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We develop an extension of the classical Bell polynomials introducing the Laguerre-type
version of this well-known mathematical tool. The Laguerre-type Bell polynomials are
useful in order to compute the nth Laguerre-type derivatives of a composite function.
Incidentally, we generalize a result considered by L. Carlitz in order to obtain explicit
relationships between Bessel functions and generalized hypergeometric functions.
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1. Introduction

The Bell polynomials [1] appear in different frameworks. They are often used in com-
binatorial analysis [20], and even in statistics [14], although without explicit references.
Moreover these polynomials have been applied even in many other contexts, such as the
Blissard problem (see [20, page 46]), the representation of Lucas polynomials of the first
and second kinds [4, 9], the representation formulas of Newton sum rules for polyno-
mials’ zeros [12, 13], the recurrence relations for a class of Freud-type polynomials [3],
the representation of symmetric functions of a countable set of numbers, generalizing
the classical algebraic Newton-Girard formulas [15]. Consequently they were also used
[6] in order to find reduction formulas for the orthogonal invariants of a strictly positive
compact operator, deriving in a simple way the so-called Robert formulas [21].

Some generalized forms of Bell polynomials already appeared in literature (see, e.g.,
[11, 17, 19]). A generalization of the Bell polynomials suitable for the differentiation
of multivariable composite functions can also be found in [18]. Lastly, in [2], the so-
called multidimensional Bell polynomials of higher order were introduced, which are
suitable for representing the derivative of a composite function of several (say m) vari-
ables f(ϕ(1)(t),ϕ(2)(t), . . . ,ϕ(m)(t)), where ϕ(i)(t)=φ(i,1)(φ(i,2)(···φ(i,ri)(t))), (i=1,2, . . . ,m).

In this article we find explicit representation formulas for the nth Laguerre-type
derivatives of a composite function. The case of the first Laguerre derivative DxD, D :=
d/dx is essentially related to an article by Carlitz [5], originated by a preceding paper by
Lardner [16] in which the powers (DxD)n of this derivative appear.
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2. Recalling the Bell polynomials

We recall that the Bell polynomials are a classical mathematical tool for representing the
nth derivative of a composite function. In fact by considering the composite function
Φ(t) := f (g(t)) of functions x = g(t) and y = f (x) defined in suitable intervals of the real
axis and n times differentiable with respect to the relevant independent variables and by
using the following notations:

Φh :=Dh
t Φ(t), fh :=Dh

x f (x)|x=g(t), gh :=Dh
t g(t),

(
[ f ,g]n

)
:= ( f1,g1; f2,g2; . . . ; fn,gn

)
,

(2.1)

they are defined as follows:

Yn
(
[ f ,g]n

)
:=Φn. (2.2)

For example one has

Y1
(
[ f ,g]1

)= f1g1,

Y2
(
[ f ,g]2)= f1g2 + f2g

2
1 ,

Y3
(
[ f ,g]3

)= f1g3 + f2
(
3g2g1

)
+ f3g

3
1 .

(2.3)

Further examples can be found in [20, page 49].
Inductively, we can write

Yn
(
[ f ,g]n

)=
n∑

k=1

An,k
(
g1,g2, . . . ,gn

)
fk, (2.4)

where the coefficient An,k, for any k = 1, . . . ,n, is a polynomial in g1,g2, . . . ,gn, homoge-
neous of degree k and isobaric of weight n (i.e., it is a linear combination of monomials
gk1

1 gk2
2 ···gknn whose weight is constantly given by k1 + 2k2 + ···+nkn = n).

For them the following result holds true.

Proposition 2.1. The Bell polynomials satisfy the recurrence relation

Y0
(
[ f ,g]0

)
:= f1,

Yn+1
(
[ f ,g]n+1

)=
n∑

k=0

(
n

k

)

Yn−k
(
[ f1,g]n−k

)
gk+1,

(2.5)
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where

(
[ f1,g]n−k

)
:= ( f2,g1; f3,g2; . . . ; fn−k+1,gn−k

)
. (2.6)

An explicit expression for the Bell polynomials is also given by the Faà di Bruno for-
mula [10]:

Φn = Yn
(
[ f ,g]n

)=
∑

π(n)

n!
j1! j2!··· jn!

f j

[
g1

1!

] j1[g2

2!

] j2

···
[
gn
n!

] jn

, (2.7)

where the sum runs over all partitions π(n) of the integer n, that is, n= j1 + 2 j2 + ···+
n jn. In (2.7) jh denotes the number of parts of size h, and j = j1 + j2 + ···+ jn denotes
the number of parts of the considered partition. A proof of the Faà di Bruno formula
can be found in [20]. In [22] the proof is based on the umbral calculus (see [23] and the
references therein).

3. Laguerre-type derivatives

The Laguerre-type derivatives were introduced in [7, 8] in connection with a differential
isomorphism denoted by the symbol � :=�x, acting onto the space � :=�x of analytic
functions of the x variable by means of the correspondence

D := d

dx
−→ D̂L :=DxD; x· −→ D̂−1

x , (3.1)

where

D̂−1
x f (x) :=

∫ x

0
f (ξ)dξ,

D̂−nx f (x) := 1
(n− 1)!

∫ x

0
(x− ξ)n−1 f (ξ)dξ,

(3.2)

so that

�x
(
xn
)= D̂−nx (1) := 1

(n− 1)!

∫ x

0
(x− ξ)n−1dξ = xn

n!
. (3.3)

According to this isomorphism, the exponential operator ex is transformed into the
first Laguerre-type exponential e1(x) :=∑∞

k=0 x
k/(k!)2 which is an eigenfunction of the

Laguerre derivative operator DL :=DxD. We have, in fact,

�x(ex)=
∞∑

k=0

�x(xk)
k!

=
∞∑

k=0

xk

(k!)2
= e1(x),

D̂Le1(ax)= ae1(ax), ∀a∈ C.
(3.4)
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This result can be generalized by considering the rLaguerre-type exponential er(x) :=
∑∞

k=0 x
k/(k!)r+1, the rth Laguerre-type derivative operator DrL :=DxDxD ···DxD (con-

taining r + 1 ordinary derivatives), and the iterated isomorphism �r , since

�r
x

(
ex
)=

∞∑

k=0

�x
(
xk
)

(k!)r
=

∞∑

k=0

xk

(k!)r+1
= er(x),

D̂rLer(ax)= aer(ax), ∀a∈ C.
(3.5)

Remark 3.1. The above results show that, for every positive integer r, we can define a
Laguerre-type exponential function er(x), satisfying an eigenfunction property, which is
an analog of the elementary property of the exponential. This function reduces to the
exponential function when r = 0, so that we can put by definition

e0(x) := ex, D̂0L :=D. (3.6)

Obviously, D̂1L := D̂L.
For this reason we will refer to such functions as L-exponential functions, or shortly

L-exponentials.

4. Laguerre-type Bell polynomials

The problem of constructing Bell polynomials can be extended in the natural way to the
case of the Laguerre-type derivatives.

To this aim, by using notations in (2.1), we introduce the following definition.

Definition 4.1. The nth Laguerre-type Bell polynomial, denoted by rLYn(x; [ f ,g]n), rep-
resents the nth rLaguerre-type derivative of the composite function f (g(t)).

We will show that rLYn can be expressed as a polynomial in the independent variable
x, depending on f1,g1; f2,g2; . . . ; fn,gn in terms of the classical Bell polynomials.

We start noting that, according to a general result due to Viskov [24], the Laguerre
derivative satisfy

(
DL
)n = (DxD)n =DnxnDn, (4.1)

and furthermore, for any order r, it turns out that

(
DrL

)n = (DxDx ···DxD)n =DnxnDnxn ···DnxnDn. (4.2)

According to the above equations, the proof of Carlitz [5] can be reduced to a simple
application of the Leibnitz rule, since

(DxD)n =Dn
(
xnDn

)=
n∑

k=0

(
n

k

)

Dn−kxnDn+k

=
n∑

k=0

[(
n

k

)]2

(n− k)!xkDn+k =
n∑

k=0

n!
k!

(
n

k

)

xkDn+k.

(4.3)
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Therefore, the following representation formula for the Laguerre-type Bell polynomi-
als, denoted by LYn, holds true.

Theorem 4.2. The LYn polynomials are expressed in terms of the ordinary Bell polynomials
according to the equation

LYn
(
x; [ f ,g]n

)=
n∑

k=0

n!
k!

(
n

k

)

xkYn+k
(
[ f ,g]n+k

)
. (4.4)

The above results can be easily generalized, since

(
D2L

)n = (DxDxD)n =Dnxn
(
DnxnDn

)

=
n∑

k1=0

n∑

k2=0

n!
k1!

(
n+ k1

)
!

(
k1 + k2

)
!

(
n

k1

)(
n

k2

)

xk1+k2Dn+k1+k2 .
(4.5)

5. The general case

The following result follows by induction.

Theorem 5.1. The powers of the rth Laguerre-type derivative operator DrL :=DxDxD ···
DxD (containing r + 1 ordinary derivatives) can be expanded in the form

(
DrL

)n = (DxDx ···DxD)n =DnxnDnxn ···DnxnDn

=
n∑

k1=0

n∑

k2=0

···
n∑

kr=0

n!
k1!

(
n+ k1

)
!

(
k1 + k2

)
!
···

(
n+ k1 + k2 + ···+ kr−1

)
!

(
k1 + k2 + ···+ kr

)
!

×
(
n

k1

)(
n

k2

)

···
(
n

kr

)

xk1+k2+···+krDn+k1+k2+···+kr .

(5.1)

Therefore, for the rth Laguerre-type Bell polynomials denoted by rLYn, the following
result holds true.

Theorem 5.2. The rLYn polynomials are expressed in terms of the ordinary Bell polynomials
according to the equation

rLYn
(
x; [ f ,g]n

)=
n∑

k1=0

n∑

k2=0

···
n∑

kr=0

n!
k1!

(
n+ k1

)
!

(
k1 + k2

)
!
···

(
n+ k1 + k2 + ···+ kr−1

)
!

(
k1 + k2 + ···+ kr

)
!

×
(
n

k1

)(
n

k2

)

···
(
n

kr

)

xk1+k2+···+krYn+k1+k2+···+kr
(
[ f ,g]n+k1+k2+···+kr

)
.

(5.2)
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[22] S. M. Roman, The formula of Faà di Bruno, The American Mathematical Monthly 87 (1980),

no. 10, 805–809.



P. Natalini and P. E. Ricci 7

[23] S. M. Roman and G.-C. Rota, The umbral calculus, Advances in Mathematics 27 (1978), no. 2,
95–188.

[24] O. V. Viskov, A commutative-like noncommutative identity, Acta Scientiarum Mathematicarum
(Szeged) 59 (1994), no. 3-4, 585–590.

P. Natalini: Dipartimento di Matematica, Università di Roma Tre, Largo S. Leonardo Murialdo 1,
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