2. Notation and preliminaries

Let 0 < p ≤ +∞. We denote by Lnp the spaceRn (or Cn) equipped with the norm (and only
a p-norm if 0 < p < 1)

∥

∥

(

ai
)∥

∥

Lnp
=
(

1
n

n
∑

i=1

∣

∣ai
∣

∣

p

)1/p

, (2.1)

and if p =∞, we take max |ai|.
Recall that a p-norm on a vector space X is a functional

‖ · ‖ : X −→R+,

x �−→ ‖x‖ (2.2)

such that

‖x‖ = 0⇐⇒ x = 0,

‖λx‖ = |λ|‖x‖ ∀λ in C,

‖x+ y‖ ≤ (‖x‖p +‖y‖p)1/p ∀x, y in X ,

(2.3)

X is called a p-normed space if its topology can be defined by a p-norm.
Lnp is isometric to Lnp(Ωn,�(Ωn),μn) where Ωn is the set {1,2, . . . ,n}, �(Ωn) the

σ- algebra of all subsets A ⊂Ωn and μn the uniform probability on Ωn (i.e., μn(i) = 1/n
for all i in Ωn). Hence each element in Lnp can be considered as a random variable which
we denote in the sequel by ϕ and we have for 0 < p ≤ q ≤∞,

‖ϕ‖Lnp ≤ ‖ϕ‖Lnq ≤ n1/p−1/q‖ϕ‖Lnp . (2.4)

Moreover, we will denote by lnp(X) for any Banach space X (resp., Lnp(X)), the space Xn

equipped with the norm if 1≤ p ≤ +∞ and the p-norm if 0 < p < 1:

∥

∥

(

xi
)∥

∥

lnp(X) =
( n
∑

i=1

∥

∥xi
∥

∥

p
X

)1/p

,

(

resp.,
∥

∥

(

xi
)∥

∥

Lnpt(X) =
(

1
n

n
∑

i=1

∥

∥xi
∥

∥

p
X

)1/p)
(2.5)

for all (xi)1≤i≤n ⊂ X . If p =∞, the sums should be replaced by sup.
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We will use the following decomposition due to B. S. Kašin (see also [13] and recently
[1, 15]), which is the principal inspiration of our idea.

Theorem 2.1 [5]. Consider p in {1,2} and n inN. There are three constants Ap, Bp, and C
(C independent of p and n) and a sequence (ϕi)1≤i≤n of orthogonal random variables in L2n

2

such that for all (ai)1≤i≤n in R, there exist

Ap

( n
∑

1

‖ai‖2

)1/2

≤
∥

∥

∥

∥

∥

n
∑

1

aiϕi

∥

∥

∥

∥

∥

L2n
p

≤ Bp

( n
∑

1

∣

∣ai
∣

∣

2
)1/2

,

sup
1≤i≤n

∥

∥ϕi

∥

∥

Ln∞
≤ C(logn)1/2.

(2.6)

Remark 2.2. It is well known that if X is a finite dimensional space, then, all the norms
are equivalent. But what is most remarkable in Theorem 2.1 is that the constants are
independent of the dimension n. It is also true for all p in ]0,2]. We can and do choose
the ϕi to be orthonormal, that is what we do in the sequel.

Let En be the subspace of L2n
1 spanned by the functions (ϕi)1≤i≤n and let en : En → L2n

1

be the natural injection. By the above theorem, En is isomorphic to ln2 , we denote by
βn : ln2 → En the isomorphism which maps ei onto ϕi, where (ei) the unit vector basis of ln2 .
We have by (2.6) that ‖βn‖ ≤ B1 and ‖β−1

n ‖ ≤A−1
1 .

Now we give the following definition which is introduced in [9].

Definition 2.3. Let X and Y be Banach spaces and let u : X → Y be a linear operator. Say
that u is of cotype q-Kašin for 2≤ q < +∞, if there is a positive constant K such that for
all integer n and for all finite sequence (xi)1≤i≤n in X , there exists

( n
∑

i=1

∥

∥u
(

xi
)∥

∥

q

)1/q

≤ K

∥

∥

∥

∥

∥

n
∑

i=1

ϕixi

∥

∥

∥

∥

∥

L2n
1 (X)

. (2.7)

Denote by Kq(u) the smallest constant for which this holds. X is of cotype q-Kašin if the
identity of X is of cotype q-Kašin.

For example Lp (1≤ p ≤ 2) is of cotype 2-Kašin.
For being complete, we add (see [13, page 115]) that there is an orthonormal basis (ϕn)

of L2([0,1],ν) (ν is the Lebesgue measure) such that the L1 and L2 norms are equivalent
on each of the spans of {ϕn,n odd} and {ϕn,n even}. Let E0 be the space spanned by one
of these sequences in L1([0,1],ν) and let e : E0 → L1([0,1],ν) be the isometric embedding.
We denote also by En

0 the space spanned by the n first ϕi.
Given two Banach spaces X and Y , denote by X⊗̂εY their injective tensor product,

that is, the completion of X ⊗Y under the cross norm:

∥

∥

∥

∥

∥

n
∑

i=1

xi⊗ yi

∥

∥

∥

∥

∥

ε

= sup

{∣

∣

∣

∣

∣

n
∑

i=1

xi(ξ)yi(η)

∣

∣

∣

∣

∣

: ‖ξ‖X∗ ≤ 1, ‖η‖Y∗ ≤ 1

}

. (2.8)

Let u : X → Y be a linear operator. We will say that u is absolutely p-summing, 0 < p <∞
(we write u ∈Πp(X ,Y)), if there exists a positive constant C such that for every n in N,
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the mappings

In⊗u : lnp⊗ε X −→ lnp(Y),
n
∑

1

ei⊗ xi �−→
(

u
(

xi
))

1≤i≤n
(2.9)

are uniformly bounded by C (i.e., ‖In⊗u‖lnp⊗εX→lnp(Y) ≤ C).
We define the p-summing norm of an operator u by

πp(u)= sup
n

∥

∥In⊗u
∥

∥

lnp⊗εX→lnp(Y). (2.10)

The following proposition is a characterization of spaces of cotype 2-Kašin.

Proposition 2.4. Let C be a positive constant. Then the following properties of a Banach
space X are equivalent.

(i) The space X∗ (X∗ is the Banach space dual of X) is of cotype 2-Kašin and K2(X∗)≤
C.

(ii) For all integers n and for all finite sequences (xi)1≤i≤n in X , the operator u : En → X
defined by u(ϕi)= xi admits an extension ũ : L2n

1 → X such that ũ/En = u and ‖ũ‖ ≤
C(
∑n

i=1‖xi‖2)1/2.

Proof. Let n be a fixed integer. Since X∗ is of cotype 2-Kašin, hence for all (ξi)1≤i≤n ⊂ X∗

we have

( n
∑

i=1

∥

∥ξi
∥

∥

2
X∗

)1/2

≤ C

∥

∥

∥

∥

∥

n
∑

i=1

ϕiξi

∥

∥

∥

∥

∥

L2n
1 (X∗)

. (2.11)

Let E = {∑n
i=1ϕiξi, (ξi)1≤i≤n ⊂ X∗}, which is a closed subspace of L2n

1 (X∗). We now define
the operators

T : E −→ ln2
(

X∗
)

,
n
∑

i=1

ϕiξi �−→
(

ξi
)

1≤i≤n.
(2.12)

This definition is unambiguous (indeed,
∑n

i=1ϕiξi =
∑n

i=1ϕiηi implies that ξi = ηi for all
1≤ i≤ n because the ϕi are orthogonal and consequently (ξi)1≤i≤n = (ηi)1≤i≤n).

Observe that

‖T‖ ≤ C. (2.13)

By duality we have

T∗ : ln2 (X)−→ L2n∞ (X)
E⊥

,

(

xi
)

1≤i≤n �−→
n
∑

i=1

xiϕi +E⊥,
(2.14)
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where E⊥ = {∑2n
i=n+1ϕix

′
i , (x

′
i )n+1≤i≤2n ⊂ X} is the subspace of L2n∞ (X) which is orthogonal

to E.
Since ‖T‖ = ‖T∗‖ (T∗ is the adjoint operator of T), hence we have

inf
R∈E⊥

∥

∥

∥

∥

∥

n
∑

i=1

xiϕi +R

∥

∥

∥

∥

∥

L2n∞ (X)

≤ C

( n
∑

i=1

∥

∥xi
∥

∥

2
)1/2

. (2.15)

If now ũ : L2n
1 → X is an extension of u, by Riesz representation theorem then there is Ψ

in L2n∞ such that

∀ϕ∈ L2n
1 , ũ(ϕ)= 1

2n

2n
∑

i=1

ϕiΨi,

‖ũ‖ = ‖Ψ‖L2n∞ .

(2.16)

Since ũ(ϕi)= xi, we have

Ψ=
n
∑

i=1

xiϕi +R. (2.17)

The correspondence ũ→Ψ is bijective and this implies that

inf ‖ũ‖ = inf
R∈E⊥

∥

∥

∥

∥

∥

n
∑

i=1

xiϕi +R

∥

∥

∥

∥

∥

L2n∞ (X)

. (2.18)

This concludes the proof. �

We say now that a Banach space X is of cotype strongly 2-Kašin if there is a positive
constant C such that, for all integers n and for all finite sequences (xi)1≤i≤n in X , we have

π2(v)≤ C

∥

∥

∥

∥

∥

n
∑

i=1

ϕixi

∥

∥

∥

∥

∥

L2n
1 (X)

, (2.19)

where v : ln2 → X is the operator defined by v(ei)= xi for all 1≤ i≤ n.
We denote by

K
strong
2 (X)= inf

{

C : (2.19) holds∀(xi
)

1≤i≤n, n≥ 1
}

. (2.20)

Corollary 2.5. Let X be a Banach space and let C be a positive constant. The following
assertions are equivalent.

(i) The space X∗ is of cotype strongly 2-Kašin and K
strong
2 (X∗)≤ C.

(ii) For all integers n and any u : ln2 → X , u admits an extension ũ to L2n
1 such that ũ/En =

uβ−1
n and ‖ũ‖ ≤ Cπ2(u∗).
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Proof. Fixed n in N, let E = {∑n
i=1ϕiξi, (ξi)1≤i≤n ⊂ X∗} which is a closed subspace of

L2n
1 (X∗). We now define the operators

T : E −→ π2
(

ln2 ,X∗
)

,
n
∑

i=1

ϕiξi �−→ v,
(2.21)

where v : ln2 → X∗ defined by v(ei)= ξi.
We have

∥

∥

∥

∥

∥

T

( n
∑

i=1

ϕiξi

)∥

∥

∥

∥

∥

= π2(v)≤ C

∥

∥

∥

∥

∥

n
∑

i=1

ϕiξi

∥

∥

∥

∥

∥

. (2.22)

By duality, we obtain

T∗ : π2
(

X∗, ln2
)−→ L2n∞ (X)

E⊥
,

w �−→
n
∑

i=1

xiϕi +E⊥,
(2.23)

where w : X∗ → ln2 is a linear operator defined by w(ξ)= 〈xi,ξ〉.
Let u(ei)= xi. We have

inf
R∈E⊥

∥

∥

∥

∥

∥

n
∑

i=1

xiϕi +R

∥

∥

∥

∥

∥

L2n∞ (X)

≤ Cπ2
(

u∗
)

. (2.24)

We conclude directly by using (2.18). �

Remark 2.6. Let X be a Banach space. If X has Gaussian (resp., Rademacher) cotype 2,
then (2.19) holds with (gi) (resp., (ri)) and conversely. The space X is of cotype strongly
2-Kašin implies that X is of cotype 2-Kašin. We do not know if the converse is true.

Let us introduce the following definition.

Definition 2.7. Let X be a Banach space. Say that X satisfies weak Grothendieck’s theorem
if there is a positive constant C such that for all n in N and any linear operator u from X
into ln2 , there exists

π2(u)≤ C‖u‖. (2.25)

Remark 2.8. (1) X satisfies W.G.T. if and only if X∗∗ satisfies WGT.
(2) L1 and L∞ verify weak Grothendieck’s theorem. The spaces S1 (see below) and B(l2)

(see [8, Corollary 4.2]) fail this.
(3) The classical definition is let X be a Banach space. We will say that X satisfies

Grothendieck’s theorem if there is a constant C such that, for any linear operator u from
X into a Hilbert space H , we have

π1(u)≤ C‖u‖. (2.26)
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(4) We can replace H by ln2 for any integer n (i.e., there is a constant C such that for any
integer n and any u : X → ln2 we have π1(u) ≤ C‖u‖). Also, this is equivalent to the dual
property (i.e., there is a constant C′ such that for every linear operator from X∗ into an
L1-space, we have π2(u)≤ C′‖u‖). GT implies WGT. If X is of (classical) cotype 2, then
we have equivalence between GT and WGT because πp(X ,Y)= π2(X ,Y) for any Banach
space Y and for all p ≤ 2 (see [7]).

(5) The space L1 verifies Grothendieck’s theorem. In [2] Bourgain proved that L1/H1

is of cotype 2 and verifies Grothendieck’s theorem (L1 is the L1-space relative to the circle
group and H1 the subspace of L1 spanned by all functions {eint,n≥ 0}).

(6) Suppose that X is a subspace of C(K) and that C(K)/X is reflexive. Then every
operator with domain X and range a cotype 2 space is 2-summing [6, 11]. As corollary,
let X be a reflexive subspace of an L1. Then, every operator u : L1/X → l2 is 1-summing.

(7) For any Banach E of cotype 2, Pisier has constructed in [12] a Banach space X
which contains isometrically E such that, X and X∗ are both of cotype 2 and verify
Grothendieck’s theorem.

3. Sp fails WGT for all 1≤ p ≤ 2

We recall (see [14]) the noncommutative analogues of lp which is the Schatten class Sp. Let
0 < p <∞. We will denote by B(l2) the space of all bounded linear operators u : l2 → l2 and
by Sp the subspace of all compact operators such that tr|u|p <∞ (where |u| = (uu∗)1/2).
We equip it with the norm if 1≤ p <∞ and the p-norm if 0 < p < 1:

‖u‖p =
(

tr|u|p)1/p
(3.1)

for which it becomes a Banach space if 1 ≤ p <∞ and a quasi-Banach if 0 < p < 1. If
p =∞, S∞ is the subspace of all compact operators on l2 equipped with operator norm.
We have (Sp)∗ = Sq for 1 < p ≤∞ and 1/p+ 1/q = 1, and also S∗1 = B(l2). We do not know
if the Schatten spaces Sp are of the same cotype Kašin as the usual lp-spaces for 1≤ p ≤ 2.

Finally, we denote by Snp and B(ln2 ) the finite dimensional version of Sp and B(l2), re-
spectively.

Let 0 < p ≤ q ≤∞. We have for u∈ B(ln2 ),

‖u‖q ≤ ‖u‖p ≤ n1/p−1/q‖u‖q. (3.2)

Let Rn denote the subspace of Snp consisting of all n×n matrices u such that ui, j = 0 when
i �= 1 (first row matrices). Then a= uu∗ is the matrix with a1,1 =

∑n
j=1 |u1, j|2 = ‖u‖2

2 and
ai, j = 0 when (i, j) �= (1,1). Hence |u| is the rank one operator ‖u‖2e1 ⊗ e1. Its norm in
all spaces Snp, 0 < p ≤∞ is equal to ‖u‖2. In particular Rn equipped with the Snp-norm
is isometric to ln2 . We denote by pn the natural projection from Snp into Rn defined by
pn(u)= v such that v1 j = u1 j for 1≤ j ≤ n. We have ‖pn‖ ≤ 1.

The proposition to be proved now is the finite dimensional version of the theorem of
extension.

Proposition 3.1. Suppose that for some p > 0, there exits a constant Cp such that for every
n and every linear operator u from En to Snp, there is an extension ũ ∈ B(L2n

1 ,Snp) of u with
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‖ũ‖ ≤ Cp‖u‖. Then

Cp ≥ C
√
n, (3.3)

where C is an absolute constant.

Proof. Let un be the operator sending the n vector basis of En to the n vector basis of Rn

(un(ϕi)= e1,i,1≤ i≤ n). This operator is an isomorphism, by the above remark and (2.6).
We have ‖un‖ ≤ B1 and ‖u−1

n ‖ ≤ A1. Let ũn be an extension of un to an operator from L2n
1

to Snp, with ‖ũn‖ ≤ Cp‖un‖. Consider now the following commutative diagram:

L2n
1

ũn Snp

pn

En

en

un
Rn

u−1
n

En

(3.4)

Let qn = u−1
n pnũn. Then qn is a projection from L2n

1 to En. Since En is A1B1-isomorphic
to ln2 (Theorem 2.1), we get by Grothendieck’s theorem [4] that qn is 1-summing with
π1(qn)≤A1KG‖pnũn‖. Restricting qn to En we obtain for the identity in of En the estima-
tion

√
n= π2

(

in
)≤ π2

(

qn
)≤ π1

(

qn
)≤A1KG

∥

∥ũn
∥

∥≤ A1KGCp

∥

∥un
∥

∥≤A1B1KGCp. (3.5)

This completes the proof. �

Let now �n be the σ-algebra on [0,1] generated by the Rademacher functions {r1, . . . ,
rn} (rn(t) = sign(sin2nπt)). The space Lp([0,1],�n,ν), where ν is the Lebesgue measure
in [0,1], is isometric to L2n

p .

We denote by G (resp., Gn) the closed linear subspace in L1([0,1],ν) (resp., L2n
1 ) of

the Rademacher functions {rn}n∈N (resp., {ri,1 ≤ i ≤ n}). Let g : G→ L1([0,1],ν) (resp.,
gn : Gn→ L2n

1 ) be the isometric embedding. By Khinchine’s inequalities, there are positive
constants A′1 and B′1 such that for every (an) in l2 we have

A′1

(

∑

n≥1

∣

∣an
∣

∣

2
)1/2

≤
(
∫

[0,1]

∣

∣

∣

∣

∣

∑

n≥1

anrn(t)

∣

∣

∣

∣

∣

dν≤ B′1

(

∑

n≥1

∣

∣an
∣

∣

2
)1/2

. (3.6)

Hence G (resp., Gn) is isomorphic to l2 (resp., ln2 ). We will denote by α : l2 → G (resp.,
αn : ln2 → Gn) the isomorphism which maps ei onto ri. We have ‖α‖ ≤ B′1, ‖α−1‖ ≤ A′1,
and also the same for αn.

Proposition 3.2. Suppose that for some p > 0, there exits a constant Cp such that for every
n and every linear operator u from Gn to Snp there is an extension ũ ∈ B(L2n

1 ,Snp) of u with
‖ũ‖ ≤ Cp‖u‖. Then

Cp ≥ C
√
n, (3.7)

where C is an absolute constant.
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Proof. The same proof as in Proposition 3.1. �

Theorem 3.3. Let 0 < p ≤∞. Let u : G→ Sp be a compact linear operator. In general, there
is no continuous linear operator ũ extending u to L1([0,1],ν).

Proof. Suppose that for any compact linear operator u : G→ Sp there is a bounded linear
operator ũ : L1([0,1],ν) → Sp extending u. It follows from the open mapping theorem
that there is an absolute constant Cp such that

‖ũ‖ ≤ Cp‖u‖ (3.8)

for any u. This implies by Proposition 3.2 that Cp ≥ C
√
n for any integer n. This is im-

possible when n is large enough. �

Theorem 3.4. Let 0 < p ≤∞. Let u : E0 → Sp be a compact linear operator. In general, there
is no continuous linear operator ũ extending u.

Proof. Using the same proof as in Proposition 3.2 (we take En
0 instead ofGn) and Theorem

3.3, we show that the extension property concerning (L1([0,1],ν),E0) fails for all 0 < p ≤
∞. �

The following result shows that space Sp fails GT.

Theorem 3.5. The space Sp fails GT for all 1≤ p ≤∞ and consequently WGT for 1≤ p ≤ 2.

Proof. Consider the following diagram:

Rn
in−−→ Snp

pn−−→ Rn, (3.9)

where in is the canonical injection. We have idRn = pn ◦ in. Since
√
n≤ π1(idRn)≤ π1(pn)

and ‖pn‖ ≤ 1, hence Sp fails GT for all 1≤ p ≤∞. As Sp is of cotype 2 for 1≤ p ≤ 2 then,
by one result of Maurey, we have π1(pn)≤ Cπ2(pn) for some constant C. This implies the
proof. �

Remark 3.6. The space B(l2) fails weak Grothendieck’s theorem because by [8, Corollary
4.2] we have π2(B(l2), l2) �= B(B(l2), l2).

4. Characterization of spaces which satisfy WGT

We start this section by recalling some notations and facts. We denote by lωp (X) (resp.,
lnωp (X)) the space of all sequences (xi) (resp., (xi)1≤i≤n) in X with the norm

∥

∥

(

xi
)∥

∥

lωp (X) = sup
‖ξ‖X∗=1

( ∞
∑

1

∣

∣

〈

xi,ξ
〉∣

∣

p

)1/p

<∞,

(

resp.,
∥

∥

(

xi
)∥

∥

lnωp (X) = sup
‖ξ‖X∗=1

( n
∑

1

∣

∣

〈

xi,ξ
〉∣

∣

p

)1/p)

.

(4.1)
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We know (see [3]) that lp(X)= lωp (X) for some 1≤ p <∞ if and only if dim(X) is finite. If
p =∞, we have l∞(X)= lω∞(X). We have also if 1 < p ≤∞, lωp (X)≡ B(lp∗ ,X), and lω1 (X)≡
B(cO,X) isometrically (where p∗ is the conjugate of p, i.e., 1/p + 1/p� = 1). In other
words, let v : lp∗ → X be a linear operator such that v(ei)= xi (namely, v =∑∞

1 ej ⊗ xj , ej
denotes the unit vector basis of lp), then

‖v‖ = ∥∥(xi
)∥

∥

lωp (X) =
∥

∥

∥

∥

∥

∞
∑

1

ej ⊗ xj

∥

∥

∥

∥

∥

lp⊗̂εX
. (4.2)

We prove in the following theorem that the spaces which satisfy WGT and which hap-
pen to be also of cotype strongly 2-Kašin can be characterized by an extension property.

Theorem 4.1. The following properties of a Banach space X are equivalent:
(i) the space X∗ is of cotype strongly 2-Kašin and verifies WGT;

(ii) there is a positive constant C such that for every n∈N and every u : En → X , then u
admits an extension ũ : L2n

1 → X such that ũ/En = u and ‖ũ‖ ≤ C‖u‖.

Proof. We prove that (ii) ⇒ (i). Let v : ln2 → X be a linear operator. Consider u = vβ−1
n :

En→ X , then u admits an extension ũ : L2n
1 → X such that

‖ũ‖ ≤ C‖u‖ ≤ C
∥

∥β−1
n

∥

∥‖v‖ ≤ C/A1π2
(

v∗
)

. (4.3)

From Corollary 2.5, we obtain that X∗ is of cotype strongly 2-Kašin and K
strong
2 (X∗) ≤

C/A1. Let now u : X∗ → ln2 be an operator. First, we notice that B(ln2 ,X∗∗)≡ B(ln2 ,X)∗∗ ≡
B(X∗, ln2 ) isometrically. Since u : X∗ → ln2 is in B(ln2 ,X)∗∗, then by Goldstine’s theorem,
there is a net of operators u∗i : X∗ → ln2 which are w∗-continuous with ‖ui‖ ≤ ‖u‖ for all
i and {u∗i } converges to u in w∗-topology of B(ln2 ,X)∗∗. As u∗i is 2-summing this implies
that u is 2-summing and π2(u)= lim

i
π2(u∗i ). Indeed,

π2(u)= sup
{

Tr(uv), v : ln2 −→ X∗∗∗ π2(v)≤ 1}
= sup

{

lim
i

Tr
(

u∗i v
)

, v : ln2 −→ X∗∗∗ π2(v)≤ 1
}

= lim
i

sup
{

Tr
(

u∗i v
)

, v : ln2 −→ X∗∗∗ π2(v)≤ 1
}

= lim
i
π2
(

u∗i
)

.

(4.4)

Let us consider the following commutative diagram:

L2n
1

ũi

En

en

β−1
n

ln2
ui

X

(4.5)



Lahcène Mezrag 11

by duality, we have

L2n∞

e∗n

X∗

ũ∗i

u∗i
ln2

(β−1
n )∗

E∗n

(4.6)

hence

π2
(

u∗i
)= π2

(

β∗n
(

β−1
n

)∗
u∗i
)≤ ∥∥β∗n

∥

∥π2
((

β−1
n

)∗
u∗i
)

≤ ∥∥β∗n
∥

∥

∥

∥ũ∗i
∥

∥π2
(

e∗n
)≤ ∥∥β∗n

∥

∥

∥

∥β−1
n

∥

∥

∥

∥ui
∥

∥π2
(

e∗n
)

≤ A−1
1 B1

∥

∥ui
∥

∥π2
(

e∗n
)

.

(4.7)

Thus

lim
i
π2
(

u∗i
)≤ A−1

1 B1π2
(

e∗n
)

lim
i

∥

∥ui
∥

∥≤A−1
1 B1π2

(

e∗n
)‖u‖. (4.8)

Consequently

π2(u)≤A−1
1 B1π2

(

e∗n
)‖u‖. (4.9)

This shows that X has WGT because the numbers π2(e∗n ) are uniformly bounded by Mau-
rey’s theorem [7].

(i) ⇒ (ii). The space X∗ is of cotype strongly 2-Kašin which implies by Corollary 2.5
that for any u : ln2 → X , u admits an extension ũ to L2n

1 such that ũ/En = uβ−1
n and ‖ũ‖ ≤

K
strong
2 (X∗)π2(u∗). As X∗ verifies WGT, then π2(u∗)≤ C′‖u‖ and hence

‖ũ‖ ≤ C′K2
(

X∗
)‖u‖ ≤ C‖u‖(C = C′K2

(

X∗
))

(4.10)

which gives the extension. �

We end this paper by the following remark.

Remark 4.2. We do not know if Sp for 1≤ p ≤ 2 is of cotype 2-Kašin.
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