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Fractional centred differences and derivatives definitions are proposed, generalizing to
real orders the existing ones valid for even and odd positive integer orders. For each one,
suitable integral formulations are obtained. The computations of the involved integrals
lead to new generalizations of the Cauchy integral derivative. To compute this integral, a
special two-straight-line path was used. With this the referred integrals lead to the well-
known Riesz potential operators and their inverses that emerge as true fractional centred
derivatives, but that can be computed through summations similar to the well-known
Grünwald-Letnikov derivatives.
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1. Introduction

Fractional calculus has been emerging as a very interesting tool for an increasing num-
ber of scientific fields, namely, in the areas of electromagnetism, control engineering, and
signal processing. However, an interested scientist or engineer has to face the problem
created by the somewhat chaotic state of the art due to the existence of several definitions
that lead to different results: Riemann-Liouville, Caputo, Grünwald-Letnikov, Hadamard,
Marchaud, are some of the known definitions [9–11]. Motivated by signal processing ap-
plications, we should accept only the definitions that might lead to a fractional systems
theory coherent with the usual practice and accepted notions and concepts. For this goal
we have been proposing approaches for a coherent basis of the fractional calculus [5, 7–9].
Namely, in [5, 7, 8], we assumed as a starting point the definitions of forward and back-
ward fractional differences and their integral representations. From these representations
and using the asymptotic properties of the Gamma function, we obtained a generalized
Cauchy integral as a unified formulation for any order derivative. When computing the
Cauchy integral using the Hankel contour, we obtained a regularized integral, generaliz-
ing the well-known concept of pseudofunction, but without rejecting any infinite part.
The notions of forward and backward derivatives emerged as very special cases. Their
study for the case of functions with Laplace transforms led to defining causal and anti-
causal Liouville differintegrations [7].
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2 Riesz potentials via fractional centred derivatives

In the same line of thoughts we present here a similar procedure, but using centred
fractional differences as starting points.

We proceed according to the following steps.

(i) Introduce the general framework for the centred differences, considering two
cases that we will call type 1 and type 2. These are generalizations of the usual
centred differences for even and odd positive orders, respectively.

(ii) For those differences, integral representations will be presented.

(iii) These differences lead to Grünwald-Letnikov-like centred derivatives.

(iv) From the integral representations we obtain generalizations of the Cauchy deriv-
ative integral.

(v) If the integration is performed over a two-straight-line path that “closes” at in-
finity, those integrals lead to the Riesz potentials and inverses.

A very important feature of the theory lies in the bridge it establishes between the
Grünwald-Letnikov-like centred derivatives that are summation formulae and the Riesz
potentials and inverses.

We must refer that we will not address the existence problem. We are mainly interested
in obtaining a coherent formulation.

The paper outline is as follows. In Section 2 we revise the previously published the-
ory. In Section 3 we present the type 1 and type 2 centred differences and their integral
representations. Centred derivative definitions similar to Grünwald-Letnikov ones and
their integral representations obtained generalizing the Riesz potentials and inverses are
presented in Section 4. At last we present some conclusions.

Caution 1.1. In this paper, we deal with a multivalued expression zα frequently. Unless
explicitly stated we will choose the negative real half-axis as branch cut line and assume
that the obtained function is continuous above it. With this, we will write (−1)α = eiαπ .

2. Previous work

Let f (z) be a complex variable function and introduce the “forward” and “backward”
(we use these terms with meanings coherent with the signal processing usage: forward
means the use of the past and present values, while backward refers to the use of present
and future values) fractional order differences defined by

Δα
d f (z)=

∞∑

k=0

(−1)k
(
α

k

)
f (z− kh),

Δα
r f (z)= (−1)α

∞∑

k=0

(−1)k
(
α

k

)
f (z+ kh),

(2.1)

where
(
α
k

)
are the binomial coefficients. By simplicity, we assume α ∈ R and h ∈ R+.

From these two differences we introduce the corresponding “forward” and “backward”
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Figure 2.1. Integration paths and poles for the integral representation of fractional order differences.

Grünwald-Letnikov derivatives:

Dα
d f (z)= lim

h→0+

∑∞
k=0(−1)k

(
α
k

)
f (z− kh)

hα
,

Dα
r f (z)= lim

h→0+
(−1)α

∑∞
k=0(−1)k

(
α
k

)
f (z+ kh)

hα
.

(2.2)

It is interesting to remark that these definitions were proposed first by Liouville [2].
Assuming that f (z) is analytic inside and on an infinite integration path that encircles

the points t = z− kh in the forward case and t = z + kh in the corresponding backward
case, with k ∈ Z+

0 , it is possible to use the residue theorem to obtain integral representa-
tions for the differences [5, 8] (see Figure 2.1). However, with a translation we can obtain
simpler representations with poles at +kh and −kh, with k ∈ Z+

0 , respectively,

Δα
d f (z)= Γ(α+ 1)

2πih

∫

Cd

f (z+w)
Γ(w/h)

Γ(w/h+α+ 1)
dw,

Δα
r f (z)= (−1)α+1Γ(α+ 1)

2πih

∫

Cr

f (z+w)
Γ(−w/h)

Γ(−w/h+α+ 1)
dw.

(2.3)

For the computation of the limit as h goes to zero inside the above integrals we used
the asymptotic properties of the ratio of two gamma functions (see later) to obtain the
generalized Cauchy integral

Dα f (z)= Γ(α+ 1)
2πi

∫

C
f (z+w)

1
wα+1

dw, (2.4)

where C is any U-shaped contour that encircles the branch cut line of w−α−1 starting
at w = 0 and staying on the left or on the right depending on the derivative we want;
forward or backward. With the choice of the Hankel contour as a special integration path
we obtain a regularized derivative:

Dα f (z)= ei(π−θ)α

Γ(−α)

∫∞

0

[
f (x · eiθ + z)−∑N

0 ( f (n)(z)/n!)einθxn
]

xα+1
dx, (2.5)

where N is zero if α < 0 (in this case, the summation term should be removed) and is the
integer part of α if α > 0. If θ = π, we obtain the forward derivative that we call forward
and if θ = 0, we obtain the backward derivative. This regularized integral is obtained
without rejecting any infinite part as happens in the theory of Hadamard.
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If f (t) has (two-sided) Laplace transforms, the referred derivatives read, respectively,

Dα
d f (t)= 1

Γ(−α)

∫∞

0
f (t− τ) · τ−α−1dτ,

Dα
τ f (t)= (−1)−α

Γ(−α)

∫∞

0
f (t+ τ) · τ−α−1dτ.

(2.6)

These derivatives were introduced both exactly with this format by Liouville [2]. The
first is essentially a causal derivative while the second is anticausal. Both are suitable for
defining fractional linear systems [7, 10].

3. Centred differences and derivatives

3.1. Integer-order centred differences and derivatives. We introduce Δc as finite “cen-
tred” difference defined by [6]

Δc f (t)= f
(
t+

h

2

)
− f

(
t− h

2

)
. (3.1)

By repeated application, we have

ΔN
e f (z)=

N/2∑

k=−N/2
(−1)N/2−k

N !
(N/2 + k)!(N/2− k)!

f (t− kh) (3.2)

when N is even, and

ΔN
0 f (t)=

N/2∑

k=−N/2
(−1)N/2−k

N !
(N/2 + k)!(N/2− k)!

f (t− kh) (3.3)

ifN is odd and where
∑N/2

k=−N/2 means that the summation is done over half-integer values.
Using the Gamma function, we can rewrite the above formulae in the format stated as
follows.

Definition 3.1. Let N be a positive even integer. Define a centred difference by

ΔN
e f (t)= (−1)N/2

N/2∑

k=−N/2
(−1)k

Γ(N + 1)
Γ(N/2 + k+ 1)Γ(N/2− k+ 1)

f (t− kh). (3.4)

Definition 3.2. Let N be a positive odd integer. Define a centred difference by

ΔN
0 f (t)= (−1)(N+1)/2

(N+1)/2∑

k=−(N−1)/2

(−1)k

× Γ(N + 1)
Γ
(
(N + 1)/2− k+ 1

)
Γ
(
(N − 1)/2 + k+ 1

) f
(
t− kh+

h

2

)
.

(3.5)

With these definitions we are able to define the corresponding derivatives.
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Definition 3.3. Let N be a positive even integer. Define a centred derivative by

DN
e f (t)= lim

h→0

ΔN
e f (t)
hN

= lim
h→0

(−1)N/2

hN

N/2∑

k=−N/2
(−1)k

Γ(N + 1)
Γ(N/2 + k+ 1)Γ(N/2− k+ 1)

f (t− kh).

(3.6)

Definition 3.4. Let N be a positive odd integer. Define a centred derivative by

DN
0 f (t)= lim

h→0

ΔN
0 f (t)
hN

= lim
h→0

(−1)(N+1)/2

hN

(N+1)/2∑

k=−(N−1)/2

(−1)k

× Γ(N + 1)
Γ
(
(N + 1)/2− k+ 1

)
Γ
(
(N − 1)/2 + k+ 1

) f
(
t− kh+

h

2

)
.

(3.7)

Both derivatives (3.6) and (3.7) coincide with the usual derivative.

3.2. Fractional-order centred differences. Here we follow the steps of the previous sec-
tion and introduce two types of fractional centred differences. Let α > −1, h ∈ R+, and
f (t) a complex variable function.

Definition 3.5. Define a type 1 fractional difference by

Δα
c1
f (t)=

+∞∑

−∞

(−1)kΓ(α+ 1)
Γ(α/2− k+ 1)Γ(α/2 + k+ 1)

f (t− kh). (3.8)

Let α= 2M, M ∈ Z+, in the first. Obtain

Δ2M
c1

f (t)=
+M∑

−M

(−1)k(2M)!
(M− k)!(M + k)!

f (t− kh), (3.9)

that, aside a factor (−1)M , it is the above 2M order centred difference.

Definition 3.6. Define a type 2 fractional difference by

Δα
c2
f (t)=

+∞∑

−∞

(−1)kΓ(α+ 1)
Γ
[
(α+ 1)/2− k+ 1

]
Γ
[
(α− 1)/2 + k+ 1

] f
(
t− kh+

h

2

)
. (3.10)

Similarly, if α is odd (α= 2M + 1), it is, aside the factor (−1)M+1, equal to current centred
difference. In fact,

Δ2M+1
c2

f (t)=
M+1∑

−M

(−1)k(2M + 1)!
(M + 1− k)!(M + k)!

f
(
t− kh+

h

2

)
. (3.11)

In particular, with M = 0, obtain

Δ1
c2
f (t)= f

(
t+

h

2

)
− f

(
t− h

2

)
. (3.12)



6 Riesz potentials via fractional centred derivatives

� � � � � � � � � � � ��Nh �3h �2h �h 0 h 2h 3h Nh

C

Figure 3.1. Integration path and poles for the integral representation of type 1 differences.

With the following relation [1]:

+∞∑

−∞

1
Γ(a− k+ 1)Γ(b− k+ 1)Γ(c+ k+ 1)Γ(d+ k+ 1)

= Γ(a+ b+ c+d+ 1)
Γ(a+ c+ 1)Γ(b+ c+ 1)Γ(a+d+ 1)Γ(b+d+ 1)

(3.13)

valid for a+ b+ c+d >−1, it is not very hard to show that

Δ
β
c1

{
Δα
c1
f (t)

}= Δ
α+β
c1 f (t),

Δ
β
c2

{
Δα
c2
f (t)

}=−Δα+β
c1 f (t),

(3.14)

while

Δ
β
c2

{
Δα
c1
f (t)

}= Δ
α+β
c2 f (t), (3.15)

provided that α+β >−1. In particular, α+β = 0, and the relations (3.14) show that when
|α| < 1 and |β| < 1, the inverse differences exist and can be obtained by using formulae
(3.8) and (3.10). We must remark that the zero-order difference is the identity operator
and is obtained from (3.8). It is interesting to remark that the combination of equal types
of differences gives a type 1 difference, while the combination of different types gives a
type 2 difference. When comparing these differences with (3.2) and (3.3), we see that a
power of −1 was removed. In a latter section we will understand why.

3.3. Integral representations for the fractional centred differences. Let us assume that
f (z) is analytic in a region of the complex plane that includes the real axis. Assume that
α is not an integer. To obtain the integral representations for the previous differences we
follow here the procedure used in [5–8]. It can be easily verified that

Δα
c1
f (t)= Γ(α+ 1)

2πih

∫

C
f (z+w)

Γ(−w/h+ 1)Γ(w/h)
Γ(−w/h+α/2 + 1

)
Γ
(
w/h+α/2 + 1

)dw. (3.16)

The integrand function has infinite poles at every nh, with n ∈ Z. The integration path
must consist of infinite lines above and below the real axis closing at the infinite. The
easiest situation is obtained by considering two-straight-lines near the real axis, one above
and the other below (see Figure 3.1). Performing the computation of the integral in (3.16)
using the residue theorem, we recover (3.8).
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Figure 3.2. Integration path and poles for the integral representation of type 2 differences.

Regarding the second case, the poles are located now at the half-integer multiples of h
(see Figure 3.2), which leads to

Δα
c2
f (t)= Γ(α+ 1)

2πih

∫

CC

f (z+w)
Γ
(−w/h+ 1/2

)
Γ
(
w/h+ 1/2

)

Γ
(−w/h+α/2 + 1

)
Γ
(
w/h+α/2 + 1

)dw. (3.17)

These integral formulations will be used in the following section to obtain the integral
formulae for the centred derivatives.

4. Fractional centred derivatives

4.1. Definitions. To obtain fractional centred derivatives (Grünwald-Letnikov like) we
proceed as usual [7, 10, 11]: divide the fractional differences by hα (h∈R+) and let h→ 0.

Definition 4.1. For the first case, and assuming again that α >−1, define the type 1 frac-
tional centred derivative:

Dα
c1
f (t)= lim

h→0

Δα
c1
f (t)

hα
= lim

h→0

Γ(α+ 1)
hα

+∞∑

−∞

(−1)k

Γ(α/2− k+ 1)Γ(α/2 + k+ 1)
f (t− kh). (4.1)

Definition 4.2. For the second case, define the type 2 fractional centred derivative given
by

Dα
c2
f (t)= lim

h→0

Δα
c2
f (t)

hα

= lim
h→0

Γ(α+ 1)
hα

+∞∑

−∞

(−1)k

Γ
[
(α+ 1)/2− k+ 1

]
Γ
[
(α− 1)/2 + k+ 1

] f
(
t− kh+

h

2

)
.

(4.2)

Formulae (4.1) and (4.2) generalize the positive-integer-order centred derivatives to
the fractional case, although there should be an extra factor (−1)α/2 in the first case and
(−1)(α+1)/2 in the second case that we removed. It is a simple task to obtain the derivative
analogues to (3.14) and (3.15). In fact we have

D
β
c1

{
Dα

c1
f (t)

}=D
α+β
c1 f (t),

D
β
c2

{
Dα

c2
f (t)

}=−Dα+β
c1 f (t),

(4.3)
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while

D
β
c2

{
Dα

c1
f (t)

}=D
α+β
c2 f (t) (4.4)

again with α+β >−1.

4.2. Integral formulae. To obtain the integral formulae for the derivatives, we must sub-
stitute the integral formulae (3.16) and (3.17) into (4.1) and (4.2), respectively, and per-
mute there the limit and integral operations. With this permutation we must compute
the limit of two quotients of Gamma functions. As it is well known, the quotient of two
gamma functions Γ(s+ a)/Γ(s+ b) has an interesting expansion [3, 11]:

Γ(s+ a)
Γ(s+ b)

= sa−b
[

1 +
N∑

1

cks
−k +O

(
s−N−1)

]
(4.5)

as |s| →∞, uniformly in every sector that excludes the negative real half-axis. When h is
very small,

Γ(w/h+ a)
Γ(w/h+ b)

≈
(
w

h

)a−b[
1 +h ·φ

(
w

h

)]
, (4.6)

where ϕ is regular near the origin. According to the above statement, the branch cut line
used to define a function on the right-hand side of (4.6) is the negative real half axis.
Similarly, we have

Γ(−w/h+ a)
Γ(−w/h+ b)

≈
(
− w

h

)a−b[
1 +h ·φ

(
− w

h

)]
, (4.7)

but now, the branch cut line is the positive real axis. With these results, we obtain the
following.

Theorem 4.3. In the above conditions, the integral formulation for type 1 derivative is

Dα
c1
f (t)= Γ(α+ 1)

2πi

∫

Cc

f (z+w)
1

(w)α/2+1
1 (−w)α/2r

dw, (4.8)

while for type 2 derivative, it is

Dα
c2
f (t)= Γ(α+ 1)

2πi

∫

Cc

f (z+w)
1

(w)(α+1)/2
1 (−w)(α+1)/2

r

dw. (4.9)

The subscripts “l” and “r” mean, respectively, that the power functions have the left and
right half real axis as branch cut lines. These integrals represent again generalizations of the
Cauchy derivative.

Now, we are going to compute the above integrals for the special case of straight line
paths. Let us assume that the distance between the horizontal straight lines in Figures 2.1
and 3.1 is 2ε(h) that decreases to zero with h. In Figure 4.1 we show the different segments
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Figure 4.1. Segments for the computation of the integrals in (4.8) and (4.9).

used for the computation of the above integrals. If we assume that the two-straight-lines
are infinitely near, we have for type 1 derivative

∫

1
=−Γ(α+ 1)

2πi

∫∞

0
f (z− x)

1
xα+1e−iαπ/2e−iπ

e−iπdx,

∫

2
= Γ(α+ 1)

2πi

∫∞

0
f (z+ x)

1
xα+1eiαπ/2

dx,

∫

3
=−Γ(α+ 1)e−iαπ/2

2πi

∫∞

0
f (z+ x)

1
xα+1e−iαπ/2

dx,

∫

4
= Γ(α+ 1)

2πi

∫∞

0
f (z− x)

1
xα+1eiαπ/2eiπ

eiπdx,

(4.10)

where the integer refers the straight-line segment used in the computation. Joining the
four integrals, we obtain

Dα
c1
f (t)=−Γ(α+1)sin(απ/2)

π

∫∞

0
f (z− x)

1
xα+1

dx

− Γ(α+ 1)sin(απ/2)
π

∫∞

0
f (z+ x)

1
xα + 1

dx

(4.11)

or

Dα
c1
f (t)=−Γ(α+ 1)sin(απ/2)

π

∫∞

−∞
f (z− x)

1
|x|α+1

dx. (4.12)

As α is not an odd integer that we obtain and using the reflection formula of the gamma
function, we obtain

Dα
c1
f (t)= 1

2Γ(−α)cos(απ/2)

∫∞

−∞
f (z− x)

1
|x|α+1

dx. (4.13)

When−1 < α < 0, it is the so-called Riesz potential [11]; for 0 < α < 1, it is the correspond-
ing inverse operator. For type 2 case, we compute again the integrals corresponding to the
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four segments to obtain
∫

1
=−Γ(α+ 1)

2πi

∫∞

0
f (z− x)

1
xα+1e−i(α+1)π/2

e−iπdx,

∫

2
= Γ(α+ 1)

2πi

∫∞

0
f (z+ x)

1
xα+1ei(α+1)π/2

dx,

∫

3
=−Γ(α+ 1)e−iαπ/2

2πi

∫∞

0
f (z+ x)

1
xα+1e−i(α+1)π/2

dx,

∫

4
= Γ(α+ 1)

2πi

∫∞

0
f (z− x)

1
xα+1ei(α+1)π/2

eiπdx.

(4.14)

Joining the four integrals, we obtain

Dα
c2
f (t)= Γ(α+ 1)sin

[
(α+ 1)π/2

]

π

∫∞

0
f (z− x)

1
xα+1

dx

− Γ(α+ 1)sin
[
(α+ 1)π/2

]

π

∫∞

0
f (z+ x)

1
xα+1

dx.

(4.15)

As the last integral can be rewritten as

∫∞

0
f (z+ x)

1
xα+1

dx =
∫ 0

−∞
f (z− x)

1
(−x)α+1

dx, (4.16)

we obtain

D∞c2
f (t)=− 1

2Γ(−α)sin(απ/2)

∫∞

−∞
f (z− x)

sgn(x)
|x|α+1

dx (4.17)

that is the modified Riesz potential [11] when −1 < α < 0; when 0 < α < 1, it is the corre-
sponding inverse operator. Both potentials (4.13) and (4.17) were studied also by
Okikiolu [4]. These are essentially convolutions of a given function with two acausal (nei-
ther causal nor anticausal) operators.

Letting F(ω) be the Fourier transform of f (t) and as the Fourier transform of (1/
2Γ(−α)cos(απ/2))|t|−α−1 is given by |ω|α [4], we conclude that

F
[
Dα

c1
f (t)

]= |ω|αF(ω). (4.18)

Similarly, as the Fourier transform of (−sgn(t)/(α+1)2Γ(−α−1)cos[(α+1)π/2])|t|−α−1 is
given by −i|ω|α sgn(ω) [4], we conclude that

F
[
Dα

c2
f (t)

]=−i|ω|α sgn(ω)F(ω). (4.19)

It is interesting to use type 1 derivative with α= 2M + 1 and the type 2 with α= 2M. For
the first, α/2 is not integer and we can use formula (4.13). However, cos(απ/2) is zero. We
solve the problem by noting that

1
2Γ(−α)cos(απ/2)

=−Γ(α+ 1) · sin(απ)
2π cos(απ/2)

=−Γ(α+ 1)sin(απ/2)
π

(4.20)
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assuming the value −(2M + 1)!(−1)M/π. Relatively to the second case, α = 2M, we can
use formula (4.17), provided that we use the relation

− 1
2Γ(−α)sin(απ/2)

= Γ(α+ 1) · sin(απ)
2π sin(απ/2)

= Γ(α+ 1)cos(απ/2)
π

(4.21)

that assumes the value (2M)!(−1)M/π.

4.3. Some computational issues. In practical applications, we may need to compute a
centred derivative of a function for which a closed form is not available and we are obliged
to truncate the summation or the integral. This leads to an error. We can obtain a bound
for such error, by considering a bounded function—| f (t)| <M—known inside an inter-
val that we will assume to be symmetric relatively to the origin, [−L;L], only by simplicity.
We are going to consider type 1 case. The other is similar. From (4.13), we conclude that
the error is bounded

E <
M∣∣Γ(−α)cos(απ/2)

∣∣

∫∞

L

1
xα+1

dx = ML−α∣∣Γ(−α)cos(απ/2)
∣∣ =

∣∣Γ(α+ 1)
∣∣

π
ML−∞.

(4.22)

This result is similar to the one obtained in [10] in connection with the there-called
“short-memory” principle. A similar result can be obtained for the summation in (4.1).
However, here we have an error bound that is function of h. From the properties of the
gamma functions, we obtain easily

(−1)k

Γ(α/2− k+ 1)
=− sin(απ/2)

π
Γ(−α/2 + k),

(−1)k

Γ(α/2− k+ 1)Γ(α/2 + k+ 1)
=− sin(απ/2)Γ

(−α/2 + |k|)
πΓ
(
α/2 + |k|+ 1

) .

(4.23)

When |k| is high enough, we can use (4.5) again to obtain

∣∣∣∣
(−1)k

Γ(α/2− k+ 1)Γ(α/2 + k+ 1)

∣∣∣∣∼

1
π
|k|−α−1. (4.24)

This leads to an error:

E(h)∼
∣∣Γ(α+ 1)

∣∣

π

+∞∑

L+1

∣∣∣∣
k

h

∣∣∣∣
−α−1

h (4.25)

and leads to (4.22) again.

5. Conclusions

We made a brief introduction to a framework based on the forward and backward frac-
tional differences for defining fractional forward and backward derivative. A similar
framework for defining the fractional centred differences was proposed. We considered
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two cases that are generalizations of the usual centred differences. These new differences
led to centred derivatives similar to the usual Grüwald-Letnikov ones. For those differ-
ences, we proposed integral representations from where we obtained the derivative inte-
grals, similar to Cauchy, by using the properties of the Gamma function. The computa-
tion of those integrals led to generalizations of the Riesz potentials operators and their
inverses. The most interesting feature lies in the summation formulae for the Riesz po-
tentials and inverses.
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