
A NEW HILBERT-TYPE INTEGRAL INEQUALITY AND
THE EQUIVALENT FORM

YONGJIN LI, JING WU, AND BING HE

Received 30 April 2006; Revised 10 August 2006; Accepted 21 August 2006

We give a new Hilbert-type integral inequality with the best constant factor by estimating
the weight function. And the equivalent form is considered.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

If f ,g are real functions such that 0 <
∫∞

0 f 2(x)dx <∞ and 0 <
∫∞

0 g2(x)dx <∞, then we
have (see [1])

∫∞

0

∫∞

0

f (x)g(y)
x+ y

dxdy < π
{∫∞

0
f 2(x)dx

∫∞

0
g2(x)dx

}1/2

, (1.1)

where the constant factor π is the best possible. Inequality (1.1) is the well-known
Hilbert’s inequality. And inequality (1.1) had been generalized by Hardy in 1925 as fol-
lows.

If f ,g ≥ 0, p > 1, 1/p+ 1/q = 1, 0 <
∫∞

0 f p(x)dx <∞, and 0 <
∫∞

0 gq(x)dx <∞, then

∫∞

0

∫∞

0

f (x)g(y)
x+ y

dxdy <
π

sin(π/p)

{∫∞

0
f p(x)dx

}1/p{∫∞

0
gq(x)dx

}1/q

, (1.2)

∫∞

0

(∫∞

0

f (x)
x+ y

dx

)p

dy <

[
π

sin(π/p)

]p ∫∞

0
f p(x)dx, (1.3)

where the constant factor π/ sin(π/p) is the best possible. When p = q = 2, (1.2) reduces
to (1.1), inequality (1.2) is named of Hardy-Hilbert integral inequality, which is impor-
tant in analysis and its applications. It has been studied and generalized in many direc-
tions by a number of mathematicians.

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 45378, Pages 1–6
DOI 10.1155/IJMMS/2006/45378



2 A new Hilbert-type integral inequality

In this paper, we give a new type of Hilbert’s integral inequality as follows:

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy < c

{∫∞

0
f 2(x)dx

∫∞

0
g2(x)dx

}1/2

, (1.4)

where c =√2(π− 2arctan
√

2)= 1.7408 . . . .

2. Main results

Lemma 2.1. Suppose ε > 0, then

∫∞

1
x−ε−1

∫ x−1

0

1
1 + t+ max{1, t} t

(−1−ε)/2dtdx =O(1)
(
ε→ 0+). (2.1)

Proof. There exists n ∈ N which is large enough, such that 1 + (−1− ε)/2 > 0 for ε ∈
(0,1/n], we have

∫ x−1

0

1
1 + t+ max{1, t} t

(−1−ε)/2dt <
∫ x−1

0
t(−1−ε)/2dt = 1

1 + (−1− ε)/2

(
1
x

)1+(−1−ε)/2
.

(2.2)

Since for a≥ 1 the function g(y)= (1/yay)(y ∈ (0,∞)) is decreasing, we find

1
1 + (−1− ε)/2

(
1
x

)1+(−1−ε)/2
≤ 1

1 +
(
(−1− 1)/n

)
/2

(
1
x

)1+((−1−1)/n)/2

, (2.3)

so

0 <
∫∞

1
x−ε−1

∫ x−1

0

1
1 + t+ max{1, t} t

(−1−ε)/2dtdx

<
∫∞

1
x−1 1

1 +
(
(−1− 1)/n

)
/2

(
1
x

)1+((−1−1)/n)/2

dx

=
(

1
1 +
(
(−1− 1)/n

)
/2

)2

.

(2.4)

Hence the relation (2.1) is valid. The lemma is proved. �

Now we study the following inequality.

Theorem 2.2. Suppose f (x), g(x)≥ 0, 0 <
∫∞

0 f 2(x)dx <∞, 0 <
∫∞

0 g2(x)dx <∞. Then

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy < c

{∫∞

0
f 2(x)dx

∫∞

0
g2(x)dx

}1/2

, (2.5)

where the constant factor c =√2(π− 2arctan
√

2)= 1.7408 . . . is the best possible.
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Proof. By Hölder’s inequality, we have

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

=
∫∞

0

∫∞

0

[
f (x)

(
x+ y + max{x, y})1/2

(
x

y

)1/4
]

×
[

g(y)
(
x+ y + max{x, y})1/2

(
y

x

)1/4
]

dxdy

≤
∫∞

0

∫∞

0

f 2(x)
x+ y + max{x, y}

(
x

y

)1/2

dxdy

×
∫∞

0

∫∞

0

g2(y)
x+ y + max{x, y}

(
y

x

)1/2

dxdy.

(2.6)

Define the weight function �(u) as

�(u) :=
∫∞

0

1
u+ v+ max{u,v}

(
u

v

)1/2

dv, (2.7)

then the above inequality yields

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

≤
[∫∞

0
�(x) f 2(x)dx

]1/2[∫∞

0
�(y)g2(y)dy

]1/2

.

(2.8)

For fixed u, let v = ut, we have

�(u) :=
∫∞

0

1
1 + t+ max{1, t}

(
1
t

)1/2

dt

=
∫ 1

0

1
2 + t

(
1
t

)1/2

dt+
∫∞

1

1
1 + 2t

(
1
t

)1/2

dt

=√2(π− 2arctan
√

2).

(2.9)

Thus

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

≤√2(π− 2arctan
√

2)
{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

.

(2.10)
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If (2.10) takes the form of the equality, then there exist constants a and b, such that
they are not all zero and

a
f 2(x)

x+ y + max{x, y}
(
x

y

)1/2

= b
g2(y)

x+ y + max{x, y}
(
y

x

)1/2

a.e. on (0,∞)× (0,∞).

(2.11)

Then we have

ax f 2(x)= byg2(y) a.e. on (0,∞)× (0,∞). (2.12)

Hence we have

ax f 2(x)= byg2(y)= constant= d a.e. on (0,∞)× (0,∞). (2.13)

Without losing the generality, suppose a �= 0, then we obtain f 2(x) = d/ax, a.e. on
(0,∞), which contradicts the fact that 0 <

∫∞
0 f 2(x)dx <∞. Hence (2.10) takes the form

of strict inequality; we get (2.5).
For 0 < ε < 1, set fε(x) = x(−ε−1)/2, for x ∈ [1,∞); fε(x) = 0, for x ∈ (0,1). gε(y) =

y(−ε−1)/2, for y ∈ [1,∞); gε(y) = 0, for y ∈ (0,1). Assume that the constant factor c =√
2(π − 2arctan

√
2) in (2.2) is not the best possible, then there exists a positive number

K with K < c, such that (2.5) is valid by changing c to K . We have

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy < K

{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

= K

ε
, (2.14)

since
∫∞

0

1
1 + t+ max{1, t} t

(−1−ε)/2dt =√2(π− 2arctan
√

2) + o(1) (ε −→ 0+). (2.15)

Setting y = tx, by (2.1), we find

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

=
∫∞

1

∫∞

1

x(−ε−1)/2y(−ε−1)/2

x+ y + max{x, y}dxdy

=
∫∞

1

∫∞

x−1

x(−ε−1)/2(tx)(−ε−1)/2

1 + t+ max{1, t} dxdt

=
∫∞

1
x−ε−1

(∫∞

0

1
1 + t+ max{1, t} t

(−1−ε)/2dt−
∫ x−1

0

1
1 + t+ max{1, t} t

(−1−ε)/2dt
)
dx

= 1
ε

[√
2(π− 2arctan

√
2) + o(1)

]
.

(2.16)
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Since, for ε > 0 small enough, we have

√
2(π− 2arctan

√
2) + o(1) < K , (2.17)

thus we get
√

2(π− 2arctan
√

2)≤ K , then c ≤ K , which contradicts the hypothesis. Hence
the constant factor c in (2.5) is the best possible. �

Theorem 2.3. Suppose f ≥ 0 and 0 <
∫∞

0 f 2(x)dx <∞. Then

∫∞

0

[∫∞

0

f (x)
x+ y + max{x, y}dx

]2

dy < c2
∫∞

0
f 2(x)dx, (2.18)

where the constant factor c2 = 2(π− 2arctan
√

2)2 = 3.0305 . . . is the best possible. Inequality
(2.18) is equivalent to (2.5).

Proof. Setting g(y) as

∫∞

0

f (x)
x+ y + max{x, y}dx, y ∈ (0,∞), (2.19)

then by (2.5), we find

0 <
∫∞

0
g2(y)dy

=
∫∞

0

[∫∞

0

f (x)
x+ y + max{x, y}dx

]2

dy

=
∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

≤√2(π− 2arctan
√

2)
{∫∞

0
f 2(x)dx

}1/2{∫∞

0
g2(y)dy

}1/2

.

(2.20)

Hence we obtain

0 <
∫∞

0
g2(y)dy ≤ 2(π− 2arctan

√
2)2
∫∞

0
f 2(x)dx <∞. (2.21)

By (2.5), both (2.20) and (2.21) take the form of strict inequality, so we have (2.18).
On the other hand, suppose that (2.18) is valid. By Hölder’s inequality, we find

∫∞

0

∫∞

0

f (x)g(y)
x+ y + max{x, y}dxdy

=
∫∞

0

[∫∞

0

f (x)
x+ y + max{x, y}dx

]
g(y)dy

≤
{∫∞

0

[∫∞

0

f (x)
x+ y + max{x, y}dx

]2

dy

}1/2{∫∞

0
g2(y)dy

}1/2

.

(2.22)

Then by (2.18), we have (2.5). Thus (2.5) and (2.18) are equivalent.
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If the constant c2 = 2(π− 2arctan
√

2)2 in (2.18) is not the best possible, by (2.22), we
may get a contradiction that the constant factor c in (2.5) is not the best possible. Thus
we complete the proof of the theorem. �
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[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cam-
bridge, 1952.

Yongjin Li: Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: stslyj@mail.sysu.edu.cn

Jing Wu: Department of Statistics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: wjjosie@hotmail.com

Bing He: Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
E-mail address: hzs314@163.com

mailto:stslyj@mail.sysu.edu.cn
mailto:wjjosie@hotmail.com
mailto:hzs314@163.com

	1. Introduction
	2. Main results
	Acknowledgment
	References

