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We introduce the concepts of lifting modules and (quasi-)discrete modules relative to a
given left module. We also introduce the notion of SSRS-modules. It is shown that (1) if
M is an amply supplemented module and 0→N ′ →N →N ′′ → 0 an exact sequence, then
M isN-lifting if and only if it isN ′-lifting andN ′′-lifting; (2) ifM is a Noetherian module,
then M is lifting if and only if M is R-lifting if and only if M is an amply supplemented
SSRS-module; and (3) let M be an amply supplemented SSRS-module such that Rad(M)
is finitely generated, then M = K ⊕K ′, where K is a radical module and K ′ is a lifting
module.
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1. Introduction and preliminaries

Extending modules and their generalizations have been studied by many authors (see
[2, 3, 8, 7]). The motivation of the present discussion is from [2, 8], where the concepts
of extending modules and (quasi-)continuous modules with respect to a given module
and CESS-modules were studied, respectively. In this paper, we introduce the concepts
of lifting modules and (quasi-)discrete modules relative to a given module and SSRS-
modules. It is shown that (1) if 0→ N ′ → N → N ′′ → 0 is an exact sequence and M an
amply supplemented module, then M is N-lifting if and only if it is both N ′-lifting and
N ′′-lifting; (2) if M is a Noetherian module, then M is lifting if and only if M is R-lifting
if and only if M is an amply supplemented SSRS-module; and (3) let M be an amply
supplemented SSRS-module such that Rad(M) is finitely generated, then M = K ⊕K ′,
where K is a radical module and K ′ is a lifting module.

Throughout this paper, R is an associative ring with identity and all modules are unital
left R-modules. We use N ≤M to indicate that N is a submodule of M. As usual, Rad(M)
and Soc(M) stand for the Jacobson radical and the socle of a module M, respectively.

Let M be a module and S≤M. S is called small in M (notation S�M) if M �= S+T
for any proper submodule T of M. Let N and L be submodules of M, N is called a supple-
ment of L in M if N +L=M, and N is minimal with respect to this property. Equivalently,
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M = N + L and N ∩ L� N . N is called a supplement submodule if N is a supplement of
some submodule of M. M is called an amply supplemented module if for any two sub-
modules A and B of M with A + B =M, B contains a supplement of A. M is called a
weakly supplemented module (see [5]) if for each submodule A of M there exists a sub-
module B of M such that M = A+ B and A∩ B�M. Let B ≤ A ≤M. If A/B�M/B,
then B is called a coessential submodule of A and A is called a coessential extension of B in
M. A submodule A of M is called coclosed if A has no proper coessential submodules in
M. Following [5], B is called an s-closure of A in M if B is a coessential submodule of A
and B is coclosed in M.

Let M be a module. M is called a lifting module (or satisfies (D1)) (see [9]) if for ev-
ery submodule A of M, there exists a direct summand K of M such that K ≤ A and
A/K �M/K , equivalently, M is amply supplemented and every supplement submodule
of M is a direct summand. M is called discrete if M is lifting and has the following condi-
tion.

(D2) If A ≤M such that M/A is isomorphic to a direct summand of M, then A is a
summand of M.

M is called quasidiscrete if M is lifting and has the following condition:
(D3) For each pair of direct summands A and B of M with A+B =M, A∩B is a direct

summand of M. For more details on these concepts, see [9].

Lemma 1.1 (see [12, 19.3]). Let M be a module and K ≤ L≤M.
(1) L�M if and only if K�M and L/K�M/K .
(2) If M′ is a module and φ : M →M′ a homomorphism, then φ(L)�M′ whenever

L�M.

Lemma 1.2 (see Lemma 1.1 in [5]). Let M be a weakly supplemented module and N ≤M.
Then the following statements are equivalent.

(1) N is a supplement submodule of M.
(2) N is coclosed in M.
(3) For all X ≤N , X�M implies X�N .

Lemma 1.3 (see Proposition 1.5 in [5]). Let M be an amply supplemented module. Then
every submodule of M has an s-closure.

Lemma 1.4 (see [12, 41.7]). Let M be an amply supplemented module. Then every coclosed
submodule of M is amply supplemented.

2. Relative lifting modules

To define the concepts of relative lifting and (quasi-)discrete modules, we dualize the
concepts of relative extending and (quasi-)continuous modules introduced in [8] in this
section. We start with the following.

Let N and M be modules. We define the family

$(N ,M)=
{
A≤M | ∃X ≤N , ∃ f ∈Hom(X ,M), � A

f (X)
� M

f (X)

}
. (2.1)
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Proposition 2.1. $(N ,M) is closed under small submodules, isomorphic images, and co-
essential extensions.

Proof. We only show that $(N ,M) is closed under coessential extensions. LetA∈$(N ,M),
A≤A′ ≤M, and A′/A�M/A. There exist X ≤N and f ∈Hom(X ,M) such that f (X)≤
A and A/ f (X) �M/ f (X) since A ∈ $(N ,M). Note that A′/A�M/A, so A′/ f (X) �
M/ f (X) by Lemma 1.1(1). Thus A′ ∈ $(N ,M). �

Lemma 2.2. Let A∈ $(N ,M) and A be coclosed in M. Then B ∈ $(N ,M) for any submodule
B of A.

Proof. There existX≤N and f ∈Hom(X ,M) such that f (X)≤A andA/ f (X)�M/ f (X)
by hypothesis. Since A is coclosed in M, f (X) = A. Let B be any submodule of A and
Y = f −1(B)≤ X ≤N . Then f |Y : Y →M is a homomorphism such that f |Y (Y)= B for
f (X)=A. Clearly B/ f |Y (Y)�M/ f |Y (Y). Therefore B ∈ $(N ,M). �

Lemma 2.3. Let C ≤ A≤ B ≤M and A be a coessential submodule of B. If C is an s-closure
of A, then it is also an s-closure of B.

Proof. It is clear by Lemma 1.1(1). �

Proposition 2.4. Let M be an amply supplemented module. Then every A in $(N ,M) has
an s-closure A in $(N ,M).

Proof. Since A ∈ $(N ,M), there exist X ≤ N and f ∈Hom(X ,M) such that A/ f (X)�
M/ f (X). Note that M is amply supplemented, and so f (X) has an s-closure A in M by
Lemma 1.3. Thus A is also an s-closure of A by Lemma 2.3. The verification for A ∈
$(N ,M) is analogous to that for B ∈ $(N ,M) in Lemma 2.2. �

Let N be a module. Consider the following conditions for a module M.
($(N ,M)-D1) For every submodule A∈ $(N ,M), there exists a direct summand K of M

such that K ≤A and A/K�M/K .
($(N ,M)-D2) If A ∈ $(N ,M) such that M/A is isomorphic to a direct summand of M,

then A is a direct summand of M.
($(N ,M)-D3) If A and L are direct summands of M with A ∈ $(N ,M) and A+ L =M,

then A∩L is a direct summand of M.

Definition 2.5. Let N be a module. A module M is said to be N-lifting, N-discrete, or
N-quasidiscrete if M satisfies $(N ,M)-D1, $(N ,M)-D1 and $(N ,M)-D2 or $(N ,M)-D1

and $(N ,M)-D3, respectively.

One easily obtains the hierarchy: M is N-discrete ⇒M is N-quasidiscrete⇒M is N-
lifting. Clearly, the notion of relative discreteness generalizes the concept of discreteness.
For any module N , lifting modules are N-lifting. But the converse is not true as shown in
the following examples.

Example 2.6. Since, for any module M, $(0,M) = {A | A�M} and 0 is a direct sum-
mand of M such that A/0�M/0 for any A ∈ $(0,M), all modules are 0-lifting. How-
ever, the Z-module Z/2Z× Z/8Z is not lifting since the supplement submodule

〈
(1,2)

〉
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(
〈

(1,2)
〉

is a supplement of
〈

(1,1)
〉

) and is not a direct summand of it though it is amply
supplemented.

Example 2.7. Let M be a module with zero socle and S a simple module. Then M is S-
lifting since $(S,M) is a family only containing all small submodules of M. So all torsion-
free Z-modules are S-lifting for any simple Z-module S (see [12, Exercise 21.17]). In par-
ticular, ZZ and ZQ are S-lifting for any simple Z-module, but each one is not a lifting
module.

Lemma 2.8. LetM be a module. Then $(M,M)= {A |A≤M} =⋃N∈R-Mod $(N ,M), where
R-Mod denotes the category of left R-module.

Proof. It is straight forward. �

Proposition 2.9. Let M be a module. Then M is lifting or (quasi-)discrete if and only if M
is M-lifting or M-(quasi-)discrete if and only if M is N-lifting or N-(quasi-)discrete for any
module N .

Proof. It is clear by Lemma 2.8. �

Proposition 2.10. Let M be an amply supplemented module. Then the condition $(N ,M)-
D1 is inherited by coclosed submodules of M.

Proof. Let M satisfy $(N ,M)-D1 and H be a coclosed submodule of M. H is amply sup-
plemented by Lemma 1.4. For any A∈ $(N ,H), A has an s-closure A∈ $(N ,H) in H by
Proposition 2.4. Since A∈ $(N ,H)⊆ $(N ,M) and M satisfies $(N ,M)-D1, there is a di-
rect summand K of M such that K ≤ A and A/K �M/K . By Lemma 1.2, A/K �H/K .
Now A= K since A is coclosed in H . Thus H satisfies $(N ,H)-D1. �

Corollary 2.11. Let M be an amply supplemented module. Then the condition $(N ,M)-
D1 is inherited by direct summands of M.

Proposition 2.12. Let M be an amply supplemented module. Then $(N ,M)-Di (i= 2,3)
is inherited by direct summands of M.

Proof. (1) Let M satisfy $(N ,M)-D2 and H be a direct summand of M. We will show that
H satisfies $(N ,H)-D2.

Let A ∈ $(N ,H) ⊆ $(N ,M) and H/A is isomorphic to a direct summand of H . Since
H is a direct summand of M, there exists H′ ≤M such that M =H ⊕H′. Thus M/A =
(H ⊕H′)/A� (H/A)⊕H′, and so M/A is isomorphic to a direct summand of M. A is a
direct summand of M since M satisfies $(N ,M)-D2, and hence A is a direct summand of
H .

(2) Let A ∈ $(N ,H) ⊆ $(N ,M) and A, L be direct summands of H with A+ L = H .
We will show that A∩ L is a direct summand of H . Since H is a direct summand of
M, there exists H′ ≤M such that M =H ⊕H′. Thus M = (A+ L)⊕H′ = A+ (L⊕H′).
Now A∩ (L⊕H′) is a direct summand of M since M satisfies $(N ,M)-D3. Note that
A∩ (L⊕H′)=A∩L, so A∩L is a direct summand of H . �

Theorem 2.13. Let M be an amply supplemented module and A∈ $(N ,M) a direct sum-
mand of M. If M is N-(quasi-)discrete, then A is (quasi-)discrete.
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Proof. The proof follows from Lemma 2.2, Corollary 2.11, and Proposition 2.12. �

Proposition 2.14. Let 0 → N ′ → N → N ′′ → 0 be an exact sequence. Then $(N ′,M)∪
$(N ′′,M) ⊆ $(N ,M). Therefore, if M is N-lifting (resp., (quasi-)discrete), then M is N ′-
lifting and N ′′-lifting (resp., (quasi-)discrete).

Proof. Without loss of generality we can assume that N ′ ≤ N and N ′′ = N/N ′. By def-
inition, N ′ ≤ N implies $(N ′,M) ⊆ $(N ,M). Next, let A2 ∈ $(N ′′,M). Then there exist
X ≤ N ′′ = N/N ′ and f ∈ Hom(X ,M) such that A2/ f (X)�M/ f (X). Write X = Y/N ′,
Y ≤ N and let δ : Y → Y/N ′ be the canonical homomorphism. It is clear that g = f δ ∈
Hom(Y ,M) and g(Y)= f (X), hence A2/g(Y)�M/g(Y). Thus A2 ∈ $(N ,M). Therefore
$(N ′,M)∪ $(N ′′,M)⊆ $(N ,M). The rest is obvious. �

Dual to [8, Proposition 2.7], we have the following.

Theorem 2.15. Let 0→N ′ →N →N ′′ → 0 be an exact sequence and M an amply supple-
mented module. Then M is N-lifting if and only if it is both N ′-lifting and N ′′-lifting.

Proof. Let M be N-lifting. Then it is both N ′-lifting and N ′′-lifting by Proposition 2.14.
Conversely suppose that M is both N ′-lifting and N ′′-lifting. For any submodule A ∈
$(N ,M), A has an s-closure A ∈ $(N ,M) by Proposition 2.4. Since A ∈ $(N ,M), there
exist X ≤N and f ∈Hom(X ,M) such that A/ f (X)�M/ f (X). Since A is coclosed in M,
f (X) = A. Write Y = X ∩N ′ ≤ N ′ and f |Y : Y →M is a homomorphism, then f (Y) ≤
f (X) = A. Let f (Y) be an s-closure of f (Y) in A (for A is amply supplemented). Thus
we conclude that f (Y)/ f (Y) �M/ f (Y) and f (Y) ∈ $(N ′,M). Since M is N ′-lifting,
there exists a direct summand K of M such that f (Y)/K�M/K . It is easy to see f (Y) is
coclosed in M, hence f (Y)= K is a direct summand of M. Write M = f (Y)⊕K ′, K ′ ≤M
and A = A∩M = f (Y)⊕ (A∩ K ′). Define h : W = (X + N ′)/N ′ →M by h(x + N ′) =
π f (x), where π : A→ A∩K ′ denotes the canonical projection. It is clear that h(W) =
A∩K ′, thus (A∩K ′)/h(W) �M/h(W), and hence (A∩K ′) ∈ $(N ′′,M). Since M is
N ′′-lifting, there exists a direct summand K ′′ of M such that (A∩ K ′)/K ′′ �M/K ′′.
Since A∩K ′ is coclosed in M, A∩K ′ = K ′′. Now A∩K ′ is a direct summand of K ′.
Thus A is a direct summand of M. It follows that M is N-lifting. �

Corollary 2.16. Let M be an amply supplemented module. If M is Ni-lifting for i =
1,2, . . . ,n and N =⊕n

i Ni, then M is N-lifting.

Corollary 2.17. Let M be an amply supplemented module. Then M is lifting if and only
if M is N-lifting and M/N-lifting for every submodule N of M if and only if M is N-lifting
and M/N-lifting for some submodule N of M.

Recall that a module M is said to be distributive if N ∩ (K + L) = (N ∩K) + (N ∩ L)
for all submodules N , K , L of M. A module M has SSP (see [4]) if the sum of any pair of
direct summands of M is a direct summand of M.

Corollary 2.18. Let 0 → N ′ → N → N ′′ → 0 be an exact sequence and let M be a dis-
tributive and amply supplemented module with SSP. If M is both N ′-quasidiscrete and N ′′-
quasidiscrete, then M is N-quasidiscrete.
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Proof. We only need to show that M satisfies $(N ,M)-D3 when M satisfies $(N ′,M)-D3

and $(N ′′,M)-D3 by Theorem 2.15. Let A∈ $(N ,M) and A, H be direct summands of M
with A+H =M. We know that A= A1⊕A2, where A1 ∈ $(N ′,M), A2 ∈ $(N ′′,M) from
the proof of Theorem 2.15. Since M is a distributive module with SSP, A1∩H and A2∩H
are direct summands of M. This implies that A∩H is a direct summand of M. Thus M
satisfies $(N ,M)-D3. �

3. SSRS-modules

In [2], a module is called a CESS-module if every complement with essential socle is a
direct summand. As a dual of CESS-modules, the concept of SSRS-modules is given in
this section. It is proven that: (1) let M be an amply supplemented SSRS-module such
that Rad(M) is finitely generated, then M = K ⊕K ′, where K is a radical module and K ′

is a lifting module; (2) let M be a finitely generated amply supplemented module, then M
is an SSRS-module if and only if M/K is a lifting module for every coclosed submodule
K of M.

Definition 3.1. A module is called an SSRS-module if every supplement with small radical
is a direct summand.

Lifting modules are SSRS-modules, but the converse is not true. For example, ZZ is an
SSRS-module which is not a lifting module.

Proposition 3.2. Let M be an SSRS-module. Then any direct summand of M is an SSRS-
module.

Proof. Let K be a direct summand of M and N a supplement submodule of K such that
Rad(N) � N . Let N be a supplement of L in K , that is, N + L = K and N ∩ L� N .
Since K is a direct summand of M, there exists K ′ ≤M such that M = K ⊕K ′. Note
that M = N + (L⊕K ′) and N ∩ (L⊕K ′) = N ∩ L� N . Therefore N is a supplement of
L⊕K ′ in M. Thus N is a direct summand of M since M is an SSRS-module. So N is a
direct summand of K . The proof is complete. �

Proposition 3.3. Let M be a weakly supplemented SSRS-module and K a coclosed sub-
module of M. Then K is an SSRS-module.

Proof. It follows from the assumption and [4, Lemma 2.6(3)]. �

Proposition 3.4. Let M be an amply supplemented module. Then M is an SSRS-module if
and only if for every submodule N with small radical, there exists a direct summand K of M
such that K ≤N and N/K�M/K .

Proof. “⇐.” Let N be a supplement submodule with small radical. By assumption, there
exists a direct summand K of M such that K ≤N and N/K�M/K . Since N is coclosed
in M, N = K . Thus N is a direct summand of M.

“⇒.” Let N ≤M with Rad(N) � N . There exists an s-closure N of N since M is
amply supplemented. Since Rad(N) �M (for Rad(N) � N) and Rad(N) ≤ Rad(N),
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Rad(N)� N and N is a supplement submodule by Lemma 1.2. Therefore N is a direct
summand of M by assumption. This completes the proof. �

Corollary 3.5. Let M be an amply supplemented SSRS-module. Then every simple sub-
module of M is either a direct summand or a small submodule of M.

Proposition 3.6. Let M be an amply supplemented module. Then M is an SSRS-module
if and only if for every submodule N of M, every s-closure of N with small radical is a lifting
module and a direct summand of M.

Proof. It is straight forward. �

Proposition 3.7. Let M be an amply supplemented SSRS-module. Then M = K ⊕ K ′,
where K is semisimple and K ′ has small socle.

Proof. For Soc(M), there exists a direct summand K of M such that Soc(M)/K �M/K
by Proposition 3.4. It is easy to see that K is semisimple. Since K is a direct summand of
M, there exists K ′ ≤M such that M = K ⊕K ′. Note that Soc(M)= Soc(K)⊕ Soc(K ′). So
Soc(M)/K = (K ⊕ Soc(K ′))/K�M/K = (K ⊕K ′)/K . Thus Soc(K ′)� K ′. �

Recall that a module M is called a radical module if Rad(M)=M. Dual to [2, Theorem
2.6], we have the following.

Theorem 3.8. Let M be an amply supplemented SSRS-module such that Rad(M) is finitely
generated. Then M = K ⊕K ′, where K is a radical module and K ′ is a lifting module.

Proof. Rad(Rad(M)) � Rad(M) since Rad(M) is finitely generated. There exists a di-
rect summand K of M such that Rad(M)/K �M/K by Proposition 3.4. Since K is a
direct summand of M, there exists K ′ ≤M such that M = K ⊕K ′. Note that Rad(M) =
Rad(K)⊕Rad(K ′). Therefore K = K ∩Rad(M) = Rad(K) and Rad(M)/K = (Rad(K)⊕
Rad(K ′))/K�M/K = (K ⊕K ′)/K . Thus Rad(K)= K and Rad(K ′)� K ′.

Next, we show that K ′ is a lifting module. K ′ is amply supplemented since it is a direct
summand of M. So we only prove that every supplement submodule of K ′ is a direct
summand of K ′. Let N be a supplement submodule of K ′. By Lemma 1.2 and Rad(K ′)�
K ′, we know that Rad(N)�N . N is a direct summand of K ′ since K ′ is an SSRS-module
by Proposition 3.2. The proof is complete. �

Corollary 3.9. Let M be an amply supplemented module with small radical. Then M is
an SSRS-module if and only if M is a lifting module.

Theorem 3.10. Let M be a finitely generated amply supplemented module. Then the fol-
lowing statements are equivalent.

(1) M is an SSRS-module.
(2) M is a lifting module.
(3) M/K is a lifting module for every coclosed submodule K of M.

Proof. (1)⇔(2) follows from Corollary 3.9.
(3)⇒(1) is clear.
(1)⇒(3) we only prove that any supplement submodule of M/K is a direct summand.

Let A/K be a supplement submodule of M/K . A is coclosed in M since A/K is coclosed in



8 Generalized lifting modules

M/K and K is coclosed in M. Rad(A)� A since M is finitely generated and A is coclosed
in M. A is a direct summand of M by assumption. Thus A/K is a direct summand of
M/K . �

Lemma 3.11. Let M be a module. Then the following statements are equivalent.
(1) For every cyclic submodule N of M, there exists a direct summand K of M such that

K ≤N and N/K�M/K .
(2) For every finitely generated submodule N of M, there exists a direct summand K of

M such that K ≤N and N/K�M/K .

Proof. See [12, 41.13]. �

Corollary 3.12. Let M be a Noetherian module. Then the following statements are equiv-
alent.

(1) M is R-lifting.
(2) M is F-lifting, for any free module F.
(3) M is lifting.
(4) M is an amply supplemented SSRS-module.

Proof. It is easy to see that $(R,M) and $(F,M) are closed under cyclic submodules. The
rest follows immediately from Theorem 3.10 and Lemma 3.11. �

Corollary 3.13. LetR be a left perfect (semiperfect) ring. Then every SSRS-module (finitely
generated SSRS-module) is a lifting module.

Proof. It follows from the fact that every module over a left perfect ring has small radical,
[11, Theorems 1.6 and 1.7] and Corollary 3.9. �

A module M is uniserial (see [6]) if its submodules are linearly ordered by inclusion
and it is serial if it is a direct sum of uniserial submodules. A ring R is right (left) serial if
the right (left) R-module RR(RR) is serial and it is serial if it is both right and left serial.

Corollary 3.14. The following statements are equivalent for a ring R with radical J .
(1) R is an artinian serial ring and J2 = 0.
(2) R is a left semiperfct ring and every finitely generated module is an SSRS-module.
(3) R is a left perfect ring and every module is an SSRS-module.

Proof. It holds by [6, Theorem 3.15], [10, Theorem 1 and Proposition 2.13], and Corol-
lary 3.13. �
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