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1. Introduction

Let Mn,r(x) be the generalized weighted means Mn,r(x) = (
∑n

i=1 qix
r
i )

1/r , where Mn,0(x)
denotes the limit of Mn,r(x) as r → 0+, x = (x1,x2, . . . ,xn), and qi > 0 (1≤ i≤ n) are pos-
itive real numbers with

∑n
i=1 qi = 1. In this paper, we let q =minqi and always assume

n≥ 2, 0≤ x1 < x2 < ··· < xn.
We define An(x)=Mn,1(x), Gn(x)=Mn,0(x), Hn(x)=Mn,−1(x) and we will write Mn,r

forMn,r(x),An forAn(x), and similarly for other means when there is no risk of confusion.
For real numbers α,β and mutually distinct numbers r, s, t, we define

Δr,s,t,α,β =
∣
∣
∣
∣
∣

Mα
n,r −Mα

n,t

M
β
n,r −M

β
n,s

∣
∣
∣
∣
∣

, (1.1)

where we interpret M0
n,r −M0

n,s as lnMn,r − lnMn,s. When α = β, we define Δr,s,t,α to be
Δr,s,t,α,α. We also define Δr,s,t to be Δr,s,t,1.

For r > s > t ≥ 0, α > 0, we studied in [7, 8] inequalities of the following two types:

Cr,s,t
(
(1− q)α

)≥ Δr,s,t,α, (1.2)

Δr,s,t,α ≥ Cr,s,t
(
qα
)
, (1.3)

where

Cr,s,t(x)= 1− x1/t−1/r

1− x1/s−1/r
, t > 0; Cr,s,0(x)= 1

1− x1/s−1/r
. (1.4)
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For any set {a,b,c} with a, b, c mutually distinct and nonnegative, we let r =max{a,
b,c}, t = min{a,b,c}, s = {a,b,c}\{r, t}. By saying (1.2) (resp., (1.3)) holds for the set
{a,b,c}, α > 0, we mean (1.2) (resp., (1.3)) holds for r > s > t ≥ 0, α > 0. The main result
in [8] is the following.

Theorem 1.1. Inequality (1.2) holds for the set {r,s,1} with α= 1, r,s,1 mutually distinct
and r > s≥ 0, r + s≥ 1. The equality holds if and only if n= 2, x1 = 0, q1 = q.

The consideration of n = 2, x2 → x1 shows that inequalities (1.2) and (1.3) cannot
hold simultaneously in general. By [8, Lemma 2.1], Cr,s,t(x) is an increasing function of
x for 0 < x < 1. Hence in order for (1.2) to hold, it is necessary to have Cr,s,t((1/2)α) ≥
(r − t)/(r − s). In this paper, we will complete our discussion on (1.2) for the case α= 1
and 1∈ {r,s, t}. We will also show that for t > 0, inequality (1.3) does not hold.

As an analogue of (1.2), we note the following result of Wu [16].

Theorem 1.2 [16, Theorem 2]. For xi > 0, 1 ≤ i ≤ n, λ ≥ max{(n− 1)p−1, (p− 1)p−1},
p > 1,

( n∑

i=1

xi

)p

≤ λ
n∑

i=1

x
p
i +

(
np−nλ

)
( n∏

i=1

xi

)p/n

. (1.5)

The case 1 < p ≤ n in the above theorem is of particular interest to us and we will
give another proof of this case in Section 3. We will also use the idea in Wu’s proof of
Theorem 1.2 to obtain results of similar kinds.

The one-parameter mean value family

Lr = Lr(x, y)=
(

xr − yr

r(x− y)

)1/(r−1)

(r �= 0,1, x, y > 0, x �= y) (1.6)

is known as Stolarsky’s generalized logarithmic mean [14]. We note here the limit rela-
tions

lim
r→0

Lr(x, y)= L(x, y)= x− y

logx− log y
;

lim
r→1

Lr(x, y)= I(x, y)= 1
e

(
xx

yy

)1/(x−y) (1.7)

are called the logarithmic and identric means, respectively. We refer the reader to paper
[2] and the references therein for many inequalities involving L,I , and the generalized
power means. Some of these inequalities can be regarded as analogues of inequalities
(1.2) and (1.3) considered here. We will derive several inequalities involving the Lrs by
applying (1.2) and (1.3) in the last part of this paper.

2. An extension of Theorem 1.1

Theorem 2.1. Let 1 > r > s≥ 0. If C1,r,s(1/2)≥ (1− s)/(1− r), then inequality (1.2) holds
for the set {1,r,s} with α= 1.
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Proof. The case s = 0 was treated in [7] and the case r + s ≥ 1 was treated in [8], so we
may assume s > 0 and r + s < 1 from now on. Define

Dn(x)=An−Mn,r −C(1− q)
(
An−Mn,s

)
, C(x)= 1− x1/r−1

1− x1/s−1
. (2.1)

We need to show Dn ≥ 0 and we have

1
qn

∂Dn

∂xn
= 1−M1−r

n,r x
r−1
n −C(1− q)

(
1−M1−s

n,s x
s−1
n

)
. (2.2)

By a change of variables xi/xn→ xi,1≤ i≤ n, we may assume 0≤ x1 < x2 < ··· < xn = 1
in (2.2) and rewrite it as

gn
(
x1, . . . ,xn−1

)
:= 1−M1−r

n,r −C(1− q)
(
1−M1−s

n,s

)
. (2.3)

We want to show gn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point in which the
absolute minimum of gn is reached. We may assume a1 ≤ a2 ≤ ··· ≤ an−1. If ai = ai+1 for
some 1≤ i≤ n− 2 or an−1 = 1, by combining ai with ai+1 and qi with qi+1 or an−1 with 1
and qn−1 with qn, it follows from [8, Lemma 2.1] that we can reduce the determination of
the absolute minimum of gn to that of gn−1 with different weights. Thus without loss of
generality, we may assume a1 < a2 < ··· < an−1 < 1.

If a is a boundary point of [0,1]n−1, then a1 = 0, and we can regard gn as a function of
a2, . . . ,an−1, then we obtain

∇gn
(
a2, . . . ,an−1

)= 0. (2.4)

Otherwise, a1 > 0, a is an interior point of [0,1]n−1, and

∇gn
(
a1, . . . ,an−1

)= 0. (2.5)

In either case, a2, . . . ,an−1 solve the equation

(r− 1)M1−2r
n,r xr−1 +C(1− q)(1− s)M1−2s

n,s xs−1 = 0. (2.6)

The above equation has at most one root (regarding Mn,r ,Mn,s as constants), so we
only need to show gn ≥ 0 for the case n= 3 with 0= a1 < a2 = x < a3 = 1 in (2.3). In this
case, we regard g3 as a function of x and we get

1
q2
g′3(x)=M1−2r

3,r xr−1h(x), (2.7)

where

h(x)= r− 1 + (1− s)C(1− q)
(
q2x

s/2 + q3x
−s/2)(1−2s)/s(

q2x
r/2 + q3x

−r/2)(2r−1)/r
.

(2.8)

If q2 = 0 (note that q3 > 0), then

h(x)= r− 1 + (1− s)C(1− q)q1/s−1/r
3 xs−r . (2.9)
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One easily checks that in this case, h(x) has exactly one root in (0,1). Now assume q2 > 0,
then

h′(x)= (1− s)C(1− q)M1−3s
3,s Mr−1

3,r x−(r+s+2)/2p(x), (2.10)

where

p(x)= (r− s)
(
q2

2x
r+s− q2

3

)
+ (r + s− 1)q2q3

(
xr − xs

)
. (2.11)

Now

p′(x)= xr+s−1((r2− s2)q2
2 + (r + s− 1)q2q3

(
rx−s− sx−r

))
:= xr+s−1q(x). (2.12)

It is easy to see that the only positive root for q′(x) = 0 is x = 1. Thus p′(x) = 0 can
have at most one root in (0,1). This means that p(x)= 0 has at most two roots in (0,1).
Now if q2 > q3, then it follows from this and that p(0) < 0, p(1) > 0 that p(x) = 0 hence
h′(x) = 0 has only one root in (0,1). Thus h(x) = 0 can have at most two positive roots
in (0,1]. Note that limx→0+ h(x) = +∞ and by our assumption, note that h(1) ≤ 0. This
means that h(x) has at most one root in (0,1) and hence g′3(x) has at most one root x0

in (0,1). Since limx→0+ g′3(x)= +∞, g3(x) takes its maximum value at x0 and we conclude
that g3(x)≥min{g3(0),g3(1)} = 0.

Suppose now q2 ≤ q3. By setting y = q3/q2, we can rewrite p(x) as

p(x)= q2
2

(
(r− s)

(
xr+s− y2)+ (r + s− 1)y

(
xr − xs

))
:= q2

2 f (y). (2.13)

We now want to show f (y) ≤ 0 for y ≥ 1, 0 ≤ x ≤ 1. We may assume x > 0 and note
that for fixed x, f (y) is a quadratic function with f (0) > 0. Since the coefficient of y2 is
negative, it thus suffices to show that f (1) ≤ 0. Equivalently, we need to show p(x) ≤ 0
when q2 = q3 and by repeating the argument in the preceding paragraph, we see that
p′(x)= 0 has no root in (0,1), hence p(x)≤max{p(0), p(1)} ≤ 0. Thus in this case, h(x)
is a decreasing function of x for 0≤ x ≤ 1. It follows from this that h(x)= 0 has only one
root in (0,1] and similar to the argument in the preceding paragraph, we have g3(x) ≥
min{g3(0),g3(1)} = 0.

Thus we have shown gn ≥ 0, hence ∂Dn/∂xn ≥ 0 with equality holding if and only if
n= 1 or n= 2, x1 = 0, q1 = q. By letting xn tend to xn−1, we have Dn ≥Dn−1 (with weights
q1, . . . ,qn−2,qn−1 + qn). Since C(1− q) is an increasing function of q by [8, Lemma 2.1],
it follows by induction that Dn > Dn−1 > ··· > D2 = 0 when x1 = 0, q1 = q in D2. Else,
Dn > Dn−1 > ··· > D1 = 0 and this completes the proof. �

Now we show that inequality (1.3) does not hold for t > 0. It suffices to consider the
case n= 2 with x2 = 1, q2 = q. We set x1 = x and define

f (x)=Mα
2,r −Mα

2,t −Cr,s,t
(
qα
)(
Mα

2,r −Mα
2,s

)
. (2.14)
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Note that f (0)= 0 and

f ′(x)
α(1− q)xt−1

=Mα−r
2,r xr−t −Mα−t

2,t −Cr,s,t
(
qα
)(
Mα−r

2,r xr−t −Mα−s
2,s x

s−t). (2.15)

If t > 0, the right-hand side above is negative when x = 0, which implies f (x) < 0 for
positive x small enough so that (1.3) fails to hold.

In [8], the author asked whether it is true or not that if (1.2) holds for r > s > t ≥ 0,
α > 0, then it also holds for r > s > t ≥ 0, kα with 0 < k < 1, and if (1.3) holds for r > s >
t ≥ 0, α > 0, then it also holds for r > s > t ≥ 0, kα with k > 1. Now the second part above
is true due to the discussion above since (1.3) only holds when t = 0 and this case has
already been discussed in [8, Theorem 3.2]. We would also like to take the opportunity to
correct some typos in the statement of [8, Theorem 3.2], namely, one needs to exchange
the two conditions k > 1 and 0 < k < 1 there. We now proceed to show that the first part
is actually not true.

We write for convenience that

C = Cr,s,t
(
(1− q)α

)
, C′ = Cr,s,t

(
(1− q)kα

)
, (2.16)

so that we can rewrite (1.2) as

Mα
n,s ≤

(

1− 1
C

)

Mα
n,r +

1
C
Mα

n,t . (2.17)

Now, what we assert is that it follows from above that for 0 < k < 1,

Mkα
n,s ≤

(

1− 1
C′

)

Mkα
n,r +

1
C′

Mkα
n,t . (2.18)

Thus to show that the assertion does not hold, it suffices to find an example such that

((

1− 1
C

)

Mα
n,r +

1
C
Mα

n,t

)k
>
(

1− 1
C′

)

Mkα
n,r +

1
C′

Mkα
n,t . (2.19)

Now we set y =Mα
n,r /M

α
n,t and note that in the case n = 2, x1 = 0, q2 = q, y = qα(1/r−1/t).

Thus it suffices to show that for y = qα(1/r−1/t),

((

1− 1
C

)

y +
1
C

)k
>
(

1− 1
C′

)

yk +
1
C′

. (2.20)

Let

f (y)=
(
1− (1/C′)

)
yk + 1/C′

((
1− (1/C)

)
y + 1/C

)k (2.21)
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and we want to show f (qα(1/r−1/t)) < 1. Using the definitions for C, C′ and the notations

β = α
(

1
t
− 1

r

)

, γ = 1/s− 1/r
1/t− 1/r

, A= qβ− 1
1− (1− q)β

,

A′ = qkβ− 1
1− (1− q)kβ

, z = (1− q)βγ,

(2.22)

we obtain

f
(
qα(1/r−1/t)

)
= 1 +A′

(
1− zk

)

(
1 +A(1− z)

)k := g(z). (2.23)

We note first here that A, A′ ≤ −1 and 0≤ γ ≤ 1. It follows that (1− q)β ≤ z ≤ 1. Now

g′(z)= k
(−A′(1 +A)zk−1 +A

(
1 +A′

))

(
1 +A(1− z)

)k+1 . (2.24)

The function

z 
−→ −A′(1 +A)zk−1 +A
(
1 +A′

)
(2.25)

only has one positive root and is < 0 when z→ 0+ as long as q �= 1/2. It follows from this
and g((1− q)β)= g(1)= 1 that g(z) < 1 for (1− q)β < z < 1 if q �= 1/2, which is just what
is desired.

3. Another look at Theorem 1.2

Let k ∈ {0,1, . . . ,n}, the kth symmetric function En,k of x and its mean Pn,k are defined by

En,k(x)=
∑

1≤i1<···<ik≤n

k∏

j=1

xij , 1≤ k ≤ n; En,0 = 1; Pk
n,k(x)= En,k(x)

(
n
k

) . (3.1)

The following lemma is due to Wu et al. [17] (see also [1, pages 317-318]).

Lemma 3.1. Let 2≤ k ≤ n, x = (x1, . . . ,xn), x1 ≤ x2 ≤ ··· ≤ xn. There exists y = (y1, . . . , yk)
with x1 ≤ y1 ≤ ··· ≤ yk ≤ xn such that Pn,i(x) = Pk,i(y), 0 ≤ i ≤ k. Moreover, if x1, . . . ,xn
are not all equal, then y1, . . . , yk are also not all equal.

In this section, we would like to first give another proof of Theorem 1.2 for the case
1 < p ≤ n and we will need a result of Shen [13, Lemma 1], which we will state as follows.

Lemma 3.2. Let 0≤ xi ≤ 1, then for 1≤ k ≤ n,

Pk−1
n,k−1(x)≤ 1

k
+
k− 1
k

Pk
n,k(x). (3.2)

Proof. By Lemma 3.1, there exists y = (y1, . . . , yk) with 0≤ x1 ≤ y1 ≤ ··· ≤ yk ≤ xn such
that Pn,k−1(x)= Pk,k−1(y) and Pn,k(x)= Pk,k(y). It thus suffices to prove the lemma for the
case n= k and one checks easily that this follows from case (ii) of [13, Lemma 1]. �



Peng Gao 7

One can then easily deduce from above the original result of Shen [13, Lemma 1]
which we will need, namely, for 0≤ xi ≤ 1,

Pn,1(x)≤ n− 1
n

+
1
n
Pn
n,n(x). (3.3)

We now use Lemma 3.2 to deduce the following.

Corollary 3.3. For 1 < p ≤ n,

( n∑

i=1

xi

)p

≤ (n− 1)p−1
n∑

i=1

x
p
i +n

(
np−1− (n− 1)p−1)

( n∏

i=1

xi

)p/n

. (3.4)

Proof. In this proof, we assume that 0≤ x1 ≤ ··· ≤ xn and we define

f (x)= (n− 1)p−1
n∑

i=1

x
p
i +n

(
np−1− (n− 1)p−1)

( n∏

i=1

xi

)p/n

−
( n∑

i=1

xi

)p

. (3.5)

If xn = 0 or x1 = ··· = xn, then f = 0, otherwise, we may assume n ≥ 2 and xk−1 < xk =
··· = xn = x for some 1≤ k ≤ n (we set x0 = 0 here), then

1
(n− k+ 1)pxp−1

∂ f

∂x
= (n− 1)p−1 +

(
np−1− (n− 1)p−1)

( n∏

i=1

xi
x

)p/n

−
( n∑

i=1

xi
x

)p−1

.

(3.6)

We want to show that the right-hand side above is nonnegative. Note that 0 ≤ xi/x ≤ 1,
hence by a change of variables xi/x→ xi, it suffices to show that

(n− 1)p−1 +
(
np−1− (n− 1)p−1)

( n∏

i=1

xi

)p/n

−
( n∑

i=1

xi

)p−1

≥ 0 (3.7)

for 0≤ xi ≤ 1 and 1 < p ≤ n. By (3.3), we only need to show that

(

n− 1 +
n∏

i=1

xi

)p−1

≤ (n− 1)p−1 +
(
np−1− (n− 1)p−1)

( n∏

i=1

xi

)p/n

. (3.8)

By further setting

t =
( n∏

i=1

xi

)p/n

, (3.9)

it suffices to show that

g(t)= (n− 1)p−1 +
(
np−1− (n− 1)p−1)t− (n− 1 + tn/p

)p−1 ≥ 0 (3.10)
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for 0≤ t ≤ 1. One checks easily that

g′′(t)=−n(p− 1)
p

(
n− 1 + tn/p

)p−3
tn/p−2h(t), (3.11)

where

h(t)=
(

n− n

p
− 1

)

tn/p +

(
n

p
− 1

)

(n− 1)≥min
{
h(0),h(1)

}

=min

{
n

p
(n− 2),

(
n

p
− 1

)

(n− 1)

}

≥ 0.

(3.12)

We conclude that g(t) is a concave function for 0≤ t ≤ 1. Hence

g(t)≥min
{
g(0),g(1)

}= 0. (3.13)

It follows from this that ∂ f /∂x ≥ 0 and by letting x→ xk−1 and repeating the above argu-
ment, we conclude that f (x)≥ f (x1,x1, . . . ,x1)= 0 which completes the proof. �

We note here that it is pointed out in [9] that Corollary 3.3 was obtained by Chen and
Wang [6], however, we have no access to the paper for the method used in their proof.

We also note that by a change of variables xi → x
1/p
i , (3.4) is equivalent to the case r = 1,

s= 1/p, t = 0, α= 1 of (1.2) and this certainly improves [7, Theorem 3.1].
Similarly, in another paper of Chen and Wang [5], they have shown that for n ≥ 2,

p ≥ n/(n− 1),

( n∑

i=1

xi

)p

≥
n∑

i=1

x
p
i +

(
np−n

)
( n∏

i=1

xi

)p/n

. (3.14)

Again, by a change of variables xi→ x
1/p
i , this is equivalent to the case r = 1, s= 1/p, t = 0,

α= 1 of (1.3), which also improves [7, Theorem 3.1].
In [9], the following result was established.

Theorem 3.4. Let qi = 1/n, then for any integer 2≤ p ≤ n,

( n∑

i=1

xi

)p

≤
(

np− λ

(
n

p

))

M
p
n,2 + λEn,p, (3.15)

with

λ= np(1− 1/n)p/2− (n− 1)p
(
n
p

)
(1− 1/n)p/2−

(
n−1
p

) . (3.16)

To the author’s knowledge, the proof given in [9] for the above theorem is not quite
correct and we will treat more of the relevant topics in a forthcoming paper. We now
use a method in [16] (see the proof of Theorem 2 there) to prove a result similar to the
above one. We note also that the same method can be applied to give another proof of [7,
Theorem 3.1] as well as (3.14) and we will leave the details to the interested reader.
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Theorem 3.5. For r ≥ 2, 0 < p ≤ n,

( n∑

i=1

xi

)p

≤ (n− 1)p(r−1)/r

( n∑

i=1

xri

)p/r

+
(
np−np/r(n− 1)p(r−1)/r

)
( n∏

i=1

xi

)p/n

. (3.17)

For 1 < r ≤ 2, p ≥ n/(n− 1),

( n∑

i=1

xi

)p

≥
( n∑

i=1

xri

)p/r

+
(
np−np/r

)
( n∏

i=1

xi

)p/n

. (3.18)

Proof. We first note that by a change of variables xi → x1/r
i , (3.17) is equivalent to (1.2)

for the set {1,1/r,0} with α = p/r and (3.18) is equivalent to (1.3) for the set {1,1/r,0}
with α= p/r. Thus by [8, Theorem 3.2], it suffices to prove (3.17) for the case p = n and
(3.18) for the case p = n/(n− 1).

We first prove (3.17) and we consider the quotient

f (x) :=
(∑n

i=1 xi
)n− (n− 1)n(r−1)/r

(∑n
i=1 x

r
i

)n/r

∏n
i=1 xi

. (3.19)

As in the proof of Corollary 3.3, it suffices to consider the situation 0 < x = x1 = ··· =
xk < xk+1 for some 1 ≤ k < n and to show that in this case, ∂ f /∂x > 0. Without loss of
generality, we assume from now on that x1 < x2. By setting

t =
(∑n

i=2 x
r
i

n− 1

)1/r

, (3.20)

we obtain

x1

( n∏

i=1

xi

)
∂ f

(n− 1)∂x1

=
( n∑

i=1

xi

)n−1(

x1−
∑n

i=2 xi
n− 1

)

− (n− 1)n(r−1)/r

( n∑

i=1

xri

)n/r−1
(
xr1− tr

)

≥ (n− 1)n−1

((
x1

n− 1
+

∑n
i=2 xi
n− 1

)n−1(
x1− t

)−
(

xr1
n− 1

+ tr
)n/r−1(

xr1− tr
)
)

≥ (n− 1)n−1

((
x1

n− 1
+ t
)n−1(

x1− t
)−

(
xr1

n− 1
+ tr

)n/r−1(
xr1− tr

)
)

= (n− 1)n−1xn1

((
1

n− 1
+

t

x1

)n−1(

1− t

x1

)

−
(

1
n− 1

+
(
t

x1

)r)n/r−1(

1−
(
t

x1

)r))

.

(3.21)
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We want to show that the last expression above is positive and on setting y = tx1, this is
equivalent to showing that

g(y,n)=
(
1/(n− 1) + y

)n−1
(y− 1)

(
1/(n− 1) + yr

)n/r−1(
yr − 1

) ≤ 1 (3.22)

for y ≥ 1. Calculation yields

((
1/(n− 1) + yr

)n/r−1(
yr − 1

))2

(
1/(n− 1) + y

)n−2(
1/(n− 1) + yr

)n/r−2

∂g

∂y

=
(

ny +
1

n− 1
− (n− 1)

)
(
yr − 1

)
(

yr +
1

n− 1

)

−
(

y +
1

n− 1

)
(
yr − yr−1)

(

nyr +
r

n− 1
− (n− r)

)

= n

n− 1

(

y2r−1 + (1− r)yr+1 +
n− 2
n− 1

(r− 1)yr +
(

r

n− 1
− 1

)

yr−1− y +
n− 2
n− 1

)

.

(3.23)

We now set s= 1/(n− 1) so that 0≤ s≤ 1 and we define

a(y,s)= y2r−1 + (1− r)yr+1 + (1− s)(r− 1)yr + (rs− 1)yr−1− y + (1− s). (3.24)

It then follows from Cauchy’s mean value theorem that

∂a

∂s
=−(r− 1)yr + r yr−1− 1= r yr−1(1− y)− (1− yr

)≤ 0. (3.25)

Thus

a(y,s)≥ a(y,1)= y
(
y2r−2 + (1− r)yr + (r− 1)yr−2− 1

)
:= y · b(y). (3.26)

Now

b′(y)= (r− 1)yr−3(2yr − r y2 + r− 2
)

:= (r− 1)yr−3c(y). (3.27)

One checks easily that for r ≥ 2, the function c(y) is an increasing function of y ≥ 1 and
hence c(y) ≥ c(1) = 0 so that b(y) is an increasing function of y ≥ 1 and that b(y) ≥
b(1)= 0. This implies that a(y,s)≥ 0 so that g(y,n) is an increasing function of y and we
then deduce that

g(y,n)≤ lim
y→+∞g(y,n)= 1. (3.28)

This shows that ∂ f /∂x1 ≥ 0 and (3.17) now follows from our discussions above.
Now, to prove (3.18), we consider

h(x) :=
(∑n

i=1 xi
)n/(n−1)− (∑n

i=1 x
r
i

)n/(n−1)r

(∏n
i=1 xi

)1/(n−1) . (3.29)
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Similar to our discussion above, one can assume xn−1 < xn and it suffices to show ∂h/∂xn >
0. Note that

xn

( n∏

i=1

xi

)1/(n−1)
∂h

∂xn
= (n− 1)1/(n−1)

(
xn

n− 1
+

∑n−1
i=1 xi
n− 1

)1/(n−1)(

xn−
∑n−1

i=1 xi
n− 1

)

−
( n∑

i=1

xri

)n/(n−1)r−1(

xrn−
∑n−1

i=1 xri
n− 1

)

≥(n− 1)1/(n−1)

⎛

⎝ xn
n− 1

+

(∑n−1
i=1 xi
n− 1

)1/r
⎞

⎠

1/(n−1)⎛

⎝xn−
(∑n−1

i=1 xi
n− 1

)1/r
⎞

⎠

−
( n∑

i=1

xri

)n/(n−1)r−1(

xrn−
∑n−1

i=1 xri
n− 1

)

,

(3.30)

where the inequality follows from the observation that the function

z 
−→
(

xn
n− 1

+ z
)1/(n−1)(

xn− z
)

(3.31)

is decreasing for 0 < z < xn.
By proceeding similarly as in the proof of (3.17) above, one is then able to establish

(3.18) and we will omit all the details here. �

We point out here that inequality (3.17) does not hold for p > n. To see this, we con-
sider the case x1 = t, x2 = ··· = xn = 1, in which case (3.17) is reduced to

(n− 1)p(r−1)/r(n− 1 + tr
)p/r

+
(
np−np/r(n− 1)p(r−1)/r)tp/n− (t+n− 1)p ≥ 0. (3.32)

We denote the left-hand side above as f (t), then one checks easily that f ′(0) < 0 for p > n
and f (0)= 0. This means that f (t) < 0 for t > 0 sufficiently small and consequently, (3.17)
does not hold in this case. Similarly, the case x1 = x2 = ··· = xn−1 = t,xn = 1 shows that
(3.18) does not hold for p < n/(n− 1).

4. Inequalities involving the generalized logarithmic mean

In this section, the mean M2,r is always equipped with q1 = q2 = 1/2 and in this case, we
note that L2 = A2 and L−1 =G2. Now we need a result of Pittenger [10].

Theorem 4.1. Let a1(r)= (r + 1)/3 and let a2(r)= (r− 1)log2/ logr for r >0 with a2(1)=
log2. For r > 0, let b1(r) =min(a1(r),a2(r)) and let b2(r) =max(a1(r),a2(r)). For r < 0,
let b1(r)=min(0,a1(r)) and let b2(r)=max(0,a1(r)). Then for x > 0, y > 0, x �= y,

M2,b1(r) ≤ Lr(x, y)≤M2,b2(r), (4.1)

with the choices b1(r), b2(r) best possible.
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We note here that Stolarsky [15] also showed Lr(x, y)≤M2,(r+1)/3 for −1≤ r ≤ 1/2 or
r ≥ 2 and Lr(x, y) ≥M2,(r+1)/3 for 1/2 ≤ r ≤ 2 or r ≤ −1. Our next result gives an exten-
sion of [7, Theorem 3.1] for in the case n = 2, q1 = q2 = 1/2. We leave the proof to the
interested reader by pointing out that one can prove it by using similar approaches as in
the proof of Theorem 2.1.

Theorem 4.2. Let n= 2, q1 = q2 = 1/2. For 1/2≤ s < 1,

C1,s,0

(
1
2

)

≥ Δ1,s,0 ≥ 1
1− s

. (4.2)

Equality holds for the left-hand side inequality of (4.2) if and only if x1 = 0 or s= 1/2 (note
that it is assumed that x1 < x2 here). Equality holds for the right-hand side inequality of
(4.2) if and only if s= 1/2. The above inequalities are reversed when 0 < s≤ 1/2 with similar
conditions for equalities. Moreover, for r > 1,

Cr,1,0

(
1
2

)

≥ Δr,1,0 >
r

r− 1
, (4.3)

with equality holding for the above left-hand side inequality if and only if x1 = 0.

We note here that the lower bound in (4.2) (and the corresponding upper bound when
0 < s≤ 1/2) is due to Bloom and Seiffert [3], who also mentioned that the inequality (G2 +
2A2)/3 ≤M2,2/3 was proposed at the “16th Austrian-Polish Mathematics Competition
1993.” Stolarsky [15] has shown that M2,2/3 < I , it then follows that (G2 + 2A2)/3 < I , a
result of Sándor [11]. One can obtain similar results by using Theorems 4.1 and 4.2 via
this approach. Before we state our next result, we need a lemma.

Lemma 4.3. For t ≥ 0, s≥ 1/2,

(
ts− 1
t− 1

)1/(s−1)

≥ (1 + ts
)1/s

, (4.4)

with the above inequality reversed when 0 < s≤ 1/2.

Proof. We will prove the case 1/2 < s < 1 and the proofs for the other cases are similar. By
homogeneity, we may also assume that 0≤ t ≤ 1. Define

f (t)=
(
ts− 1
t− 1

)1/(s−1)(
1 + ts

)−1/s
, (4.5)

and it suffices to show f (t)≥ 1. Note that

f ′(t)=
(
ts− 1
t− 1

)(2−s)/(s−1)(
1 + ts

)−(1+s)/s
(
t2s−1− (2s− 1)ts + (2s− 1)ts−1− 1

(1− s)(t− 1)2

)

. (4.6)

Let

g(t)= t2s−1− (2s− 1)ts + (2s− 1)ts−1− 1. (4.7)
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Then

g′(t)= (2s− 1)ts−2(ts− st+ (s− 1)
)≤ 0. (4.8)

Hence g(t) ≥ g(1) = 0 and it follows that f ′(t) ≥ 0 so that f (t) ≥ f (0) = 1 which com-
pletes the proof. �

Corollary 4.4. For x, y > 0, x �= y,

2
e
L2(x, y) < I(x, y) <

2
e
L2(x, y) +

(

1− 2
e

)

L−1(x, y). (4.9)

Proof. The first inequality with “<” replaced by “≤” follows from Lemma 4.3 by replacing
t with x/y and letting s→ 1−. The fact that a strict inequality holds here is due to Sándor
[12]. The second inequality is due to Alzer and Qiu [2, Theorem 1], it follows from the
inequality I(x, y)≤M2,log2 by Theorem 4.1 and the inequality M2,log2 < 2/eL2(x, y) + (1−
(2/e))L−1(x, y) by Theorem 4.2 with s= log2. �

Corollary 4.5. For x > 0, y > 0, x �= y, and 0 < r < 1/2,

(

1− 2
r1/(r−1)

)

L−1(x, y) +
2

r1/(r−1)
L2(x, y) < Lr(x, y) <

(2− r)L−1(x, y) + (1 + r)L2(x, y)
3

,

(4.10)

with the above inequality reversed when 1/2 < r ≤ 2,r �= 1.

We point out here that since r 
→ Lr(x, y), x �= y is strictly increasing (see [14]), one
has Lr ≤ L2 = A2 for 0≤ r ≤ 2 and it follows from Theorem 4.1 that (r− 1)log2/ logr ≤ 1
for 1/2≤ r ≤ 2, r �= 1 (since Lr ≤ A2 and Lr ≤M2,(r−1)log2/ logr which is the best possible).
Hence one can apply Theorems 4.1 and 4.2 to prove Corollary 4.5.

Note here that the limit case of r → 0+ for the right-hand side inequality of (4.10) gives
a result of Carlson [4]. Similarly, the limit case of r → 1 for the corresponding inequality
gives a result of Sándor [11].
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Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika (1980), no. 678–715, 15–18
(1981).

[11] J. Sándor, A note on some inequalities for means, Archiv der Mathematik 56 (1991), no. 5, 471–
473.

[12] , On certain inequalities for means, Journal of Mathematical Analysis and Applications
189 (1995), no. 2, 602–606.

[13] D. Shen, On the coefficients and zeros of a polynomial, Journal of Approximation Theory 96
(1999), no. 2, 405–410.

[14] K. B. Stolarsky, Generalizations of the logarithmic mean, Mathematics Magazine 48 (1975), 87–
92.

[15] , The power and generalized logarithmic means, The American Mathematical Monthly 87
(1980), no. 7, 545–548.

[16] S. Wu, Generalization and sharpness of the power means inequality and their applications, Journal
of Mathematical Analysis and Applications 312 (2005), no. 2, 637–652.

[17] C. Wu, W. Wang, and L. Fu, Inequalities for symmetric functions and their applications, Journal
of Chengdu University of Science and Technology (1982), no. 1, 103–108 (Chinese).
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