GENERALIZED LIFTING MODULES

YONGDUO WANG AND NANQING DING

Received 6 March 2006; Accepted 12 March 2006

We introduce the concepts of lifting modules and (quasi-)discrete modules relative to a given left module. We also introduce the notion of SSRS-modules. It is shown that (1) if M is an amply supplemented module and $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ an exact sequence, then M is N-lifting if and only if it is N'-lifting and N''-lifting; (2) if M is a Noetherian module, then M is lifting if and only if M is R-lifting if and only if M is an amply supplemented SSRS-module; and (3) let M be an amply supplemented SSRS-module such that Rad(M) is finitely generated, then $M = K \oplus K'$, where K is a radical module and K' is a lifting module.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

Extending modules and their generalizations have been studied by many authors (see [2, 3, 8, 7]). The motivation of the present discussion is from [2, 8], where the concepts of extending modules and (quasi-)continuous modules with respect to a given module and CESS-modules were studied, respectively. In this paper, we introduce the concepts of lifting modules and (quasi-)discrete modules relative to a given module and SSRS-modules. It is shown that (1) if $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ is an exact sequence and M an amply supplemented module, then M is N-lifting if and only if it is both N'-lifting and N''-lifting; (2) if M is a Noetherian module, then M is lifting if and only if M is R-lifting if and only if M is an amply supplemented SSRS-module; and (3) let M be an amply supplemented SSRS-module such that Rad(M) is finitely generated, then $M = K \oplus K'$, where K is a radical module and K' is a lifting module.

Throughout this paper, *R* is an associative ring with identity and all modules are unital left *R*-modules. We use $N \le M$ to indicate that *N* is a submodule of *M*. As usual, Rad(*M*) and Soc(*M*) stand for the Jacobson radical and the socle of a module *M*, respectively.

Let *M* be a module and $S \le M$. *S* is called *small* in *M* (notation $S \ll M$) if $M \ne S + T$ for any proper submodule *T* of *M*. Let *N* and *L* be submodules of *M*, *N* is called a *supplement* of *L* in *M* if N + L = M, and *N* is minimal with respect to this property. Equivalently,

M = N + L and $N \cap L \ll N$. N is called a *supplement submodule* if N is a supplement of some submodule of M. M is called an *amply supplemented* module if for any two submodules A and B of M with A + B = M, B contains a supplement of A. M is called a *weakly supplemented module* (see [5]) if for each submodule A of M there exists a submodule B of M such that M = A + B and $A \cap B \ll M$. Let $B \le A \le M$. If $A/B \ll M/B$, then B is called a *coessential submodule* of A and A is called a *coessential extension* of B in M. A submodule A of M is called an *s-closure* of A in M if B is a coessential submodule of A and B is coclosed in M.

Let *M* be a module. *M* is called a *lifting module* (or satisfies (D_1)) (see [9]) if for every submodule *A* of *M*, there exists a direct summand *K* of *M* such that $K \le A$ and $A/K \ll M/K$, equivalently, *M* is amply supplemented and every supplement submodule of *M* is a direct summand. *M* is called *discrete* if *M* is lifting and has the following condition.

 (D_2) If $A \le M$ such that M/A is isomorphic to a direct summand of M, then A is a summand of M.

M is called *quasidiscrete* if *M* is lifting and has the following condition:

(*D*₃) For each pair of direct summands *A* and *B* of *M* with A + B = M, $A \cap B$ is a direct summand of *M*. For more details on these concepts, see [9].

LEMMA 1.1 (see [12, 19.3]). Let M be a module and $K \le L \le M$.

- (1) $L \ll M$ if and only if $K \ll M$ and $L/K \ll M/K$.
- (2) If M' is a module and $\phi: M \to M'$ a homomorphism, then $\phi(L) \ll M'$ whenever $L \ll M$.

LEMMA 1.2 (see Lemma 1.1 in [5]). Let M be a weakly supplemented module and $N \le M$. Then the following statements are equivalent.

- (1) N is a supplement submodule of M.
- (2) N is coclosed in M.
- (3) For all $X \leq N$, $X \ll M$ implies $X \ll N$.

LEMMA 1.3 (see Proposition 1.5 in [5]). Let M be an amply supplemented module. Then every submodule of M has an s-closure.

LEMMA 1.4 (see [12, 41.7]). Let *M* be an amply supplemented module. Then every coclosed submodule of *M* is amply supplemented.

2. Relative lifting modules

To define the concepts of relative lifting and (quasi-)discrete modules, we dualize the concepts of relative extending and (quasi-)continuous modules introduced in [8] in this section. We start with the following.

Let N and M be modules. We define the family

$$\$(N,M) = \left\{ A \le M \mid \exists X \le N, \ \exists f \in \operatorname{Hom}(X,M), \ \ni \frac{A}{f(X)} \ll \frac{M}{f(X)} \right\}.$$
(2.1)

PROPOSITION 2.1. (N,M) is closed under small submodules, isomorphic images, and coessential extensions.

Proof. We only show that (N,M) is closed under coessential extensions. Let $A \in (N,M)$, $A \le A' \le M$, and $A'/A \ll M/A$. There exist $X \le N$ and $f \in \text{Hom}(X,M)$ such that $f(X) \le A$ and $A/f(X) \ll M/f(X)$ since $A \in (N,M)$. Note that $A'/A \ll M/A$, so $A'/f(X) \ll M/f(X)$ by Lemma 1.1(1). Thus $A' \in (N,M)$.

LEMMA 2.2. Let $A \in (N, M)$ and A be coclosed in M. Then $B \in (N, M)$ for any submodule B of A.

Proof. There exist $X \le N$ and $f \in \text{Hom}(X, M)$ such that $f(X) \le A$ and $A/f(X) \ll M/f(X)$ by hypothesis. Since A is coclosed in M, f(X) = A. Let B be any submodule of A and $Y = f^{-1}(B) \le X \le N$. Then $f|_Y : Y \to M$ is a homomorphism such that $f|_Y(Y) = B$ for f(X) = A. Clearly $B/f|_Y(Y) \ll M/f|_Y(Y)$. Therefore $B \in \{(N, M).$

LEMMA 2.3. Let $C \le A \le B \le M$ and A be a coessential submodule of B. If C is an s-closure of A, then it is also an s-closure of B.

Proof. It is clear by Lemma 1.1(1).

PROPOSITION 2.4. Let M be an amply supplemented module. Then every A in (N,M) has an s-closure \overline{A} in (N,M).

Proof. Since $A \in \$(N, M)$, there exist $X \le N$ and $f \in \text{Hom}(X, M)$ such that $A/f(X) \ll M/f(X)$. Note that M is amply supplemented, and so f(X) has an *s*-closure \overline{A} in M by Lemma 1.3. Thus \overline{A} is also an *s*-closure of A by Lemma 2.3. The verification for $\overline{A} \in \$(N, M)$ is analogous to that for $B \in \$(N, M)$ in Lemma 2.2.

Let *N* be a module. Consider the following conditions for a module *M*.

- $((N, M)-D_1)$ For every submodule $A \in (N, M)$, there exists a direct summand K of M such that $K \le A$ and $A/K \ll M/K$.
- $((N,M)-D_2)$ If $A \in (N,M)$ such that M/A is isomorphic to a direct summand of M, then A is a direct summand of M.
- $((N,M)-D_3)$ If A and L are direct summands of M with $A \in (N,M)$ and A + L = M, then $A \cap L$ is a direct summand of M.

Definition 2.5. Let N be a module. A module M is said to be N-lifting, N-discrete, or N-quasidiscrete if M satisfies $(N, M)-D_1$, $(N, M)-D_1$ and $(N, M)-D_2$ or $(N, M)-D_1$ and $(N, M)-D_3$, respectively.

One easily obtains the hierarchy: M is N-discrete $\Rightarrow M$ is N-quasidiscrete $\Rightarrow M$ is N-lifting. Clearly, the notion of relative discreteness generalizes the concept of discreteness. For any module N, lifting modules are N-lifting. But the converse is not true as shown in the following examples.

Example 2.6. Since, for any module M, $(0,M) = \{A \mid A \ll M\}$ and 0 is a direct summand of M such that $A/0 \ll M/0$ for any $A \in (0,M)$, all modules are 0-lifting. However, the \mathbb{Z} -module $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ is not lifting since the supplement submodule ((1,2))

 $(\langle (1,2) \rangle$ is a supplement of $\langle (1,1) \rangle$) and is not a direct summand of it though it is amply supplemented.

Example 2.7. Let M be a module with zero socle and S a simple module. Then M is Slifting since (S,M) is a family only containing all small submodules of M. So all torsionfree Z-modules are S-lifting for any simple Z-module S (see [12, Exercise 21.17]). In particular, $\mathbb{Z}\mathbb{Z}$ and $\mathbb{Z}\mathbb{Q}$ are S-lifting for any simple \mathbb{Z} -module, but each one is not a lifting module.

LEMMA 2.8. Let M be a module. Then $(M,M) = \{A \mid A \leq M\} = \bigcup_{N \in \mathbb{R}-Mod} (N,M)$, where R-Mod denotes the category of left R-module.

Proof. It is straight forward.

PROPOSITION 2.9. Let M be a module. Then M is lifting or (quasi-)discrete if and only if M is M-lifting or M-(quasi-)discrete if and only if M is N-lifting or N-(quasi-)discrete for any module N.

Proof. It is clear by Lemma 2.8.

PROPOSITION 2.10. Let M be an amply supplemented module. Then the condition (N, M)- D_1 is inherited by coclosed submodules of M.

Proof. Let M satisfy (N, M)-D₁ and H be a coclosed submodule of M. H is amply supplemented by Lemma 1.4. For any $A \in (N, H)$, A has an s-closure $\overline{A} \in (N, H)$ in H by Proposition 2.4. Since $A \in (N, H) \subseteq (N, M)$ and M satisfies (N, M)-D₁, there is a direct summand K of M such that $K \leq \overline{A}$ and $\overline{A}/K \ll M/K$. By Lemma 1.2, $\overline{A}/K \ll H/K$. Now $\overline{A} = K$ since \overline{A} is coclosed in *H*. Thus *H* satisfies $(N, H) - D_1$. \square

COROLLARY 2.11. Let M be an amply supplemented module. Then the condition (N,M)- D_1 is inherited by direct summands of M.

PROPOSITION 2.12. Let M be an amply supplemented module. Then $(N,M)-D_i$ (i = 2,3)is inherited by direct summands of M.

Proof. (1) Let *M* satisfy (N, M)- D_2 and *H* be a direct summand of *M*. We will show that H satisfies $(N,H)-D_2$.

Let $A \in (N,H) \subseteq (N,M)$ and H/A is isomorphic to a direct summand of H. Since H is a direct summand of M, there exists $H' \leq M$ such that $M = H \oplus H'$. Thus M/A = $(H \oplus H')/A \simeq (H/A) \oplus H'$, and so M/A is isomorphic to a direct summand of M. A is a direct summand of M since M satisfies (N, M)-D₂, and hence A is a direct summand of Η.

(2) Let $A \in (N, H) \subseteq (N, M)$ and A, L be direct summands of H with A + L = H. We will show that $A \cap L$ is a direct summand of H. Since H is a direct summand of *M*, there exists $H' \leq M$ such that $M = H \oplus H'$. Thus $M = (A + L) \oplus H' = A + (L \oplus H')$. Now $A \cap (L \oplus H')$ is a direct summand of M since M satisfies $(N,M)-D_3$. Note that $A \cap (L \oplus H') = A \cap L$, so $A \cap L$ is a direct summand of H. \Box

THEOREM 2.13. Let M be an amply supplemented module and $A \in (N, M)$ a direct summand of M. If M is N-(quasi-)discrete, then A is (quasi-)discrete.

 \square

 \square

Proof. The proof follows from Lemma 2.2, Corollary 2.11, and Proposition 2.12.

PROPOSITION 2.14. Let $0 \to N' \to N \to N'' \to 0$ be an exact sequence. Then $(N', M) \cup (N'', M) \subseteq (N, M)$. Therefore, if M is N-lifting (resp., (quasi-)discrete), then M is N'-lifting and N''-lifting (resp., (quasi-)discrete).

Proof. Without loss of generality we can assume that $N' \leq N$ and N'' = N/N'. By definition, $N' \leq N$ implies $(N', M) \subseteq (N, M)$. Next, let $A_2 \in (N'', M)$. Then there exist $X \leq N'' = N/N'$ and $f \in \text{Hom}(X, M)$ such that $A_2/f(X) \ll M/f(X)$. Write X = Y/N', $Y \leq N$ and let $\delta : Y \to Y/N'$ be the canonical homomorphism. It is clear that $g = f \delta \in \text{Hom}(Y, M)$ and g(Y) = f(X), hence $A_2/g(Y) \ll M/g(Y)$. Thus $A_2 \in (N, M)$. Therefore $(N', M) \cup (N'', M) \subseteq (N, M)$. The rest is obvious.

Dual to [8, Proposition 2.7], we have the following.

THEOREM 2.15. Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence and M an amply supplemented module. Then M is N-lifting if and only if it is both N'-lifting and N''-lifting.

Proof. Let *M* be *N*-lifting. Then it is both N'-lifting and N''-lifting by Proposition 2.14. Conversely suppose that M is both N'-lifting and N''-lifting. For any submodule $A \in$ (N,M), A has an s-closure $\overline{A} \in (N,M)$ by Proposition 2.4. Since $\overline{A} \in (N,M)$, there exist $X \leq N$ and $f \in \text{Hom}(X, M)$ such that $\overline{A}/f(X) \ll M/f(X)$. Since \overline{A} is coclosed in M, $f(X) = \overline{A}$. Write $Y = X \cap N' \leq N'$ and $f|_Y : Y \to M$ is a homomorphism, then $f(Y) \leq N'$ $f(X) = \overline{A}$. Let $\overline{f(Y)}$ be an s-closure of f(Y) in \overline{A} (for \overline{A} is amply supplemented). Thus we conclude that $f(Y)/\overline{f(Y)} \ll M/\overline{f(Y)}$ and $\overline{f(Y)} \in (N', M)$. Since M is N'-lifting, there exists a direct summand K of M such that $\overline{f(Y)}/K \ll M/K$. It is easy to see $\overline{f(Y)}$ is coclosed in M, hence $\overline{f(Y)} = K$ is a direct summand of M. Write $M = \overline{f(Y)} \oplus K', K' \leq M$ and $\overline{A} = \overline{A} \cap M = \overline{f(Y)} \oplus (\overline{A} \cap K')$. Define $h: W = (X + N')/N' \to M$ by h(x + N') = $\pi f(x)$, where $\pi: \overline{A} \to \overline{A} \cap K'$ denotes the canonical projection. It is clear that h(W) = $\overline{A} \cap K'$, thus $(\overline{A} \cap K')/h(W) \ll M/h(W)$, and hence $(\overline{A} \cap K') \in (N'', M)$. Since M is N''-lifting, there exists a direct summand K'' of M such that $(\overline{A} \cap K')/K'' \ll M/K''$. Since $\overline{A} \cap K'$ is coclosed in $M, \overline{A} \cap K' = K''$. Now $\overline{A} \cap K'$ is a direct summand of K'. Thus \overline{A} is a direct summand of M. It follows that M is N-lifting. \square

COROLLARY 2.16. Let M be an amply supplemented module. If M is N_i -lifting for i = 1, 2, ..., n and $N = \bigoplus_{i=1}^{n} N_i$, then M is N-lifting.

COROLLARY 2.17. Let M be an amply supplemented module. Then M is lifting if and only if M is N-lifting and M/N-lifting for every submodule N of M if and only if M is N-lifting and M/N-lifting for some submodule N of M.

Recall that a module *M* is said to be *distributive* if $N \cap (K + L) = (N \cap K) + (N \cap L)$ for all submodules *N*, *K*, *L* of *M*. A module *M* has *SSP* (see [4]) if the sum of any pair of direct summands of *M* is a direct summand of *M*.

COROLLARY 2.18. Let $0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$ be an exact sequence and let M be a distributive and amply supplemented module with SSP. If M is both N'-quasidiscrete and N''-quasidiscrete, then M is N-quasidiscrete.

Proof. We only need to show that M satisfies (N, M)- D_3 when M satisfies (N', M)- D_3 and (N'', M)- D_3 by Theorem 2.15. Let $A \in (N, M)$ and A, H be direct summands of M with A + H = M. We know that $A = A_1 \oplus A_2$, where $A_1 \in (N', M)$, $A_2 \in (N'', M)$ from the proof of Theorem 2.15. Since M is a distributive module with SSP, $A_1 \cap H$ and $A_2 \cap H$ are direct summands of M. This implies that $A \cap H$ is a direct summand of M. Thus M satisfies (N, M)- D_3 .

3. SSRS-modules

In [2], a module is called a *CESS-module* if every complement with essential socle is a direct summand. As a dual of CESS-modules, the concept of SSRS-modules is given in this section. It is proven that: (1) let M be an amply supplemented SSRS-module such that Rad(M) is finitely generated, then $M = K \oplus K'$, where K is a radical module and K' is a lifting module; (2) let M be a finitely generated amply supplemented module, then M is an SSRS-module if and only if M/K is a lifting module for every coclosed submodule K of M.

Definition 3.1. A module is called an *SSRS-module* if every supplement with small radical is a direct summand.

Lifting modules are SSRS-modules, but the converse is not true. For example, $_{\mathbb{Z}}\mathbb{Z}$ is an SSRS-module which is not a lifting module.

PROPOSITION 3.2. Let M be an SSRS-module. Then any direct summand of M is an SSRS-module.

Proof. Let *K* be a direct summand of *M* and *N* a supplement submodule of *K* such that $\operatorname{Rad}(N) \ll N$. Let *N* be a supplement of *L* in *K*, that is, N + L = K and $N \cap L \ll N$. Since *K* is a direct summand of *M*, there exists $K' \leq M$ such that $M = K \oplus K'$. Note that $M = N + (L \oplus K')$ and $N \cap (L \oplus K') = N \cap L \ll N$. Therefore *N* is a supplement of $L \oplus K'$ in *M*. Thus *N* is a direct summand of *M* since *M* is an SSRS-module. So *N* is a direct summand of *K*. The proof is complete.

PROPOSITION 3.3. Let M be a weakly supplemented SSRS-module and K a coclosed submodule of M. Then K is an SSRS-module.

Proof. It follows from the assumption and [4, Lemma 2.6(3)].

PROPOSITION 3.4. Let M be an amply supplemented module. Then M is an SSRS-module if and only if for every submodule N with small radical, there exists a direct summand K of M such that $K \leq N$ and $N/K \ll M/K$.

Proof. " \Leftarrow ." Let *N* be a supplement submodule with small radical. By assumption, there exists a direct summand *K* of *M* such that $K \leq N$ and $N/K \ll M/K$. Since *N* is coclosed in *M*, N = K. Thus *N* is a direct summand of *M*.

"⇒." Let $N \le M$ with $\operatorname{Rad}(N) \ll N$. There exists an *s*-closure \overline{N} of N since M is amply supplemented. Since $\operatorname{Rad}(N) \ll M$ (for $\operatorname{Rad}(N) \ll N$) and $\operatorname{Rad}(\overline{N}) \le \operatorname{Rad}(N)$,

 $\operatorname{Rad}(\overline{N}) \ll \overline{N}$ and \overline{N} is a supplement submodule by Lemma 1.2. Therefore \overline{N} is a direct summand of *M* by assumption. This completes the proof.

COROLLARY 3.5. Let M be an amply supplemented SSRS-module. Then every simple submodule of M is either a direct summand or a small submodule of M.

PROPOSITION 3.6. Let M be an amply supplemented module. Then M is an SSRS-module if and only if for every submodule N of M, every s-closure of N with small radical is a lifting module and a direct summand of M.

Proof. It is straight forward.

PROPOSITION 3.7. Let M be an amply supplemented SSRS-module. Then $M = K \oplus K'$, where K is semisimple and K' has small socle.

Proof. For Soc(*M*), there exists a direct summand *K* of *M* such that Soc(*M*)/*K* \ll *M*/*K* by Proposition 3.4. It is easy to see that *K* is semisimple. Since *K* is a direct summand of *M*, there exists $K' \leq M$ such that $M = K \oplus K'$. Note that Soc(*M*) = Soc(*K*) \oplus Soc(*K'*). So Soc(*M*)/*K* = ($K \oplus$ Soc(K'))/*K* \ll *M*/*K* = ($K \oplus K'$)/*K*. Thus Soc(K') \ll *K'*.

Recall that a module *M* is called a *radical module* if Rad(M) = M. Dual to [2, Theorem 2.6], we have the following.

THEOREM 3.8. Let M be an amply supplemented SSRS-module such that Rad(M) is finitely generated. Then $M = K \oplus K'$, where K is a radical module and K' is a lifting module.

Proof. Rad(Rad(M)) \ll Rad(M) since Rad(M) is finitely generated. There exists a direct summand K of M such that Rad(M)/ $K \ll M/K$ by Proposition 3.4. Since K is a direct summand of M, there exists $K' \leq M$ such that $M = K \oplus K'$. Note that Rad(M) = Rad(K) \oplus Rad(K'). Therefore $K = K \cap$ Rad(M) = Rad(K) and Rad(M)/K = (Rad(K) \oplus Rad(K'))/ $K \ll M/K = (K \oplus K')/K$. Thus Rad(K) = K and Rad(K') $\ll K'$.

Next, we show that K' is a lifting module. K' is amply supplemented since it is a direct summand of M. So we only prove that every supplement submodule of K' is a direct summand of K'. Let N be a supplement submodule of K'. By Lemma 1.2 and $\text{Rad}(K') \ll K'$, we know that $\text{Rad}(N) \ll N$. N is a direct summand of K' since K' is an SSRS-module by Proposition 3.2. The proof is complete.

COROLLARY 3.9. Let M be an amply supplemented module with small radical. Then M is an SSRS-module if and only if M is a lifting module.

THEOREM 3.10. Let *M* be a finitely generated amply supplemented module. Then the following statements are equivalent.

- (1) *M* is an SSRS-module.
- (2) *M* is a lifting module.
- (3) M/K is a lifting module for every coclosed submodule K of M.

Proof. $(1) \Leftrightarrow (2)$ follows from Corollary 3.9.

 $(3) \Rightarrow (1)$ is clear.

 $(1)\Rightarrow(3)$ we only prove that any supplement submodule of M/K is a direct summand. Let A/K be a supplement submodule of M/K. A is coclosed in M since A/K is coclosed in

M/K and K is coclosed in M. Rad $(A) \ll A$ since M is finitely generated and A is coclosed in M. A is a direct summand of M by assumption. Thus A/K is a direct summand of M/K.

LEMMA 3.11. Let M be a module. Then the following statements are equivalent.

- (1) For every cyclic submodule N of M, there exists a direct summand K of M such that $K \le N$ and $N/K \ll M/K$.
- (2) For every finitely generated submodule N of M, there exists a direct summand K of M such that $K \le N$ and $N/K \ll M/K$.

 \square

Proof. See [12, 41.13].

COROLLARY 3.12. Let M be a Noetherian module. Then the following statements are equivalent.

- (1) M is R-lifting.
- (2) *M* is *F*-lifting, for any free module *F*.
- (3) M is lifting.
- (4) *M* is an amply supplemented SSRS-module.

Proof. It is easy to see that (R,M) and (F,M) are closed under cyclic submodules. The rest follows immediately from Theorem 3.10 and Lemma 3.11.

COROLLARY 3.13. Let R be a left perfect (semiperfect) ring. Then every SSRS-module (finitely generated SSRS-module) is a lifting module.

Proof. It follows from the fact that every module over a left perfect ring has small radical, [11, Theorems 1.6 and 1.7] and Corollary 3.9.

A module *M* is *uniserial* (see [6]) if its submodules are linearly ordered by inclusion and it is *serial* if it is a direct sum of uniserial submodules. A ring *R* is *right* (*left*) *serial* if the right (left) *R*-module $R_R(R)$ is serial and it is serial if it is both right and left serial.

COROLLARY 3.14. The following statements are equivalent for a ring R with radical J.

- (1) *R* is an artinian serial ring and $J^2 = 0$.
- (2) *R* is a left semiperfct ring and every finitely generated module is an SSRS-module.
- (3) R is a left perfect ring and every module is an SSRS-module.

Proof. It holds by [6, Theorem 3.15], [10, Theorem 1 and Proposition 2.13], and Corollary 3.13. \Box

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer, New York, 1974.
- [2] C. Çelik, A. Harmancı, and P. F. Smith, A generalization of CS-modules, Communications in Algebra 23 (1995), no. 14, 5445–5460.
- [3] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, *Extending Modules*, Pitman Research Notes in Mathematics Series, vol. 313, Longman Scientific & Technical, Harlow, 1994.
- [4] L. Ganesan and N. Vanaja, *Modules for which every submodule has a unique coclosure*, Communications in Algebra **30** (2002), no. 5, 2355–2377.
- [5] D. Keskin, On lifting modules, Communications in Algebra 28 (2000), no. 7, 3427–3440.

- [6] D. Keskin, P. F. Smith, and W. M. Xue, *Rings whose modules are* ⊕-supplemented, Journal of Algebra 218 (1999), no. 2, 470–487.
- [7] Z. K. Liu, On X-extending and X-continuous modules, Communications in Algebra 29 (2001), no. 6, 2407–2418.
- [8] S. R. López-Permouth, K. Oshiro, and S. T. Rizvi, On the relative (quasi-)continuity of modules, Communications in Algebra 26 (1998), no. 11, 3497–3510.
- [9] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*, London Mathematical Society Lecture Note Series, vol. 147, Cambridge University Press, Cambridge, 1990.
- [10] N. Vanaja and V. M. Purav, *Characterisations of generalised uniserial rings in terms of factor rings*, Communications in Algebra 20 (1992), no. 8, 2253–2270.
- [11] K. Varadarajan, *Modules with supplements*, Pacific Journal of Mathematics 82 (1979), no. 2, 559– 564.
- [12] R. Wisbauer, *Foundations of Module and Ring Theory*, Algebra, Logic and Applications, vol. 3, Gordon and Breach, Pennsylvania, 1991.

Yongduo Wang: Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, China *E-mail address*: ydwang333@sohu.com

Nanqing Ding: Department of Mathematics, Nanjing University, Nanjing 210093, China *E-mail address*: nqding@nju.edu.cn