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Given a continuous-time bandlimited signal, the Shannon sampling theorem provides
an interpolation scheme for exactly reconstructing it from its discrete samples. We analyze
the relationship between concentration (or compactness) in the temporal/spectral domains
of the (i) continuous-time and (ii) discrete-time signals. The former is governed by the
Heisenberg uncertainty inequality which prescribes a lower bound on the product of ef-
fective temporal and spectral spreads of the signal. On the other hand, the discrete-time
counterpart seems to exhibit some strange properties, and this provides motivation for
the present paper. We consider the following problem: for a bandlimited signal, can the
uncertainty inequality be expressed in terms of the samples, using the standard definitions of
the temporal and spectral spreads of the signal? In contrast with the results of the literature,
we present a new approach to solve this problem. We also present a comparison of the
results obtained using the proposed definitions with those available in the literature.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We deal with real functions (signals) f of the real variable x ∈ R : { f (x) : f (x) ∈ L2},
that is, the class of square integrable functions, having unit energy and centered at the ori-
gin. The independent variable x can denote either time (for dealing with time-dependent
phenomena) or space (for describing space-dependent functions like images). In what
follows, we use the terms “space” and “time” interchangeably.

With F(ω) denoting the Fourier transform of f (x), we have, based on the assumptions
made above, the following identities:

∫∞
−∞

∣∣ f (x)
∣∣2

dx = 1= 1
2π

∫∞
−∞

∣∣F(ω)
∣∣2

dω. (1.1)

The space localization of a signal is described by its “effective spatial width” (Δx):

(
Δx
)2 =

∫∞
−∞ x2 f 2(x)dx∫∞
−∞ f 2(x)dx

=
∫∞
−∞

x2 f 2(x)dx. (1.2)
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2 On the uncertainty inequality as applied to discrete signals

Similarly, the frequency localization of a signal is described by its “effective spectral width”
in terms of F(ω) as follows:

(
Δω
)2 =

∫∞
−∞ω2

∣∣F(ω)
∣∣2

dω∫∞
−∞
∣∣F(ω)

∣∣2
dω

= 1
2π

∫∞
−∞

ω2
∣∣F(ω)

∣∣2
dω. (1.3)

One of the fundamental properties of continuous signals is that f (x) and F(ω) cannot
both be of short duration. This is made explicit (i) qualitatively by the scaling theorem,

a f (ax)⇐⇒ F
(
ω

a

)
, (1.4)

and (ii) quantitatively by the uncertainty principle which places a lower bound on the prod-
uct of effective spatial and spectral widths of continuous signals [15]:

(
Δx
)2(

Δω
)2 ≥ 1

4
. (1.5)

The equality in (1.5) is satisfied only by the Gaussian function. For a survey on the un-
certainty inequality, see [12]; and for related results as applied to wavelet transforms, and
time-frequency representations, see [3–5].

The motivation for the work presented in this paper arose from the results obtained in
[1, 14] by applying the above inequality (with modifications to the definitions of effective
spreads in the time and frequency domains) to discrete signals.

In the discrete case, the effective spatial width Dn and spectral width Dω are defined
(along the lines of the counterparts of the continuous case) by [1, 14] as follows:

D2
n =

∞∑
n=−∞

n2
∣∣ f [n]

∣∣2
; D2

ω =
∫ π

−π
ω2
∣∣F(e jω)∣∣2

dω. (1.6)

We find that there are discrete signals for which there is no strict positive lower bound
for the space-bandwidth product. For instance, the sequence

δ(n)=
⎧⎨
⎩

0, ∀n �= 0,

1, n= 0,
(1.7)

has zero space-bandwidth product. (Recall that there is no continuous version of the sig-
nal with such a property.)

However, the authors of [1, 14] propose some additional restrictions on discrete sig-
nals in order to arrive at satisfactory definitions of effective widths in the spatial (i.e.,
original) and spectral domains. On the other hand, DeBrunner et al. [6, 16] propose
an entropy-based measure for the simultaneous localization of finite-duration discrete-
time signals in the time-frequency plane. Also, for specially defined second moments,
Doroslovački et al. [10, 11] show that the Gabor uncertainty relation is satisfied for any
finite-energy signal. To arrive at the result, the authors use the “convolution-invariance”
condition.
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In contrast, Donoho and Huo [8] describe an uncertainty principle that deals with
sparse representation of discrete-time signals in multiple bases. However, their result does
not refer to uncertainty in the sense we are using the term here (i.e., time-frequency
localization).

Even though the sparsity inequality of [9] and other information-theoretic inequalities
can be related to uncertainty (see [7]), it is found that the following problems deserve to
be considered in their own right.

(1) Suppose we are given the appropriately sampled values of a bandlimited signal.
Can we express the space-bandwidth product (SBP) (1.5) in terms of these sam-
ples, using the standard definitions of the spatial and spectral spreads (meant for
the continuous version) of the signal, unlike the results of [1, 14]? A solution to
this problem implies consistency in the applications of the definitions (of spa-
tial and spectral widths) to continuous and discrete versions of the signal. By
the word “consistent,” we mean the following. Suppose we define, in a certain
fashion, the SBP of a continuous, bandlimited signal; and compute the SBP with
reference to this signal. We then sample the signal, and, for the discrete signal,
compute the discrete SBP, defined in a manner analogous to that of the contin-
uous signal. The two definitions are consistent if the results of the two computa-
tions are the same (except, possibly, for numerical errors).

(2) Does there exist an optimal bandlimited signal for which (1.5) is an equality? If
the answer is affirmative, what is it?

In contrast with the results of the literature, we present a new approach to solve the
first problem. A mathematical treatment of the second problem still seems to be open.
However, we provide some experimental results that point towards a “filtered Gaussian”
as the solution to the second problem. For more details, see Section 5.

The outline of the paper is as follows. Section 2 briefly surveys the results of Ishii and
Furukawa [14], Calvez and Vible [1], DeBrunner et al. [6, 16], and Doroslovački et al.
[10, 11]. Section 3 contains our approach to compute spatial and spectral widths from
discrete samples, followed by Section 4 which compares the new results with those of
Doroslovački et al. [10, 11]. Section 5 presents some experimental findings related to the
discovery of an optimal bandlimited signal. Finally, Section 6 concludes the paper.

2. Brief survey of existing results

As indicated above, some authors extend the uncertainty inequality to discrete signals
by carrying over the definitions of the space- and the frequency-domain spreads, from
the continuous to the discrete case [1, 14], while others employ “specially defined second
moments” [10, 11]. Ishii and Furukawa [14] define the space and spectral spreads for a
discrete-space signal using (1.6). Based on these definitions and the assumptions given
below, they obtain an uncertainty inequality. Here is a brief summary of these results
from the literature.

Assumptions. (i) f (x) is a bandlimited analog signal, that is, F(ω)= 0, for all |ω| ≥ σ .
(ii) f [n] is obtained by sampling f (x) at Nyquist rate, that is, f [n] = f (nX), where

X = π/σ .
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(iii) Let Fd(e jΩ) denote the Fourier transform of f [n]:

Fd
(
e jΩ
)=

∞∑
n=−∞

f [n]e− jΩn, (2.1)

from which

f [n]= 1
2π

∫ π

−π
Fd
(
e jΩ
)
e jΩndΩ. (2.2)

(iv) Total energy of the signal is one, that is,

∞∑
n=−∞

∣∣ f [n]
∣∣2 = 1

2π

∫ π

−π

∣∣Fd(e jΩ)∣∣2
dΩ= 1. (2.3)

(v) Ω= ωX .
For a proof of the following uncertainty inequality, see [14].

DnDΩ ≥ 1√
2π

∣∣∣∣πF2
d

(
e jπ
)− 1

2

∫ π

−π
F2
d

(
e jΩ
)
dΩ
∣∣∣∣. (2.4)

Further, under the following assumptions,
(a) F(ω)= 0, ω =±σ ;
(b) Fd(e jΩ) is real,

the uncertainty inequality (2.4) simplifies to

DnDΩ >
√
π

2
. (2.5)

Though the inequality (2.5) appears to be a satisfactory result, it holds only under the
assumptions (a) and (b) mentioned above. On the other hand, though (2.4) holds for all
finite-energy signals, the lower bound could be zero. For example, for the unit sample
sequence (1.7), which is obtained by sampling the continuous function

sin(σπx)
σπx

(2.6)

at Nyquist rate, Dn is zero. Therefore, in effect, the lower bound of the uncertainty product
of any finite-energy signal is 0. In other words,

DnDΩ ≥ 0. (2.7)

Further, the continuous version (2.6) has ∞ as the uncertainty product, whereas the corre-
sponding value for the discrete version δ[n] is 0! In contrast, DeBrunner et al. [6] define
an entropy-based uncertainty measure (see below) in their attempt to describe time-
frequency localization of discrete-time signals. Further, they conjecture an uncertainty
inequality which they refine to a theorem in [17].
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Definitions. (1) LetHN denote the Hilbert space ofN-length sequences {u | u : {0,1,2, . . . ,
N − 1} → C} with the norm defined by ‖u‖2 =∑N−1

n=0 |u(n)|2.
(2) For u∈HN , ‖u‖ = 1, define

H(u)=−
N−1∑
n=0

∣∣u(n)
∣∣2

ln
(∣∣u(n)

∣∣2
)

; (2.8)

H(u) is the measure of (lack of) concentration of u in the domain n.
(3) Let F(u) = û(k) = (1/

√
N)
∑N−1

n=0 u(n)Wkn
N , where WN = e−( j2π/N), denote the

DFT of u.
Define

H
(
F(u)

)=H
(
û(k)

)=−
N−1∑
k=0

∣∣û(k)
∣∣2

ln
(∣∣û(k)

∣∣2
)

; (2.9)

H(F(u)) is the measure of (lack of) concentration of F(u) in the frequency domain.
(4) Define

Hp(u)= pH(u) + (1− p)H
(
F(u)

)
,
(
u∈HN , ‖u‖ = 1, 0≤ p ≤ 1

)
; (2.10)

Hp(u) is the measure of concentration of the signal in the n− k plane.
Using the above concentration measures, Przebinda et al. [17] show that the following

relation holds:

H1/2(u)≥ 1
2

ln(N), (2.11)

which is the Hirschman uncertainty principle [7].
However, the entropy-based definitions of spatial and spectral spreads found in [6]

are different from those used in this paper. In [6, 16], the authors argue in favor of
entropy-based concentration measures for discrete signals, and these measures may re-
fer to localization in discrete-time and discrete-frequency spaces. We must emphasize
that the discrete Hirschman uncertainty principle places a lower bound on the sum of
the concentration measures, and not on the product. In contrast, we deal with the prod-
uct of (variance-based) concentration measures (in the sense used in the Gabor uncer-
tainty principle) which seems to be quite distinct from the summation of concentrations.
Moreover, it is also not clear how the latter is related to the product of variance-based
concentration measures.

In contrast to DeBrunner, Doroslovački [10] attempts to give a unified framework for
defining the spatial and spectral spreads for the continuous- and discrete-space signals,
in the sense that a generalized uncertainty inequality is derived for both.

Theorem 2.1. Let B(ω) be a complex-valued function, and A(ω) a real-valued function on
[−p, p] such that B(ω)F(ω) is absolutely continuous,

A(ω)=
∫ ω

ω0

1∣∣B(ν)
∣∣2 dν, (2.12)

A(ω)
∣∣B(ω)F(ω)

∣∣2 = 0 for ω =±p. (2.13)
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Also, define

m2 = 1
2πE f

∫ p

−p

∣∣[B(ω)F(ω)
]′∣∣2

dω, (2.14)

M2 = 1
2πE f

∫ p

−p

∣∣A(ω)B(ω)F(ω)
∣∣2

dω. (2.15)

Then,

m2M2 ≥ 1
4
. (2.16)

Moreover, the inequality becomes equality for

F(ω)= F
(
ω1
)
B
(
ω1
)

B(ω)
exp

(
K
∫ ω

ω1

A(ν)dν
)

, (2.17)

where K ∈R, and it is constrained by the finite-energy requirement. See [10] for its proof.

Note that (2.14) is the generalized second moment of the signal in the time domain,
and (2.15) is the generalized second moment in the frequency domain; and (2.16) is the
generalized uncertainty inequality. For different choices of p, the theorem is valid for both
the continuous-time and the discrete-time signals. In other words, for continuous signals
p =∞, and for discrete signals p = π. Also, the Gabor uncertainty relation for the point
(0,0) in the time-frequency plane is obtained by setting B(ω) = 1 and ω0 = 0. However,
condition (2.13) and the uncertainty relation (2.16) are not satisfied, in general, in the
discrete-time case, except when |F(±π)| = 0. This particular result is similar to the one
obtained in [1, 14].

Even though there are many choices for B(ω) satisfying the given conditions, any spe-
cific B(ω) is restricted by the requirement that the product of spectra of two optimal
functions must be the spectrum of another optimal function. Since, in the spatial do-
main, the product corresponds to the convolution of optimal functions, the set of opti-
mal functions will be invariant under convolution. This requirement on B(ω) is termed
as the convolution-invariance condition. In order to satisfy this condition, the following
equation is to be solved:

B(ω)=GK (ω), (2.18)

where G(ω) is the optimal function. Under this condition, Doroslovački [10] proves the
following.

Proposition 2.2. The relations (2.16) and (2.18) are jointly satisfied for all finite-energy
absolutely continuous functions F(ω), only (a) in the continuous-time case B(ω) = 1, and
(b) in the discrete-time case B(ω)= cos(ω/2).

Using the above proposition, the following uncertainty relations are obtained for the
continuous-time and discrete-time signals.
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Table 2.1. Comparison of spatial and spectral widths.

Continuous Discrete Continuous Discrete
Gabor’s Doroslovački’s Proposed Gabor’s Doroslovački’s Proposed

Def. Def. Def. Def. Def. Def.

no. Function
Spatial Spatial Spatial Spectral Spectral Spectral
width width width width width width

1 sinc ∞ Not applicable ∞ 0.33333 Not applicable 0.33333

2 Triangle 0.74288 0.81777 0.76015 0.40020 0.07950 0.39831

3 Halfcos 2.46585 0.07961 2.47144 0.13076 0.05068 0.13069

Uncertainty inequality—continuous version:

{
1
Ef

∫∞
−∞

x2
∣∣ f (x)

∣∣2
dx
}{

1
2πE f

∫∞
−∞

ω2
∣∣F(ω)

∣∣2
dω
}
≥ 1

4
. (2.19)

Uncertainty inequality—discrete version:

{
1

2πE f

∫ π

−π

∣∣∣∣
[

cos
(
ω

2

)
F(ω)

]′∣∣∣∣
2

dω

}{
1

2πE f

∫ π

−π
4sin2

(
ω

2

)∣∣F(ω)
∣∣2

dω
}
≥ 1

4
.

(2.20)
See [10] for the proofs.

Remarks. (i) The choice of B(ω) based on the convolution-invariance condition does not
seem to be clear.

(ii) It is also not clear why the convolution-invariance property of the optimal func-
tions is chosen while the optimal function in the continuous-space case (Gaussian) has
other properties as well.

(iii) In Table 2.1, numerical values of effective widths computed for various bandlim-
ited functions, using the definitions given in (2.14) and (2.15), have been given. It is
found that the uncertainty inequalities for the continuous- and discrete-space cases are
inconsistent in the sense described in the last sentence of Section 1, item (1).

(iv) The restriction on the spectra of the continuous and discrete functions is that they
should be absolutely continuous. However, the sinc-function (sin(πx)/πx) has a discon-
tinuous spectrum, while the discrete δ[n] has a continuous spectrum. Therefore, in this
case, it appears that Doroslovački’s definitions cannot be applied.

To summarize some of the relevant results of the literature, the uncertainty inequality,
as found in the continuous domain, can be extended to the discrete domain only after
modifying the definitions of spread (in the time and frequency domains). Motivated by
such a limitation of some of the results of the literature, we present, in the next section,
a new approach, for bandlimited signals, in which we modify the interpolating function
used in the sampling theorem, and reformulate the standard uncertainty inequality in
terms of the samples.
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3. Proposed approach

Let { f [n]}n∈Z denote the samples obtained by sampling uniformly a bandlimited signal
f (x) with the sampling interval X . Also, let the Fourier transform F(ω) of the signal
satisfy the condition

F(ω)= 0, ∀|ω| ≥ σ. (3.1)

Assuming that the sampling interval X satisfies the condition X < π/σ , the original signal
f (x) can be reconstructed from its samples using the standard interpolation formula

f (x)=
∑
n∈Z

f (nX)g(x−nX), g(x)= sin((π/X)x)
(π/X)x

. (3.2)

When we try to express the Heisenberg inequality directly in terms of the samples of
a bandlimited signal, it is found that the standard interpolating sinc-function is inappro-
priate even though it does the job of interpolation perfectly. The difficulty in invoking the
same function to achieve our goal (of computing the space-bandwidth product directly
from the samples) arises from the nondifferentiability property of the spectrum (which
is the ideal lowpass filter) of the sinc-function. Note that differentiability of the spectrum
of the sinc-function is needed in expressing the effective spatial width of the signal. See
(3.10) for the expression related to the effective spatial width of the signal in terms of its
samples. The evaluation of the integral on the right-hand side of (3.10) leads to compu-
tation of the derivative of the spectrum of the sinc-function.

The main contribution of the paper is the refinement of the sinc-function in order to
compute the lower bound on the uncertainty of a bandlimited signal in terms of its dis-
crete samples. It should be noted here that we have not altered the sampling definition.
We have only modified the interpolating function, without affecting the reconstruction of
the original signal. In what follows, we first compute the effective spectral width of the
signal in terms of its samples, and then consider the problem of expressing its effective
spatial width by refining the sinc-function.

3.1. Refinement of the sinc-function. Without any loss of generality, we assume that the
signal has unit energy and is centered. The effective widths of the signal (continuous)
in the spatial and frequency domains are defined by (1.2) and (1.3). Since the signal is
bandlimited (σ < π/X), the lower and upper limits of the integrals in (1.3) can be replaced
by −π/X and π/X , respectively.

The discrete-space Fourier transform Fd(Ω) for the discrete samples { f [n]}n∈Z is de-
fined by (2.1). It can be shown that Fd(Ω) and F(ω) are related by

Fd(Ω)= 1
X
F(ω), ∀|ω| ≤ π

X
. (3.3)

Using the above relation, and substituting Ω= ωX in (1.3), we get

(
Δω
)2 = 1

2π

∫ π

−π

(
Ω

X

)2

X2
∣∣Fd(Ω)

∣∣2 dΩ
X

= 1
2πX

∫ π

−π
Ω2
∣∣Fd(Ω)

∣∣2
dΩ.

(3.4)
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Using (2.1), we can express |Fd(Ω)|2 in terms of the samples as

∣∣Fd(Ω)
∣∣2 =

( ∑
m∈Z

f [m]exp(− jΩm)

)(∑
n∈Z

f [n]exp(− jΩn)

)∗

=
∑
m∈Z

∑
n∈Z

f [m] f [n]exp
(
jΩ(m−n)

)
,

(3.5)

where the superscript ∗ denotes complex conjugate. Use (3.5) in (3.4) to get

(
Δω
)2 = 1

2πX

∫ π

−π
Ω2

∑
m∈Z

∑
n∈Z

f [m] f [n]exp
(
jΩ(m−n)

)
dΩ. (3.6)

Assuming that the double summation inside the integral of (3.6) converges uniformly for
all Ω, we rewrite (3.6) as

(
Δω
)2 = 1

2πX

∑
m∈Z

∑
n∈Z

f [m] f [n]
∫ π

−π
Ω2 exp

(
jΩ(m−n)

)
dΩ. (3.7)

It can be shown that the above expression for the effective spectral width of f (x) can
be expressed in terms of its samples:

(
Δω
)2 =

∫ π

−π

∣∣ωF(ω)
∣∣2

dω = 1
2πX

[
2π3

3

∑
n∈Z

f 2[n] +
∑
m∈Z

∑
n∈Z
m�=n

4π(−1)(m−n)

(m−n)2
f [m] f [n]

]
.

(3.8)
The effective spatial width of the signal is defined in (1.2) from which, by using (3.2)

in the general form (i.e., for a general interpolating function, g(x)), we get

(
Δx
)2 =

∫∞
−∞

(
x
∑
m∈Z

f (mX)g(x−mX)

)(
x
∑
n∈Z

f (nX)g(x−nX)

)
dx

=
∫∞
−∞

∑
m∈Z

∑
n∈Z

x f (mX)g(x−mX)x f (nX)g(x−nX)dx.

(3.9)

Interchanging the order of summation and integration (assuming uniform conver-
gence of the summation) in the above equation, we get

(
Δx
)2 =

∑
m∈Z

∑
n∈Z

∫∞
−∞

f (mX)xg(x−mX) f (nX)xg(x−nX)dx

=
∑
m∈Z

∑
n∈Z

f (mX) f (nX)
∫∞
−∞

xg(x−mX)xg(x−nX)dx.
(3.10)
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The integral (on the right-hand side of (3.10)) inside the summation can be evaluated
as follows. Let G(ω) denote the Fourier transform of g(x). The Fourier transform of (g −
nX) is given by G(ω)exp(− jωnX). If we employ, as it is done in the standard literature, the
sinc-function for g(x), the integral of (3.10) cannot be evaluated. Therefore, we impose
the following restrictions on G(ω).

(1) It must be real and differentiable in the interval (−σ − ε,σ + ε), where ε is a posi-
tive number (as small as possible) such that ε < π/X − σ . Note that this condition
on ε is mandatory for perfect reconstruction.

(2) G(σ)= X , G(σ + ε)= 0, G(−σ)= X , G(−σ − ε)= 0.
(3) dG(ω)/dω|σ = 0, dG(ω)/dω|−σ = 0.
(4) G(ω)= X , a constant in the interval (−σ ,σ).

We call the above four restrictions “smoothness conditions” on G. There are many ways of
selecting G(ω), one of which is the following function:

G(ω)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X

2

[
cos
(
π(ω+ σ)

ε

)
+ 1
]

, −σ − ε ≤ ω <−σ ,

X , −σ ≤ ω ≤ σ ,

X

2

[
cos
(
π(ω− σ)

ε

)
+ 1
]

, σ < ω ≤ σ + ε,

0, elsewhere.

(3.11)

See Figure 3.1 for a sketch of G(ω). With respect to this choice of the interpolating
function, we note the following.

(i) The signal is not modified by redefining the domain of the interpolating function.
The extension of the domain (of the interpolating function) has been done in
order to compute the integrals involving squares of xg(x−nX) as the integrand.

(ii) The modified interpolation function performs not only perfect reconstruction
but also facilitates computation of effective space width. Therefore, we compute
the effective space width of the original signal itself, and not of a modified signal.

(iii) The tapered cosine (Tukey) window [13], which is used in the design of FIR fil-
ters, also has a profile similar toG(ω) above. However, it is to be noted that we use
G(ω) for an entirely different purpose—that of reconstructing the bandlimited
signal from its samples.

And the other possible G function is as follows:

G(ω)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
(

1− 2
ε2

(ω+ σ)3− 3
ε2

(ω+ σ)2
)

, −σ − ε ≤ ω <−σ ,

X , −σ ≤ ω ≤ σ ,

X
(

1 +
2
ε3

(ω− σ)3− 3
ε2

(ω− σ)2
)

, σ < ω ≤ σ + ε,

0, elsewhere.

(3.12)



Y. V. Venkatesh et al. 11

G(ω)

−σ − ε −σ σ σ + ε

ω

Figure 3.1. A (rough) sketch of G(ω).

Since G(ω) is now differentiable, the Fourier transform H1(ω) of xg(x− nX) is given
by

H1(ω)= j
d

dω

[
G(ω)exp(− jωnX)

]

= j
dG(ω)

dω
exp(− jωnX) +nXG(ω)exp(− jωnX).

(3.13)

Similarly, H2(ω), the Fourier transform of xg(x−mX), is given by

H2(ω)= j
dG(ω)

dω
exp(− jωmX) +mXG(ω)exp(− jωmX). (3.14)

Using (3.13) and (3.14), the integral (3.10) can be rewritten as

∫∞
−∞

xg(x−mX)xg(x−nX)dx = 1
2π

∫∞
−∞

H1(ω)H∗
2 (ω)dω. (3.15)

The integrand on the right-hand side of (3.15) can be written as

H1(ω)H∗
2 (ω)

=
(
j(m−n)XG(ω)

dG(ω)
dω

+ (mX)(nX)
∣∣G(ω)

∣∣2
+
∣∣∣∣dG(ω)

dω

∣∣∣∣
2
)

exp
(
jω(m−n)X

)

I1 I2 I3.
(3.16)

Let the integrals involving the first, second, and third terms above be denoted by I1, I2, I3,
respectively. The first integral can be simplified (by using the method of integration by
parts) to

I1 = 1
2

∫ σ+ε

−σ−ε
j(m−n)X exp

(
jω(m−n)X

)
d
(∣∣G(ω)

∣∣2
)
. (3.17)
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Further simplification yields

I1 = 1
2
j(m−n)X

[∣∣G(ω)
∣∣2

exp
(
jω(m−n)X

)∣∣σ+ε
−σ−ε

−
∫ σ+ε

−σ−ε
j(m−n)X

∣∣G(ω)
∣∣2

exp
(
jω(m−n)X

)
dω
]
.

(3.18)

Since G(−σ − ε) and G(σ + ε) are zero, the first term of (3.18) vanishes. The second term
of (3.18) can be further reduced to obtain

I1 = 1
2

(m−n)2X2
∫ σ+ε

−σ−ε

∣∣G(ω)
∣∣2

exp
(
jω(m−n)X

)
dω. (3.19)

Combining I1 and I2, we get

I1 + I2 =
∫ σ+ε

−σ−ε

(
1
2

(m−n)2 +mn
)
X2
∣∣G(ω)

∣∣2
exp

(
jω(m−n)X

)
dω

=
(
m2 +n2

)
2

X2
∫ σ+ε

−σ−ε

∣∣G(ω)
∣∣2

exp
(
jω(m−n)X

)
dω.

(3.20)

The integral of (3.20) and I3 (both together constituting (3.15)) involve the evaluation of
integrals of the forms

A=
∫ σ+ε

−σ−ε

∣∣G(ω)
∣∣2

exp
(
jω(m−n)X

)
dω,

B =
∫ σ+ε

−σ−ε

∣∣∣∣dG(ω)
dω

∣∣∣∣
2

exp
(
jω(m−n)X

)
dω.

(3.21)

The left-hand side of (3.15) can be rewritten as

∫∞
−∞

xg(x−mX)xg(x−nX)dx = 1
2π

(
m2 +n2

2
X2A+B

)
, (3.22)

where A and B are as defined in (3.21).
From (3.11), the derivative of G(ω) is given by

dG(ω)
dω

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Xπ
2ε

sin
(
π(ω+ σ)

ε

)
, −σ − ε ≤ ω <−σ ,

−Xπ
2ε

sin
(
π(ω− σ)

ε

)
, σ < ω ≤ σ + ε,

0, elsewhere.

(3.23)
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The expression for A is given by

A= 2σX2δmn

+
X2(−1)(m−n)

2

(
ε

sin
(
(m−n)Xε

)
(m−n)Xε

+
sin
(
(m−n)Xε

)
2

[
2(m−n)X(

π/ε
)2− (m−n)2X2

])

+
X2(−1)(m−n)

2

⎛
⎜⎝ε sin

(
(m−n)Xε

)
(m−n)Xε

⎧⎪⎨
⎪⎩1− 1/2[

1− ((m−n)Xε/2π
)2
]
⎫⎪⎬
⎪⎭

⎞
⎟⎠ .

(3.24)

The expression for B is given by

B = 1
4ε

sin
(
(m−n)Xε

)
(m−n)Xε

X2π2(−1)(m−n)[
1− ((m−n)Xε/2π

)2
] . (3.25)

The effective spatial width of f (x) in terms of its samples is then given by

(
Δx
)2 = 1

2π

∑
m∈Z

∑
n∈Z

f (mX) f (nX)
(
m2 +n2

2
X2A+B

)
, (3.26)

where A and B are to be obtained from (3.24) and (3.25), respectively. The square of the
space-bandwidth product is then the product of the right-hand sides of (3.26) and (3.8)
which in combination with (1.5) give the following version of the Heisenberg inequality
of a bandlimited signal explicitly in terms of its samples:

(
Δω
)2(

Δx
)2 = 1

4π2X

[
2π3

3

∑
n∈Z

f 2[n] +
∑
m∈Z

∑
n∈Z
m�=n

4π(−1)(m−n)

(m−n)2
f [m] f [n]

]

×
[ ∑

m∈Z

∑
n∈Z

f [m] f [n]
(
m2 +n2

2
X2A+B

)]
≥ 1

4
.

(3.27)

3.2. General observations. We have dealt exclusively with the problem of expressing the
standard uncertainty inequality for a continuous-time bandlimited (BL) signal in terms
of its correctly sampled version. As explained in the introduction, the motivation for this
work arose from some apparent paradoxes in the literature on the uncertainty inequal-
ity for discrete sequences as applied to sampled BL signals. Moreover, most of the new
definitions of discrete uncertainty (in the literature) seem to be ad hoc.

For BL signals whose correct samples are given, there is one-to-one relationship be-
tween the discrete-time signal and the continuous version. That is, the standard uncer-
tainty inequality (1.5), see page 2, can be recast in terms of the correct samples of the
signal in the form (3.27) which is obtained by combining (3.8) with (3.26).

Interestingly, the discrete uncertainty inequality for BL signals has the following struc-
ture:

(
Δω
)2(

Δx
)2 �

(
f ′� f

)(
f ′� f

)≥ 1
4

, (3.28)
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where f is the infinite-dimensional vector of samples; prime denotes transpose; and �,
� are infinite-dimensional matrices. The diagonal elements of � are constant, and the
off-diagonal elements are proportional to (−1)(m−n)/(m−n)2 for m �= n. On the other
hand, the diagonal elements of � contain a constant term and a term proportional to
m2; and the off-diagonal elements contain a term proportional to (sinc(m−n)Xε) along
with another proportional to (m2 + n2) for m �= n. The contribution to the off-diagonal
elements of � from A and B, see (3.24) and (3.25), depends on ε, and it tends to 0 as the
number of terms tends to∞.

In this context, if we examine the definitions, in the literature, of discrete uncertainty
as applied to general sequences, it is found that none of them possess the structure corre-
sponding to matrices � and �. This is perhaps one of the reasons for their not reducing
to the standard uncertainty inequality as applied to sampled BL signals.

The above interpretation prompts casting of the uncertainty problem for general dis-
crete sequences f [n] for n= 0,1, . . . ,N − 1 as follows.

Problem of uncertainty in discrete signals. Assuming that

N−1∑
n=0

∣∣ f [n]
∣∣2 = 1, (3.29)

find the lower bound (if any) on

(
f ′� f

)(
f ′� f

)
, (3.30)

where the N-by-N matrices � and � have the following structure.
(1) The diagonal elements of � are 1, and the off-diagonal elements are proportional

to (−1)(m−n)/(m−n)2 for m �= n.
(2) The diagonal elements of � contain a constant term and a term proportional

to m2; and the off-diagonal elements contain a term proportional to (sinc(m−
n)Xε) (where ε is a parameter) along with another proportional to (m2 +n2) for
m �= n. The parameter ε facilitates generalization of the result to the samples of
continuous-time bandlimited signals.

Note that for perfect reconstruction of the bandlimited signal, ε can be any arbitrary
value in the interval (0,π/X − σ) (see the last sentence of Section 3.1, item (1)). In this
structure, the off-diagonal elements of � are to be the limit values (which in this case
would be zero) obtained from allowing ε→ 0. In addition, a necessary condition for fi-
nite spatial width is that F(±σ) = 0. Note that the discrete signal having finite samples
still corresponds to a BL signal. If the above, newly defined, discrete uncertainty is to be
applicabe to the samples of a general bandlimited signal, then N →∞. A comparison of
the result so obtained with the contents of the paper of Donoho and Huo [8] would be
quite enlightening.

It is also interesting to explore a possible relationship between the discrete uncertainty
(for samples of BL signals) and affine uncertainty [2] that has been defined for general
square integrable functions which cannot be sampled unless they are bandlimited. In the
latter case, it should be possible to relate the continuous affine uncertainty conditions (of
the type found in [2]) to those of discrete uncertainty.
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The choice of the (interpolating function) G does not affect the lower uncertainty
bound. The G actually chosen in the paper is merely one out of many interpolating
functions that ensure perfect reconstruction, while simultaneously having appropriate
smoothness properties. For analytical tractability, some forms of G seem to be more ad-
vantageous than the others, that is, the continuous version of the uncertainty inequality
can be easily expressed in terms of the (correct) samples of the BL function. The discrete
spreads computed perfectly match with the corresponding continuous ones irrespective
of the choice of G. Note that the standard sinc-function cannot be used in this operation
because its effective time- (or space-) spread is ∞ which is reflected in the nondifferen-
tiability of its transform.

Further, we do not (in this paper) examine the choice of an optimal G which can
theoretically be determined by solving the following problem.

Optimal interpolating function. Find a G function which obeys the smoothness and ban-
dlimitedness conditions on pages 9–10 such that the following product is minimized:

(∫∞
−∞

x2g2(x)dx
)(∫∞

−∞
ω2G2(ω)dx

)
, (3.31)

subject to the constraint that G is also an interpolating function.
A solution to this problem would give the G function with optimal localization prop-

erties. However, the discrete version of the uncertainty inequality is still (3.27). There
seems to be no need for invoking frame theory currently being used in the literature on
wavelet transforms.

A byproduct of our approach (to discrete signal uncertainty as applied to BL signals)
is that we can analyze the problem of lower uncertainty bound and the design of discrete-
time signals with minimum space-bandwidth product. This work will appear in another
paper. On the other hand, as explained above, we can formulate the problem of discrete
uncertainty in such a way that when applied to the sampled BL signals, the computed
value of the square of the space-bandwidth product, that is, the left-hand side of inequal-
ity (3.27), is the same as the left-hand side of (1.5) of the continuous version. Since G is
bandlimited, we can express its effective (spatial and spectral) spreads using its discrete
samples. Moreover, G is an interpolating function for reconstruction of the signal from
its discrete samples; and, as a consequence, G is not merely an analyzing atom like the
ones encountered in wavelet or Gabor representation of signals.

From yet another point of view, we can try to find the discrete signal by minimizing
uncertainty defined in an appropriate manner (different from what has been presented
above). We have also obtained some interesting results in this regard which will be pub-
lished separately.

In the next section, we compare the results obtained from an application of (3.27) with
those of the literature.

4. Computational results

We now present a few typical results of computation for synthetic, bandlimited signals.
The numbers computed are the SBPs obtained (a) theoretically from the original
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Figure 4.1. sinc-function.

0

0.2

0.4

0.6

0.8

1

1.2

M
ag

n
it

u
de

−3 −2 −1 0 1 2 3

Frequency

Figure 4.2. Spectrum of sinc-function.

continuous-space function; and, from the samples, by using (b) Doroslovački’s defini-
tion; and (c) our definitions.

Figures 4.1, 4.4, and 4.7 show some typical bandlimited continuous signals. The con-
tinuous Fourier spectrum of the above-mentioned signals is shown in Figures 4.2, 4.5,
and 4.8, respectively. These signals are sampled correctly based on the Shannon the-
orem. The sampled versions are shown in Figures 4.3, 4.6, and 4.9. The signals have
theoretical effective spatial and spectral widths (as computed by using (1.2) and (1.3))
given in columns 2 and 5, respectively, of Table 2.1. In the same table, we give, the effec-
tive widths as obtained from samples using our results, along with those obtained from
Doroslovački’s definition for the discrete signal. Table 4.1 contains the SBP as obtained
directly from (1.2) and (1.3) along with the SBP from the samples using our results.
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Figure 4.3. Samples of sinc-function.
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Figure 4.4. sinc-square function.

It is to be observed here that there is a discrepancy between the correct value of the
effective spatial and spectral widths (directly computed from (1.2) and (1.3) for the orig-
inal, bandlimited continuous signal) and the results of Doroslovački for the sampled ver-
sion of the same signal. In contrast with this, the proposed technique gives exactly (except
for numerical errors in digitization) the same effective spreads, and hence the same un-
certainty product when the samples of the signals are used. Note that the products are
greater than the lower limit 1/4 for normalized signals.

5. Optimal bandlimited signals

Here we present some experimental findings related to the second problem posed in the
introduction. Let � denote the set of all finite-(unit-) energy bandlimited functions. We
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Figure 4.5. Spectrum of sinc-square function.
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Figure 4.6. Samples of sinc-square function.

Table 4.1. Uncertainty product for various signals of unit energy.

Continuous Discrete
Gabor’s Def. Doroslovački’s Def. Proposed Def.

no. Function Uncertainty product Uncertainty product Uncertainty product
1 sinc ∞ Not applicable ∞
2 Triangle 0.29730 0.06501 0.30278
3 Halfcos 0.32245 0.00403 0.32302

provide an answer to a slightly modified question: how close can the uncertainty product
of functions belonging to � get to the lower bound obtained in (1.5)?
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Figure 4.7. Halfcos continuous function.
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Figure 4.8. Halfcos spectrum.

Using (1.2) and the properties of Fourier transform, it can be shown that the effec-
tive spatial width is finite only if |dF(ω)/dω| is square integrable. Therefore, for f ∈�,
we require that F(ω) have finite derivatives at ω =W and ω = −W (i.e., at bandlimit
points). We now provide a solution (to the above problem) based on a modification of
the Gaussian function. Let

F(ω)=Φ(ω)G(ω), (5.1)

where

Φ(ω)= C exp
(−ω2

2σ2

)
, (5.2)

where C is a positive constant, σ is the variance parameter, and G(ω) is defined in (3.11).
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Figure 4.9. Halfcos discrete function.

Table 5.1. Convergence of uncertainty product using cosine interpolation function with ε = 0.1 and
W = π.

no. σ Product
1 2.0 1.19870
2 1.8 0.74649
3 1.7 0.57802
4 1.5 0.36008
5 1.3 0.27172
6 1.0 0.25026
7 0.9 0.25002
8 0.8 0.25000
9 0.7 0.25000
10 0.5 0.25000

With this choice of the functions on the right-hand side of (5.1), F(ω) is a bandlim-
ited function, with (a) the bandlimit W + ε; (b) F(ω) = 0, for all |ω| =W + ε; and (c)
F(ω) differentiable everywhere. Tables 5.1 and 5.2 give the numerical values of SBP of
f for various values of σ . Note that there is a sequence of bandlimited functions whose
SBP approaches the lower bound in (1.5) for a given bandwidth W and ε. It should be
emphasized that these results are purely computational, and an analytical solution to the
problem under consideration seems to be unknown.

Remarks. (1) The equality in (1.5) is attained only by the Gaussian function, which is not
bandlimited. Therefore, any bandlimited function has an SBP strictly greater than 1/4.

(2) It is interesting to note that for any small value of ε > 0, there are bandlimited
functions (defined by (5.1)) whose SBP is very close to 1/4. Further, the SBP could as
well be 1/4, this phenomenon having been possibly caused by the finite precision of the
computer.
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Table 5.2. Convergence of uncertainty product using cosine interpolation function with ε = 0.01 and
W = π.

no. σ Product
1 2.0 10.42400
2 1.8 5.66300
3 1.7 3.86440
4 1.5 1.49740
5 1.3 0.50648
6 1.0 0.25349
7 0.9 0.25031
8 0.8 0.25001
9 0.7 0.25000
10 0.5 0.25000

6. Conclusions

We have described some of the existing definitions for the spatial and spectral spreads
for discrete signals, and showed that for bandlimited signals, they do not correspond
to the standard definitions of spatial and spectral widths in the continuous domain. A
new approach has been proposed to overcome this limitation and to express the original
Heisenberg inequality in terms of the samples of the bandlimited signal.

An unsolved problem is the determination of a bandlimited signal for which the SBP
(obtained by multiplying the effective widths defined by (1.2) and (1.3)) is minimal. A
possible approach to solve this problem is the representation of a general bandlimited
signal as linear combination of prolate spheroidal functions as a basis [15, pages 205–
215].
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