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We introduce a central difference method for a backward heat conduction problem
(BHCP). Error estimates for this method are provided together with a selection rule for
the regularization parameter (the space step length). A numerical experiment is presented
in order to illustrate the role of the regularization parameter.
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1. Introduction

The backward heat conduction problem (BHCP) is also referred to as the final bound-
ary value problem. In general no solution which satisfies the heat conduction equation
with final data and the boundary conditions exists. Even if a solution exists, it will not
be continuously dependent on the final data. The BHCP is a typical example of an ill-
posed problem which is unstable in numerical simulations and requires special regular-
ization methods. In the context of approximation method for this problem, many ap-
proaches have been investigated. Such authors as Lattès and Lions [6], Showalter [10],
Ames [1], Miller [9] have approximated the BHCP by quasi-reversibility methods. In
[11], Schröter and Tautenhahn established an optimal error estimate for a special BHCP.
Mera and Jourhmane used many numerical methods with regularization techniques to
approximate the problem in [8, 5], and so forth. A mollification method has been stud-
ied by Hào in [4]. Recently, Liu [7] used a group preserving scheme to solve the backward
heat equation numerically. A difference approximation method for solving sideways heat
equation was provided by Eldén in [2], where he used a central difference to replace the
time derivative in heat equation. In this paper, we consider a special BHCP [4]:

ut(x, t)= uxx(x, t), x ∈R, 0 < t < 1,

u(x,1)= ϕ(x), x ∈R.
(1.1)

We want to obtain the temperature distribution u(x, t) for 0 < t < 1. Since the data ϕ(·) are
based on (physical) observations and are not known with complete accuracy, we assume
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that ϕ(·) and ϕδ(·) satisfy
∥
∥ϕ(·)−ϕδ(·)∥∥≤ δ, (1.2)

where ϕ(·) and ϕδ(·) belong to L2(R), ϕδ(·) denotes the measured data and δ denotes
the noise level. As usual, assume that there exists an a priori condition for our problem
(1.1):

∥
∥u(·,0)

∥
∥≤ E, (1.3)

where E is a positive bound. Problem (1.1) has a unique solution according to [3]. In
order to use the Fourier transform technique, we define the Fourier transform of function
f (x)(x ∈R) as the following:

f̂ (ξ) := 1√
2π

∫∞

−∞
e−ixξ f (x)dx, ξ ∈R. (1.4)

We consider the problem (1.1) in L2-space with respect to the variable x. Then taking
Fourier transform with respect to x, the problem (1.1) can be reformulated in frequency
space as follows:

ût(ξ, t)= (iξ)2û(ξ, t), û(ξ,1)= ϕ̂(ξ), ξ ∈R. (1.5)

The solution to (1.5) is given by

û(ξ, t)= eξ
2(1−t)ϕ̂(ξ). (1.6)

Then by inverse Fourier transform, the unique solution of (1.1) can be expressed:

u(x, t)= 1√
2π

∫∞

−∞
eixξeξ

2(1−t)ϕ̂(ξ)dξ. (1.7)

From (1.6), we can easily see that

û(ξ,0)= eξ
2
ϕ̂(ξ). (1.8)

Since in our problem û(ξ, t) is assumed to be in L2(R), we see that the exact data function
ϕ̂(ξ) must decay rapidly as ξ →∞. In the same time, it is easy to see that a small per-
turbation in the data ϕ̂(ξ) may cause dramatically large error in the solution û(ξ, t). In
addition, the magnifying factor is eξ

2
; hence, it is a severely ill-posed problem. By using

central difference with step length h to approximate the second derivative uxx, we can get
a regularized problem (with noisy data):

vt(x, t)= v(x+h, t)− 2v(x, t) + v(x−h, t)
h2

, x ∈R, 0 < t < 1,

v(x,1)= ϕδ(x), x ∈R.
(1.9)

Similarly we can easily get a solution in the frequency space for problem (1.9):

v̂(ξ, t)= e4sin2(hξ/2)(1−t)/h2
ϕ̂δ(ξ). (1.10)
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Then by inverse Fourier transform,

v(x, t)= 1√
2π

∫∞

−∞
eixξe4sin2(hξ/2)(1−t)/h2

ϕ̂δ(ξ)dξ. (1.11)

In the forthcoming section, we will see that (1.11) is a stable approximate solution for the
problem (1.1).

2. Error estimates

In this section, we will prove error estimates between the exact solution (1.7) and the
approximate solution (1.11). The following conclusion is the main result of this paper.

Theorem 2.1. Supposed that u(x, t) is given by (1.7) with exact data ϕ and that v(x, t)
is given by (1.11) with noisy data ϕδ . If there exists a bound ‖u(·,0)‖ ≤ E and the data
functions satisfy ‖ϕ−ϕδ‖ ≤ δ, and if h= 2(ln(E/δ))−1/2 is chosen, then the following error
estimates can be obtained.

(I) If E/δ < e3/2, then for 0 < t < 1,

∥
∥u(·, t)− v(·, t)∥∥≤ 2E1−tδt. (2.1)

(II) If E/δ ≥ e3/2, then
(II-a) for a fixed t satisfying 1/(3/2)ln(E/δ) < t < 1,

∥
∥u(·, t)− v(·, t)∥∥≤max

{

(1− t)
(

ln
E

δ

)−1/2( 3
2et

)3/2

, E1−tδt
}

+E1−tδt, (2.2)

(II-b) for a fixed t satisfying 0 < t ≤ (1)/((3/2)ln(E/δ)),

∥
∥u(·, t)− v(·, t)∥∥≤max

{
1− t

3

(

ln
E

δ

)

E1−tδt, E1−tδt
}

+E1−tδt. (2.3)

Proof. By Parseval relation and (1.8), (1.3), and (1.2), we can get

∥
∥u(·, t)− v(·, t)∥∥

= ∥∥û(·, t)− v̂(·, t)∥∥=
∥
∥
∥e(1−t)ξ2

ϕ̂(ξ)− e(1−t)(4sin2(ξh/2)/h2)ϕ̂δ(ξ)
∥
∥
∥

≤
∥
∥
∥e(1−t)ξ2

ϕ̂(ξ)− e(1−t)(4sin2(ξh/2)/h2)ϕ̂(ξ)
∥
∥
∥

+
∥
∥
∥e(1−t)(4sin2(ξh/2)/h2)ϕ̂(ξ)− e(1−t)(4sin2(ξh/2)/h2)ϕ̂δ(ξ)

∥
∥
∥

=
∥
∥
∥e−tξ

2
eξ

2
ϕ̂(ξ)− e(1−t)(4sin2(ξh/2)/h2)e−ξ

2
eξ

2
ϕ̂(ξ)

∥
∥
∥

+
∥
∥
∥e(1−t)(4sin2(ξh/2)/h2)ϕ̂(ξ)− e(1−t)(4sin2(ξh/2)/h2)ϕ̂δ(ξ)

∥
∥
∥

≤ sup
ξ∈R

∣
∣
∣e−tξ

2 − e(1−t)(4sin2(ξh/2)/h2)−ξ2
∣
∣
∣

∥
∥û(ξ,0)

∥
∥

+ sup
ξ∈R

∣
∣
∣e(1−t)(4sin2(ξh/2)/h2)

∣
∣
∣δ ≤ sup

ξ∈R
A(ξ)E+ sup

ξ∈R
B(ξ)δ,

(2.4)
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where

A(ξ) :=
∣
∣
∣e−tξ

2 − e(1−t)(4sin2(ξh/2)/h2)−ξ2
∣
∣
∣,

B(ξ) :=
∣
∣
∣e(1−t)(4sin2(ξh/2)/h2)

∣
∣
∣.

(2.5)

Firstly we can estimate B(ξ)δ as

B(ξ)δ ≤ e(1−t)(4/h2)δ. (2.6)

According to the selection of h in Theorem 2.1, we have

B(ξ)δ ≤ e(1−t) ln(E/δ)δ = E1−tδt. (2.7)

Now we will devote to estimating A(ξ)E,

A(ξ)E =
∣
∣
∣e−tξ

2 − e(1−t)(4sin2(ξh/2)/h2)−ξ2
∣
∣
∣E

= e−tξ
2
∣
∣
∣1− e(1−t)(4sin2(ξh/2)/h2−ξ2)

∣
∣
∣E.

(2.8)

Obviously,

4sin2(ξh/2)
h2

≤ ξ2. (2.9)

Case 1. If |ξ| ≥ 2/h, hence

e(1−t)(4sin2(ξh/2)/h2−ξ2) ≤ 1, (2.10)

furthermore for the selection of h, we have

A(ξ)E ≤ e−tξ
2
E ≤ e−t(4/h2)E = E1−tδt. (2.11)

Case 2. If |ξ| ≤ 2/h, from (2.8) and by the inequality 1− e−y ≤ y(y ≥ 0), we have

A(ξ)≤ e−tξ
2
(

ξ2− 4sin2(ξh/2)
h2

)

(1− t). (2.12)

Let r := h|ξ|/2, and note that 0≤ r ≤ 1, ξ2 = 4r2/h2, we have

A(ξ)≤ e−t(4r2/h2) 1
h2

(

4r2− 4sin2 r
)

(1− t)

= e−t(4r2/h2) 4
h2

(r + sinr)(r− sinr)(1− t)

≤ 2e− tr2(4/h2) 4
h2

(r− sinr)(1− t).

(2.13)
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By using the inequality sinr ≥ r− (r3/6) (r ≥ 0), we get

A(ξ)≤ 2e− tr2(4/h2) 4
h2

r3

6
(1− t) :=Q(r). (2.14)

We can easily find that the uniqueness maximum of Q(r) attains at the point r0 =
√

(3/2t)(h2/4)= √(3/2t)(lnE/δ)−1, then

A(ξ)≤Qmax =Q(r0)= (1− t)
(

ln
E

δ

)−1/2( 3
2te

)3/2

, for r0 < 1. (2.15)

If r0 > 1, then maximum of Q(r) is Q(1), then

A(ξ)≤Qmax =Q(1)= 1− t

3

(

ln
E

δ

)

E−tδt. (2.16)

From r0 =
√

(3/2)(1/ ln(E/δ)/t), note that 0 < t < 1, hence if (3/2)(1/ ln(E/δ)) > 1, that is,
lnE/δ < 3/2, then r0 > 1. We can conclude that the following hold.

(I) If (E/δ) < e3/2, then r0 > 1 is always satisfied. Hence for all ξ ∈ R, combining
(2.11) and (2.16) we have

∥
∥û(·, t)− v̂(·, t)∥∥≤ sup

ξ∈R
A(ξ)E+ sup

ξ∈R
B(ξ)δ

≤max
{

Q(1)E,E1−tδt
}

+E1−tδt

=max
{

(1− t)
3

(

ln
E

δ

)

E1−tδt,E1−tδt
}

+E1−tδt

≤max
{

(1− t)
3

3
2
E1−tδt,E1−tδt

}

+E1−tδt

≤
(

max
{

(1− t)
(2,1)

}

+ 1
)

E1−tδt

≤ 2E1−tδt −→ 0, for δ −→ 0.

(2.17)

(II) If E/δ ≥ e3/2, then
(II-a) if 1/(3/2)ln(E/δ) < t < 1, then r0 ≤ 1 holds, combining (2.11) and (2.15),

we have
∥
∥û(·, t)− v̂(·, t)∥∥

≤ sup
ξ∈R

A(ξ)E+ sup
ξ∈R

B(ξ)δ ≤max
{

Q(r0)E,E1−tδt
}

+E1−tδt

=max
{

(1− t)
(

3
2et

)3/2(

ln
E

δ

)−1/2

,E1−tδt
}

+E1−tδt −→ 0, for fixed t, δ −→ 0;

(2.18)
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(II-b) if 0 < t ≤ 1/(3/2)ln(E/δ), then r0 > 1 holds, combining (2.11) and (2.16),
we have

∥
∥û(·, t)− v̂(·, t)∥∥

≤ sup
ξ∈R

A(ξ)E+ sup
ξ∈R

B(ξ)δ ≤max
{

Q(1)E,E1−tδt
}

+E1−tδt

=max
{

(1− t)
3

(

ln
E

δ

)

E1−tδt,E1−tδt
}

+E1−tδt −→ 0, for fixed t δ −→ 0.

(2.19)

Thus, the proof of the theorem is completed. �

It is easy to see that the space step length h is the regularization parameter of this
problem. In the conclusion, we give a rule for choosing the regularization parameter,
which is very important for the study of ill-posed problems.

3. A numerical example

In this section, by a numerical experiment, we will study how the regularization parame-
ter h influences the approximation.

It is easy to verify that the function

u(x, t)= 1√
1 + 4t

e−x
2/(1+4t) (3.1)

is the unique solution of the initial problem

ut = uxx, x ∈R, t > 0,

u(x,0)= e−x
2
, x ∈R.

(3.2)

Hence, u(x, t) given by (3.1) is also the solution of the following backward heat equation
for 0≤ t < 1:

ut = uxx, x ∈R, 0≤ t < 1,

u(x,1)= 1√
5
e−x

2/5, x ∈R.
(3.3)

Let s= 1− t,w(x,s)= u(x, t), we have

ws =−wxx, x ∈R, 0 < s < 1, (3.4)

w(x,s= 0)= 1√
5
e−x

2/5, x ∈R. (3.5)

If wxx at xi is replaced by a second-order central difference, then (3.4) becomes

ws(xi,s)=− 1
h2

[

w
(

xi +h,s
)− 2w

(

xi,s
)

+w
(

xi−h,s
)]

. (3.6)
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First let us list some notations: xi = ih, for i=−n, . . . ,0, . . . ,n. wi = wi(s)= w(ih,s). Then
(3.6) with the initial condition (3.5) can be discretized as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w−n
...

w0

...

wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

s

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
h2

− 1
h2

0

− 1
h2

2
h2

− 1
h2

. . .
. . .

. . .

0 − 1
h2

2
h2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2n+1)×(2n+1)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w−n
...

w0

...

wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.7)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

w−n(0)

...

w0(0)

...

wn(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
5
e−x2−n/5

...
1√
5
e−x

2
0/5

...
1√
5
e−x2

n/5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.8)

This ordinary differential equation system can easily be solved. In our numerical imple-
mentation we use a Runge-Kutta method. A standard ODE solver ode45 in Matlab is such
a method.

Now we focus on the numerical experiment. The main aim is to investigate the role of
regularization parameter h. We do the numerical experiment in the interval x ∈ [−20,20]
and t ∈ [0,1]. This is reasonable in that the initial data at the points x =−20,20 in (3.5)
can be considered to be 0 in the computation by noting that the final value u(x,1)→ 0
in (3.3) when x→±∞. To test the accuracy of an approximate solution, we compute the
root mean square error (RMSE) by

E(u)=
√
√
√
√

1
2n+ 1

n
∑

i=−n
(vi−ui)2 (3.9)

at total 2n+ 1 test points at the x-axis, where vi and ui are, respectively, the approximate
and exact temperature at a test point. Obviously, (3.9) is to approximate L2 norm error.
For convenience, in our numerical experiment the noisy data is generated by

wδ
i (0)=wi(0) + δ, i=−n, . . . ,n, (3.10)

where wi(0) are the exact data given in (3.8). Thus, Since (3.9), it follows E(w(0))= δ.
From Figure 3.1, one can see that for fixed δ = 0.001, the L2-error attain a minimum

at the “optimal” h= 2(ln(E/δ))−1/2 ≈ 0.76 (here we take ‖u(x,0)‖L2(R) = E ≈ 1.1).
From Figure 3.2, we can see that for a fixed h, the L2-error increase as t approaches 0.
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Figure 3.1. L2-error for various t and h with fixed δ = 0.001 (“optimal” h= 10/13
.= 0.77).
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Figure 3.2. L2-error for various t and δ (for fixed h= 10/13).
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[4] D. N. Hào, A mollification method for ill-posed problems, Numerische Mathematik 68 (1994),
no. 4, 469–506.

[5] M. Jourhmane and N. S. Mera, An iterative algorithm for the backward heat conduction problem
based on variable relaxtion factors, Inverse Problems in Engineering 10 (2002), no. 4, 293–308.
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