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We investigate the question whether the p.q.-Baer center of a ring R can be extended to
R. We give several counterexamples to this question and consider some conditions under
which the answer may be affirmative. The concept of a generalized p.q.-Baer property
which is a generalization of Baer property of a ring is also introduced.
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1. Introduction

In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator
ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer
if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent.
Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8]
called a ring R to be a right (resp., left) principally quasi-Baer (or simply right (resp., left)
p.q.-Baer) ring if the right (resp., left) annihilator of a principal right (resp., left) ideal is
generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-
Baer. The class of right or left p.q.-Baer rings is a nontrivial generalization of the class of
quasi-Baer rings. For example, if R is a commutative von Neumann regular ring which is
not complete, then R is p.q.-Baer but not quasi-Baer. Observe that every biregular ring is
also a p.q.-Baer ring.

A ring satisfying a generalization of Rickart’s condition (i.e., every right annihilator of
any element is generated (as a right ideal) by an idempotent) has a homological charac-
terization as a right PP-ring which is also another generalization of a Baer ring. A ring
R is called a right (resp., left) PP-ring if every principal right (resp., left) ideal is pro-
jective (equivalently, if the right (resp., left) annihilator of an element of R is generated
(as a right (resp., left) ideal) by an idempotent of R). R is called a PP-ring (also called
a Rickart ring [3, page 18]) if it is both right and left PP. Baer rings are clearly right
(left) PP-rings, and von Neumann regular rings are also right (left) PP-rings by Good-
earl [10, Theorem 1.1]. Note that the conditions right PP and right p.q.-Baer are distinct
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[8, Examples 1.3 and 1.5], but R is an abelian PP-ring if and only if R is a reduced p.q.-
Baer ring [8, Corollary 1.15].

Throughout this paper, R denotes an associative ring with identity. For a nonempty
subset X of R, we write rR(X) = {a ∈ R | Xa = 0} and �R(X) = {a ∈ R | aX = 0}, which
are called the right and left annihilators of X in R, respectively.

2. Principally quasi-Baer centers

As a motivation for this section, we recall the following results.
(1) The center of a Baer ring is Baer [15, Theorem 7].
(2) The center of a quasi-Baer ring is quasi-Baer [7, Proposition 1.8].
(3) The center of a right p.q.-Baer ring is PP (hence p.q.-Baer) [8, Proposition 1.12].
(4) Every reduced PI-ring with the Baer center is a Baer ring [1, Theorem D].

It is natural to ask if the p.q.-Baer center of a ring R can be extended to R. In this
section, we show that this question has a negative answer, and so we investigate the class
of rings with some conditions under which the answer to this question is affirmative.

Let C(R) denote the center of a ring R.

Example 2.1. (1) Let K be a field. We consider the ring R= K[X ,Y ,Z] with XY = XZ =
ZX = YX = 0 and YZ �= ZY. Then R is reduced and C(R)= K[X] is Baer and so p.q-Baer.
But rR(Y) has no idempotents. Thus R is not right p.q.-Baer. Note that

I = {
f (Y ,Z)∈ K[Y ,Z] | f (0,0)= 0

}
(2.1)

is a two-sided ideal of R and I ∩C(R)= 0.
(2) Let

R=
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

x y z
0 x u
0 0 v

⎞

⎟
⎠ | x, y,z,u,v ∈R

⎫
⎪⎬

⎪⎭
⊆Mat3(R), (2.2)

where R denotes the set of real numbers. Then R is a PI-ring which is not semiprime.
Then we see that

rR

⎛

⎜
⎝

⎛

⎜
⎝

0 1 0
0 0 0
0 0 0

⎞

⎟
⎠R

⎞

⎟
⎠=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0 b c
0 0 0
0 0 0

⎞

⎟
⎠ | b,c ∈R

⎫
⎪⎬

⎪⎭
. (2.3)

But this cannot be generated by an idempotent. Hence R is not right p.q.-Baer. On the
other hand,

C(R)=
⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

x 0 0
0 x 0
0 0 x

⎞

⎟
⎠ | x ∈R

⎫
⎪⎬

⎪⎭
∼=R. (2.4)

Therefore C(R) is Baer.
Observe that Example 2.1(2) also shows that there exists a PI-ring R with the Baer

center, but R is not right p.q.-Baer.
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However, we have the following results.

Lemma 2.2 [8, Proposition 1.7]. R is a right p.q.-Baer ring if and only if the right annihi-
lator of any finitely generated right ideal is generated (as a right ideal) by an idempotent.

Proposition 2.3. Let R be a ring with the p.q.-Baer center C(R). If R satisfies any of the
following conditions for any nonzero two-sided ideal I of R, then R is quasi-Baer (and hence
right p.q.-Baer):

(1) I ∩C(R) is a nonzero finitely generated right ideal of C(R);
(2) I ∩C(R) �= 0 and every central idempotent of R is orthogonal;
(3) I ∩C(R) �= 0 and every right ideal of R generated by a central element contains C(R).

Proof. Let I be a nonzero two-sided ideal of R. If rR(I) = 0, then we are done. Thus we
assume that rR(I) �= 0.

(1) By hypothesis and Lemma 2.2, I ∩C(R) �= 0 and rC(R)(I ∩C(R))= eC(R) for some
e2 = e ∈ C(R). We claim that rR(I) = eR. If Ie �= 0, then Ie is a nonzero two-sided ideal
of R. Thus, by hypothesis, 0 �= Ie∩C(R) ⊆ I ∩C(R). Let 0 �= x ∈ Ie∩C(R). Then x =
ye ∈ I ∩C(R) for some y ∈ I , and so x = xe = 0; which is a contradiction. Hence eR ⊆
rR(I), and then rR(I)= R∩ rR(I)= (eR⊕ (1− e)R)∩ rR(I)= eR⊕ ((1− e)R∩ rR(I)). We
show that (1− e)R∩ rR(I) = 0. Suppose that 0 �= (1− e)R∩ rR(I). Then (1− e)R∩C(R)
is a nonzero two-sided ideal of R. Thus, by hypothesis, 0 �= (1− e)R∩ rR(I)∩ C(R) =
(1− e)R∩ rC(R)(I) ⊆ (1− e)R∩ rC(R)(I ∩C(R)) ⊆ (1− e)R∩ eC(R) ⊆ (1− e)R∩ eR = 0;
which is also a contradiction. Therefore rR(I)= eR, and thus R is quasi-Baer.

(2) There exists 0 �= a ∈ C(R) such that a ∈ I , and so rC(R)(aC(R)) = eC(R) for some
e2 = e ∈ C(R) by hypothesis. Then rR(aR) = eR. Since rR(aR)∩C(R) = rC(R)(aC(R)) =
eC(R), e ∈ rR(aR), and so eR ⊆ rR(aR), and thus rR(aR) = eR by the similar method to
(1). Hence rR(I)⊆ eR. Now, we claim that eR⊆ rR(I). If not, there exists 0 �= x ∈ R such
that x ∈ I ∩C(R) by the same arguments as in (1). Then rC(R)(xC(R))= f C(R) for some
f 2 = f ∈ C(R), and so rR(xR)= f R. Hence rR(I)⊆ f R∩ eR= 0; which is a contradiction.
Thus rR(I)= eR for some e2 = e ∈ R, and therefore R is a quasi-Baer ring.

(3) By hypothesis, there exists 0 �= a∈ I ∩C(R), and so rC(R)(aC(R))= eC(R) for some
e2 = e ∈ C(R). Then rR(aR) = eR, and this implies that rR(I) ⊆ eR by the same method
as in (2). Now, we claim that eR⊆ rR(I). If not, there exists 0 �= x ∈ Ie∩C(R)⊆ I ∩ aR⊆
aR, by hypothesis. We put x = ye ∈ C(R) for some y ∈ I . Since rR(x)⊇ rR(aR)= eR, we
obtain x = xe = 0; which is a contradiction. Thus eR ⊆ rR(I), and consequently rR(I) =
eR. Therefore R is a quasi-Baer ring. �

Corollary 2.4. Let R be a semiprime PI-ring with the p.q.-Baer center C(R). If either every
central idempotent of R is orthogonal or every right ideal of R generated by a central element
contains C(R), then R is quasi-Baer.

The proof follows from [18, Theorem 6.1.28] and Proposition 2.3.
Part (1) of the following example shows that the condition “I ∩ C(R) is a nonzero

finitely generated right ideal of C(R)” and the condition “every central idempotent of R is
orthogonal” in Proposition 2.3(1) and (2) are not superfluous, respectively, and parts (2)
and (3) show that in Proposition 2.3, the condition (1) is not equivalent to the condition
(2).
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Example 2.5. (1) Let R= {〈ai〉 ∈
∏∞

i=1Ti | ai is eventually constant}, where Ti =Mat2(F)
for all i and F is a field. For a two-sided ideal I = {〈ai〉 ∈ R | ai = 0 if i is even}, rR(I) =
{〈bj〉 ∈ R | bj = 0 if i is odd}. Since

〈(
1 0
0 1

)

,

(
0 0
0 0

)

,

(
1 0
0 1

)

,

(
0 0
0 0

)

, . . .

〉

/∈ R, (2.5)

rR(I) cannot be generated by an idempotent of R. Thus R is not quasi-Baer. Note that

C(R)=
{
〈
ai
〉∈ R | ai =

(
k 0
0 k

)

for some k ∈ F

}

(2.6)

is p.q.-Baer. Now,

I ∩C(R)=
{
〈
ai
〉∈ R | ai = 0 if i is even, ai =

(
x 0
0 x

)

∈Mat2(F) if i is odd

}

(2.7)

is not finitely generated. Moreover,

〈(
1 0
0 1

)

,

(
0 0
0 0

)

,

(
0 0
0 0

)

, . . .

〉

,

〈(
1 0
0 1

)

,

(
1 0
0 1

)

,

(
0 0
0 0

)

,

(
0 0
0 0

)

, . . .

〉

(2.8)

are idempotents, but they are not orthogonal.
(2) Let R = F[x1,x2, . . .], where F is a field. Then R is a commutative quasi-Baer ring

whose only idempotents 0 and 1 are orthogonal, but the two-sided ideal 〈x2
1,x2

2, . . .〉 of R
is not finitely generated.

(3) Let R = Z⊕ Z. Then R is a commutative quasi-Baer ring. Since R is Noetherian,
every two-sided ideal of R is finitely generated. But the central idempotents (1,0) and
(1,1) are not orthogonal.

Related to the result of [1, Theorem D], we have the next example.

Example 2.6. (1) Let R = �[0,1] be the ring of all real-valued continuous functions on
[0,1]. Then R is commutative (and so PI) and reduced. But R is not p.q.-Baer. Let

f : [0,1]−→R (2.9)

be defined by

f (x)=

⎧
⎪⎪⎨

⎪⎪⎩

0, 0≤ x ≤ 1
2

,

x− 1
2

,
1
2
< x ≤ 1.

(2.10)
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Then f ∈ R, and so

rR( f )=
{
g ∈ R | g

((
1
2

,1
])
= 0

}
�= 0. (2.11)

Suppose that rR( f )= eR for some nonzero idempotent e ∈ R. Then e(x)2 = e(x), for each
x ∈ [0,1]. Thus e(x)= 0 or e(x)= 1. Since e ∈ rR( f ), e((1/2,1])= {0}. But e is continu-
ous, and so e(x)= 0 for each x ∈ [0,1]. Hence rR( f )= 0; which is a contradiction. Thus
R is a reduced PI-ring which is not right p.q.-Baer.

(2) We take the ring in [12, Example 2(1)]. Let Z be the ring of integers and Mat2(Z)
the 2× 2 full matrix ring over Z. Let

R=
{(

a b
c d

)

∈Mat2(Z) | a−d ≡ b≡ c ≡ 0(mod2)

}

. (2.12)

Then R is right p.q.-Baer, but R is neither right PP nor left PP by [12, Example 2(1)].
Moreover, it can be easily checked that R is an abelian PI-ring with the PP center.

3. Generalized p.q.-Baer rings

Regarding a generalization of Baer rings as well as a PP-ring, recall that a ring R is called
a generalized right PP-ring if for any x ∈ R, the right ideal xnR is projective for some
positive integer n, depending on n, equivalently, if for any x ∈ R, the right annihilator
of xn is generated by an idempotent for some positive integer n, depending on n. Left
cases may be defined analogously. A ring R is called a generalized PP-ring if it is both
generalized right and left PP-ring. Right PP-rings are generalized right PP obviously. A
number of papers have been written on generalized PP-rings. For basic and other results
on generalized PP-rings, see, for example, [11, 14, 16].

As a parallel definition to the generalized PP-property related to the p.q.-Baer prop-
erty, we define the following.

Definition 3.1. A ring R is called a generalized right p.q.-Baer ring if for any x ∈ R, the right
annihilator of xnR is generated by an idempotent for some positive integer n, depending
on n. Left cases is defined analogously. A ring R is called a generalized p.q.-Baer ring if it
is both generalized right and left p.q.-Baer ring.

We have the following connections.

Lemma 3.2 [12, Lemma 1]. Let R be a reduced ring. The following are equivalent:
(1) R is right PP;
(2) R is PP;
(3) R is generalized right PP;
(4) R is generalized PP;
(5) R is right p.q.-Baer;
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(6) R is p.q.-Baer;
(7) R is generalized right p.q.-Baer;
(8) R is generalized p.q.-Baer;

Shin [19] defined that a ring R satisfies (SI) if for each a∈ R, rR(a) is a two-sided ideal
of R, and proved that R satisfies (SI) if and only if ab = 0 implies that aRb = 0 for a,b ∈ R
[19, Lemma 1.2]. The (SI) property was studied in the context of near-rings by Bell, in
[2], where it is called the insertion of factors principle (IFP). It is well known that every
reduced ring has the IFP, and if R has the IFP then it is abelian, but the converses do not
hold, respectively.

Recall from [8, Corollary 1.15] that R is an abelian PP-ring if and only if R is a reduced
p.q.-Baer ring. Similarly, we have the following.

Proposition 3.3. Let a ring R have the IFP. Then R is a generalized right PP-ring if and
only if R is a generalized right p.q.-Baer ring.

Proof. For any x ∈ R and positive integer n, rR(xn)= rR(xnR) since R has the IFP. �

Every right p.q.-Baer rings is a generalized right p.q.-Baer, but the converse does not
hold, by the next example.

Given a ring R and an (R,R)-bimodule M, the trivial extension of R by M is the ring
T(R,M)= R⊕M with the usual addition and the following multiplication:

(
a1,m1

)(
a2,m2

)= (
a1a2,a1m2 +m1a2

)
. (3.1)

This is isomorphic to the ring of all matrices (a m
0 a ), where a∈ R and m∈M and the usual

matrix operations are used.

Example 3.4 [14, Example 2]. Let D be a domain and let R = T(D,D) be the trivial ex-
tension of D. Then R has the IFP and R is a generalized right PP-ring, but it is not a right
PP-ring. Thus R is a generalized right p.q.-Baer ring by Proposition 3.3, but it is not right
p.q.-Baer by [8, Proposition 1.14].

Recall from [5] that an idempotent e ∈ R is called left (resp., right) semicentral if xe =
exe (resp., ex = exe) for all x ∈ R. The set of left (resp., right) semicentral idempotents of
R is denoted by S�(R) (resp., Sr(R)). Note that S�(R)∩ Sr(R)= B(R), where B(R) is the set
of all central idempotents of R, and if R is semiprime then S�(R)= Sr(R)= B(R). Some of
the basic properties of these idempotents are indicated in the following.

Lemma 3.5 [7, Lemma 1.1]. For an idempotent e ∈ R, the following are equivalent:
(1) e ∈ S�(R);
(2) 1− e∈ Sr(R);
(3) (1− e)Re= 0;
(4) eR is a two-sided ideal of R;
(5) R(1− e) is a two-sided ideal of R.

The following example shows that the condition “R has the IFP” in Proposition 3.3
cannot be dropped.
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Example 3.6 [8, Example 1.6]. For a field F, take Fn = F for n= 1,2, . . . , and let

R=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∞∏

n=1

Fn

∞⊕

n=1

Fn

∞⊕

n=1

Fn

〈 ∞⊕

n=1

Fn,1

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.2)

which is a subring of the 2× 2 matrix ring over the ring
∏∞

n=1Fn, where <
⊕∞

n=1Fn,1 > is
the F-algebra generated by ⊕∞n=1Fn and 1. Then R is a regular ring by [10, Lemma 1.6],
and so R is a generalized PP-ring.

Let a∈ (an)∈∏∞
n=1Fn such that an = 1 if n is odd and an = 0 if n is even, and let α=

(a 0
0 0 )∈ R. Now we assume that there exists an idempotent e ∈ R such that rR(αkR)= eR

for a positive integer k. Then e is left semicentral, and so e is central since R is semiprime,
but this is impossible. Thus R is not generalized right p.q.-Baer. Similarly R is not gener-
alized left p.q.-Baer.

Proposition 3.7. Let R be a ring. The following are equivalent:
(1) R is generalized right p.q.-Baer;
(2) for any principal ideal I of the form RanR of R, where n is a positive integer, there

exists e ∈ Sr(R) such that I ⊆ Re and rR(I)∩Re= (1− e)Re.

Proof. The proof is an adaptation from [8, Proposition 1.9]. (1)⇒(2). Assume (1) holds.
Then rR(I)= rR(RanR)= rR(anR)= f R with f ∈ S�(R). So I ⊆ �R(rR(I))= R(1− f ). Let
e = 1− f , then e ∈ Sr(R). Hence rR(I)∩Re= (1− e)R∩Re= (1− e)Re.

(2)⇒(1). Assume (2) holds. Clearly (1− e)R⊆ rR(I) for any ideal I of the form RanR.
Let α∈ rR(I), then αe = eαe+ (1− e)αe ∈ rR(I)∩Re = (1− e)Re. So eα= eαe = 0. Hence
α= (1− e)α∈ (1− e)R. Thus rR(I)= (1− e)R, and therefore R is generalized right p.q.-
Baer. �

Corollary 3.8. Let R be a generalized right p.q.-Baer ring. If I is a principal ideal of the
form RanR of R, then there exists e ∈ Sr(R) such that I ⊆ Re, (1− e)Re is an ideal of R, and
I + (1− e)Re is left essential in Re.

As a parallel result to [8, Proposition 1.12], we have the following whose proof is also
an adaptation from [8].

Proposition 3.9. If R is a generalized right p.q.-Baer ring, then the center C(R) of R is a
generalized PP-ring.

Proof. Let a∈ C(R). For any positive integer n, there exists e ∈ S�(R) such that �R(an)=
�R(Ran) = rR(an) = rR(anR) = eR. Observe that �R(Ran) = �RrR�R(Ran) = �RrR(eR). Let
rR(eR) = rR(enR) = f R with f ∈ S�(R), then 1 − f ∈ Sr(R). Hence eR = �R(Ran) =
�RrR(eR) = �R( f R) = R(1− f ). So there exists x ∈ R such that e = x(1− f ), and hence
e f = x(1− f ) f = 0. Now f e = e f e = 0 because e ∈ S�(R), and so e f = f e = 0. Since
eR = R(1− f ), there is y ∈ R such that 1− f = ey, and so e = e(1− f ) = ey = 1− f .
Thus e ∈ S�(R)∩ Sr(R)= B(R). Consequently, rC(R)(an)= rR(an)∩C(R)= eR∩C(R)=
eC(R). Therefore the center C(R) of R is a generalized PP-ring. �
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The following example shows that there exists a semiprime ring � whose center is a
generalized PP, but � is not a generalized right p.q.-Baer.

Example 3.10. Let �= R⊕Mat2(Z[x]), where

R=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∞∏

n=1

Fn

∞⊕

n=1

Fn

∞⊕

n=1

Fn

〈 ∞⊕

n=1

Fn,1

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (3.3)

in Example 3.6. Then the center of � is generalized PP. Since R is not a generalized right
p.q.-Baer by Example 3.6, � is not a generalized right p.q.-Baer either. Furthermore, due
to [14, Example 4], Mat2(Z[x]) is not a generalized right PP. Thus � is not generalized
right PP.

Note that given a reduced ring R, the trivial extension of R (by R) has the IFP by simple
computations. However, the trivial extension of a ring R which has the IFP does not have
the IFP by [13, Example 11]. We give examples of generalized right p.q.-Baer rings, which
are extensions of the trivial extension, as in the following.

Lemma 3.11. Let S be a ring and for n≥ 2,

Rn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a a12 a13 ··· a1n

0 a a23 ··· a2n

0 0 a ··· a3n
...

...
...

. . .
...

0 0 0 ··· a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

| a,ai j ∈ S

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

. (3.4)

If S has the IFP, then for any A∈ Rn and any E2 = E ∈ Rn, AE = 0 implies that ARnE = 0,
where 0 is the zero matrix in Rn.

Proof. Note that every idempotent E in Rn is of the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e 0 0 ··· 0
0 e 0 ··· 0
0 0 e ··· 0
...

...
...

. . .
...

0 0 0 ··· e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.5)

with e2 = e ∈ S by [14, Lemma 2]. Suppose that AE = 0 for any

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a a12 a13 ··· a1n

0 a a23 ··· a2n

0 0 a ··· a3n
...

...
...

. . .
...

0 0 0 ··· a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn. (3.6)
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Then we have the following: ae = 0 and ai je = 0 for i < j, 1≤ i and 2≤ j. Since S has the
IFP, aSe = 0 and ai jSe = 0 for i < j, 1≤ i and 2≤ j. These imply that ARnE = 0. �

Proposition 3.12. Let a ring S have the IFP and let Rn for n≥ 2 be the ring in Lemma 3.11.
Then the following are equivalent:

(1) S is generalized right p.q.-Baer;
(2) Rn is generalized right PP;
(2) Rn is generalized right p.q.-Baer.

Proof. (1)⇒(2). Suppose that S is generalized right p.q.-Baer. By Proposition 3.3, S is a
generalized right PP. Hence Rn is also a generalized right PP by [14, Proposition 3].

(2)⇒(3). Suppose that Rn is a generalized right PP. Then for any

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a a12 a13 ··· a1n

0 a a23 ··· a2n

0 0 a ··· a3n
...

...
...

. . .
...

0 0 0 ··· a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn (3.7)

and a positive integer k, there exists an idempotent

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e 0 0 ··· 0
0 e 0 ··· 0
0 0 e ··· 0
...

...
...

. . .
...

0 0 0 ··· e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn (3.8)

with e2 = e ∈ S such that rRn(Ak) = ERn. Note that rRn(AkRn) ⊆ ERn. From rRn(Ak) =
ERn, AkE = 0, and so AkRnE = 0 by Lemma 3.11. Thus we have E ∈ rRn(AkRn), and so
ERn ⊆ rRn(AkRn). Consequently, rRn(AkRn) = ERn, and therefore Rn is generalized right
p.q.-Baer.

(3)⇒(1). Suppose that Rn is a generalized right p.q.-Baer. Let a∈ S and consider

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 0 0 ··· 0
0 a 0 ··· 0
0 0 a ··· 0
...

...
...

. . .
...

0 0 0 ··· a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn. (3.9)
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Since Rn is a generalized right p.q.-Baer, rRn(AkRn) = ERn for some E2 = E ∈ Rn and a
positive integer k. Then by [14, Lemma 2], there is e2 = e ∈ S such that

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e 0 0 ··· 0
0 e 0 ··· 0
0 0 e ··· 0
...

...
...

. . .
...

0 0 0 ··· e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn. (3.10)

Hence eS⊆ rS(akS). Let b ∈ rS(akS), then

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b 0 0 ··· 0
0 b 0 ··· 0
0 0 b ··· 0
...

...
...

. . .
...

0 0 0 ··· b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Rn (3.11)

is contained in rRn(AkRn) = ERn, so b ∈ eS. Thus S is also a generalized right p.q.-Baer
ring. �
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[16] M. Ôhori, On noncommutative generalized p.p. rings, Mathematical Journal of Okayama Univer-

sity 26 (1984), 157–167.
[17] A. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Mathematical Journal 37 (1970),

127–138.
[18] L. H. Rowen, Ring Theory. Vol. II, Pure and Applied Mathematics, vol. 128, Academic Press,

Massachusetts, 1988.
[19] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Transactions of the

American Mathematical Society 184 (1973), 43–60 (1974).

Tai Keun Kwak: Department of Mathematics, Daejin University, Pocheon 487-711, South Korea
E-mail address: tkkwak@daejin.ac.kr

mailto:tkkwak@daejin.ac.kr

	1. Introduction
	2. Principally quasi-Baer centers
	3. Generalized p.q.-Baer rings
	Acknowledgments
	References

