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We study the simultaneous approximation properties of the well-known Phillips opera-
tors. We establish the rate of convergence of the Phillips operators in simultaneous ap-
proximation by means of the decomposition technique for functions of bounded varia-
tion.
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1. Introduction

Phillips operators (see, e.g., [5]) are defined as

Pn( f ,x)= n
∞∑

k=1

pn,k(x)
∫∞

0
pn,k−1(t) f (t)dt+ e−nx f (0), n∈N , x ∈ [0,∞), (1.1)

where

pn,k(x)= e−nx
(nx)k

k!
. (1.2)

May [4] estimated some direct and inverse results for certain combinations of these
operators. Very recently Finta and Gupta [1] studied some direct and inverse results for
the second-order Ditzian-Totik modulus of smoothness. The rates of convergence in or-
dinary approximation for function of bounded variation for these operators and similar
types of operators were estimated in [2, 3, 7]. Very recently Srivastava and Gupta [6] pro-
posed a general family of linear positive operators, which include the Phillips operators as
special case, but they have estimated the rate of convergence in ordinary approximation.
In the present paper we investigate and estimate the rate of convergence of the Phillips
operators in simultaneous approximation by means of the decomposition technique for
functions of bounded variation.
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2. Auxiliary results

In this section we give the following lemmas, which will be needed to prove our main
result, given in Section 3.

Lemma 2.1. For all x ∈ (0,∞) and k ∈N ∪{0},

pn,k(x)≤ 1√
2enx

, (2.1)

where the constant 1/
√

2e and the estimation order n−1/2 (for n→∞) are the best possible.

Proof. Following [8], we have

pn,k(x)≤ H( j)√
nx

, k ≥ j, (2.2)

where H( j)= ( j + 1/2) j+1/2e−( j+1/2)/ j!.
Since max j≥0H( j)=H(0)= 1/

√
2e, it follows that

pn,k(x)≤ 1√
2enx

for each integer k ≥ 0, (2.3)

and Lemma 2.1 is thus proved. �

Remark 2.2. The above lemma can be utilized to give better estimate over the main results
of [2, 3, 6].

Lemma 2.3. If f ∈ L1[0,∞), f (r−1) ∈ A ·C·loc, r ∈N , and f (r) ∈ L1[0,∞), then

P(r)
n ( f ,x)= n

∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t) f (r)(t)dt. (2.4)

Proof. First by the definition,

P(1)
n ( f ,x)= n

∞∑

k=1

p(1)
n,k(x)

∫∞

0
pn,k−1(t) f (t)dt−n.e−nx f (0). (2.5)

Using the identity p(1)
n,k(x)= n[pn,k−1(x)− pn,k(x)], k ≥ 1, we have

P(1)
n ( f ,x)= n

∞∑

k=1

n
[
pn,k−1(x)− pn,k(x)

]∫∞

0
pn,k−1(t) f (t)dt−n · e−nx f (0)

= n2pn,0(x)
∫∞

0
pn,0(t) f (t)dt−ne−nx f (0)

+n2
∞∑

k=1

pn,k(x)
∫∞

0

[
pn,k(t)− pn,k−1(t)

]
f (t)dt

= n2e−nx
∫∞

0
e−nt f (t)dt+n2

∞∑

k=1

pn,k(x)
∫∞

0

−1
n

p(1)
n,k(t) f (t)dt−ne−nx f (0)
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= n2e−nx
[
f (t)

e−nt

−n
∣∣∣∣
∞

0
−
∫∞

0
f (1)(t)

e−nt

−n dt
]

−n
∞∑

k=1

pn,k(x)
[
f (t)pn,k(t)

∣∣∣∣
∞

0
−
∫∞

0
pn,k(t) f (1)(t)dt

]
−ne−nx f (0)

= ne−nx
∫∞

0
e−nt f (1)(t)dt+n

∞∑

k=1

pn,k(x)
∫∞

0
pn,k(t) f (1)(t)dt

= n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k(t) f (1)(t)dt.

(2.6)

Thus the result is true for r = 1. We prove the result by induction hypothesis, and for this
we suppose it is true for r = i. Then

P(i)
n ( f ,x)= n

∞∑

k=0

pn,k(x)
∫∞

0
pn,k+i−1(t) f (i)(t)dt. (2.7)

Again using the identity p(1)
n,k(x)= n[pn,k−1(x)− pn,k(x)], k ≥ 1, it follows that

P(i+1)
n ( f ,x)= n

∞∑

k=0

n
[
pn,k−1(x)− pn,k(x)

]∫∞

0
pn,k+i−1(t) f (i)(t)dt

+n
(−ne−nx

)∫∞

0
pn,i−1(t) f (i)(t)dt

= n2pn,0(x)
∫∞

0
pn,i(t) f (i)(t)dt−n2pn,0(x)

∫∞

0
pn,i−1(t) f (i)(t)dt

+n2
∞∑

k=1

pn,k(x)
∫∞

0

[
pn,k+i(t)− pn,k+i−1(t)

]
f (i)(t)dt

= n2pn,0(x)
∫∞

0

(−p(1)
n,i (t)

n

)
f (i)(t)dt+n2

∞∑

k=1

pn,k(x)
∫∞

0

(−p(1)
n,k+i(t)

n

)
f (i)(t)dt.

(2.8)

Integrating by parts, we obtain

P(i+1)
n ( f ,x)= n

∞∑

k=0

pn,k(x)
∫∞

0
pn,k+i(t) f (i+1)(t)dt, (2.9)

which was proved and this completes the proof of Lemma 2.3. �

Lemma 2.4. For m∈N ∪{0}, r ∈N , if the mth-order moment is defined by

μr,n,m(x)= n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)(t− x)mdt, (2.10)
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then

μr,n,0(x)= 1, μr,n,1(x)= r

n
, μr,n,2(x)= 2nx+ r(1 + r)

n2
. (2.11)

Also, there holds the following recurrence relation:

nμr,n,m+1(x)= x
[
μ(1)
r,n,m(x) + 2mμr,n,m−1(x)

]
+ (m+ r)μr,n,m(x). (2.12)

Consequently, by the recurrence relation, for all x ∈ [0,∞),

μr,n,m(x)=O
(
n−[(m+1)/2]

)
. (2.13)

Proof. Using the identity xp′n,k(x)= (k−nx)pn,k(x), we have

xμ(1)
r,n,m(x)= n

∞∑

k=0

xp′n,k(x)
∫∞

0
pn,k+r−1(t)(t− x)mdt−mxμr,n,m−1(x). (2.14)

Thus

x
[
μ(1)
r,n,m(x) +mμr,n,m−1(x)

]

= n
∞∑

k=0

pn,k(x)
∫∞

0

[{
(k+ r− 1)−nt

}
+n(t− x) + 1− r

]
pn,k+r−1(t)(t− x)mdt

= n
∞∑

k=0

pn,k(x)
∫∞

0
tp′n,k+r−1(t)(t− x)mdt+nμr,n,m+1(x) + (1− r)μr,n,m(x)

= n
∞∑

k=0

pn,k(x)
∫∞

0
p′n,k+r−1(t)(t− x)m+1dt

+nx
∞∑

k=0

pn,k(x)
∫∞

0
p′n,k+r−1(t)(t− x)mdt+nμr,n,m+1(x) + (1− r)μr,n,m(x).

(2.15)

Integrating by parts, we get the required recurrence relation. The other consequences
easily follow from the recurrence relation. �

Remark 2.5. In particular by Lemma 2.4, for given any number λ > 2 and 0 < x <∞, we
get for n≥ 2,

μr,n,2(x)≤ λx

n
. (2.16)

Remark 2.6. We can observe from Lemmas 2.3 and 2.4 that for r = 0, the summation over
k starts from 1. For r = 0, Lemma 2.4 may be defined as in [6, Lemma 2], with c = 0.
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Lemma 2.7. Suppose x ∈ (0,∞), r ∈N , and Kr,n(x, t)= n
∑∞

k=0 pn,k(x)pn,k+r−1(t). Then for
λ > 2 and for n≥ 2, there hold

∫ y

0
Kr,n(x, t)dt ≤ λx

n(x− y)2
, 0≤ y < x, (2.17)

∫∞

z
Kr,n(x, t)dt ≤ λx

n(z− x)2
, x < z <∞. (2.18)

Proof. We first prove (2.17) as follows:

∫ y

0
Kr,n(x, t)dt ≤

∫ y

0

(x− t)2

(x− y)2
Kr,n(x, t)dt

≤ 1
(x− y)2

Pn
(
(t− x)2,x

)≤ μr,n,2(x)
(x− y)2

≤ λx

n(x− y)2

(2.19)

by using (2.16). The proof of (2.18) follows along similar lines. �

3. Rate of convergence

We denote the class Br,α by Br,α = { f : f (r−1) ∈ C[0,∞), f (r)
± (x) exist everywhere and are

bounded on every finite subinterval of [0,∞) and f (r)
± =O(eαt)(t→∞), for some α > 0},

r = 1,2, . . . . By f (0)
± (x) we mean f (x±).

Now we are ready to prove and state our main theorem.

Theorem 3.1. Let f ∈Br,α, r=1,2, . . . , α > 0. Then for every x∈(0,∞) and n≥max{2,4α},
∣∣∣∣P(r)

n ( f ,x)− 1
2

{
f (r)
+ (x) + f (r)

− (x)
}∣∣∣∣

≤ |2r− 1|√
8enx

·
∣∣∣ f (r)

+ (x)− f (r)
− (x)

∣∣∣+
x+ 2λ
nx

n∑

k=1

Vx+x/
√
k

x−x/√k
(
gr,x
)

+ (nx)−1/2(λ2r
)1/2

e2αx,

(3.1)

where gr,x is the auxiliary function defined by

gr,x(t)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (r)(t)− f (r)
− (x), 0≤ t < x,

0, t = x,

f (r)(t)− f (r)
+ (x), x < t <∞,

(3.2)

and Vb
a (gr,x(t)) is the total variation of gr,x(t) on [a, b]. In particular g0,x(t)≡ gx(t) as de-

fined in [3].
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Proof. Clearly

∣∣∣∣P(r)
n ( f ,x)− 1

2

{
f (r)
+ (x) + f (r)

− (x)
}∣∣∣∣

≤
∣∣∣P(r)

n

(
gr,x(t),x

)∣∣∣+
1
2

∣∣∣ f (r)
+ (x)− f (r)

− (x)
∣∣∣ ·
∣∣∣P(r)

n

(
sign(t− x),x

)∣∣∣.

(3.3)

In order to prove the result we need the estimates for P(r)
n (gr,x,x) and P(r)

n (sign(t− x),x).

We first estimate P(r)
n (sign(t− x),x) as follows:

P(r)
n

(
sign(t− x),x

)=
∫∞

x
Kr,n(x, t)dt−

∫ x

0
Kr,n(x, t)dt

=Ar,n(x)−Br,n(x), say.

(3.4)

It is easily verified that Ar,n(x) +Br,n(x)= 1. Thus P(r)
n (sign(t− x),x)= 1− 2Ar,n(x).

Using the fact that
∑k+r−1

j=0 pn, j(x)= n
∫∞
x pn,k+r−1(t)dt, we get

Ar,n(x)= n
∞∑

k=0

pn,k(x)
∫∞

x
pn,k+r−1(t)dt =

∞∑

k=0

pn,k(x)
k+r−1∑

j=0

pn, j(x)

=
∞∑

k=0

pn,k(x)

( k∑

j=0

pn, j(x) +
k+r−1∑

j=k+1

pn, j(x)

)

≤
∞∑

k=0

pn,k(x)
k∑

j=0

pn, j(x) +
r− 1√
2enx

.

(3.5)

Proceeding along similar lines as in [3], we get

∣∣Ar,n(x)−Br,n(x)
∣∣= ∣∣2Ar,n(x)− 1

∣∣≤ |2r− 1|√
2enx

. (3.6)

Next we estimate P(r)
n (gr,x,x), and for this, note that by Lebesgue-Stieltjes integral repre-

sentation, we have

P(r)
n

(
gr,x,x

)=
∫∞

0
gr,x(t)Kr,n(x, t)dt =

(∫

I1

+
∫

I2

+
∫

I3

+
∫

I4

)
Kr,n(x, t)gr,x(t)dt

= R1 +R2 +R3 +R4, say,

(3.7)

where I1 = [0,x− x/
√
n], I2 = [x− x/

√
n,x+ x/

√
n], I3 = [x+ x/

√
n,2x], and I4 = [2x,∞).

Let us define ηr,n(x, t)= ∫ t0 Kr,n(x,u)du.
We first estimate R1, and for this if we write y = x− x/

√
n and use integration by parts,

we get

R1 =
∫ y

0
gr,x(t)dt

(
ηr,n(x, t)

)= gr,x(y)ηr,n(x, t)−
∫ y

0
ηr,n(x, t)dt

(
gr,x(t)

)
. (3.8)
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By Remark 2.5, it follows that

∣∣R1
∣∣≤Vx

y

(
gr,x
)
ηr,n(x, y) +

∫ y

0
ηr,n(x, t)dt

(−Vx
t

(
gr,x
))

≤Vx
y

(
gr,x
) λx

n(x− y)2
+
λx

n

∫ y

0

1
(x− t)2

dt
(−Vx

t

(
gr,x
))
.

(3.9)

Integrating by parts the last term, we get after simple computation

∣∣R1
∣∣≤ λx

n

[
Vx

0

(
gr,x
)

x2
+ 2

∫ y

0

Vx
t

(
gr,x
)

(x− t)3
dt

]
. (3.10)

Now replacing the variable y in the last integral by x− x/
√
t, we get

∣∣R1
∣∣≤ 2λ

nx

n∑

k=1

Vx
x−x/√k

(
gr,x
)
. (3.11)

Next, we estimate R2, and for this, note that for t ∈ [x− x/
√
n,x+ x/

√
n], we have

∣∣gr,x(t)
∣∣= ∣∣gr,x(t)− gr,x(x)

∣∣≤Vx+x/
√
n

x−x/√n
(
gr,x
)
. (3.12)

Also, by the fact that
∫ b
a dt(ηr,n(x, t))≤ 1 for (a,b)⊂ [0,∞), we get

∣∣R2
∣∣≤Vx+x/

√
n

x−x/√n
(
gr,x
)≤ 1

n

n∑

k=1

Vx+x/
√
k

x−x/√k
(
gr,x
)
. (3.13)

Now to estimate R3, write z = x+ x/
√
n. Then

R3 =
∫ 2x

z
Kr,n(x, t)gr,x(t)dt =−

∫ 2x

z
gr,x(t)dt

(
1−ηr,n(x, t)

)

=−gr,x(2x)
(
1−ηr,n(x,2x)

)
+ gr,x(z)

(
1−ηr,n(x,z)

)
+
∫ 2x

z

(
1−ηr,n(x, t)

)
dtgr,x(t).

(3.14)

Since |gr,x(t)| = |gr,x(t)− gr,x(x)| ≤Vt
x(gr,x), it follows by Lemma 2.7 that

∣∣R3
∣∣≤ λx

n

{
x−2V 2x

x

(
gr,x
)

+ (z− x)−2Vz
x

(
gr,x
)

+
∫ 2x

z
(t− x)−2dtV

t
x

(
gr,x
)}

. (3.15)

Again integrating by parts, we get

∣∣R3
∣∣≤ λx

n

{
2x−2V 2x

x

(
gr,x
)

+ 2
∫ 2x

z
Vt
x

(
gr,x
)
(t− x)−3dt

}
. (3.16)

Arguing similarly as in the estimate of R1, we obtain

∣∣R3
∣∣≤ 2λ

nx

n∑

k=1

Vx+x/
√
k

x

(
gr,x
)
. (3.17)
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Finally, we estimate R4 as follows:

∣∣R4
∣∣=

∣∣∣∣
∫∞

2x
Kr,n(x, t)gr,x(t)dt

∣∣∣∣≤ n
∞∑

k=0

pn,k(x)
∫∞

2x
pn,k+r−1(t)eα·tdt

≤ n

x

∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)eα·t|t− x|dt

≤ 1
x

(
n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)(t− x)2dt

)1/2(
n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)e2α·tdt

)1/2

.

(3.18)

To estimate the above first expression we will use Remark 2.5, and to evaluate the second
expression, we note that

n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)e2α·tdt

= n
∞∑

k=0

pn,k(x)
nk+r−1

(k+ r− 1)!

∫∞

0
tk+r−1e−(n−2α)tdt

= n
∞∑

k=0

pn,k(x)
nk+r−1

(k+ r− 1)!
Γ(k+ r)

(n− 2α)k+r
= nr

(n− 2α)r

∞∑

k=0

(
n

n− 2α

)k
pn,k(x)

= nr

(n− 2α)r
e−nx

∞∑

k=0

(
n2x

n− 2α

)k 1
k!
= nr

(n− 2α)r
e2nxα/(n−2α) ≤ 2re4αx for n > 4α.

(3.19)

If we now combine the above estimate with Remark 2.5, we get

∣∣R4
∣∣≤ 1

x

(
n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)(t− x)2dt

)1/2(
n
∞∑

k=0

pn,k(x)
∫∞

0
pn,k+r−1(t)e2α·tdt

)1/2

≤ (nx)−1/2(λ2r
)1/2

e2αx.
(3.20)

Finally, combining the estimates obtained in (3.3)–(3.20), we get the required result, and
the proof of the theorem is thus complete. �

Remark 3.2. Since the Bézier variant of the Phillips operators for β ≥ 1 is defined by

Pn,β( f ,x)= n
∞∑

k=1

Q
(β)
n,k(x)

∫∞

0
pn,k−1(t) f (t)dt+Q

(β)
n,0(x) f (0), (3.21)

whereQ
(β)
n,k(x)= J

β
n,k(x)− J

β
n,k+1(x), Jn,k(x)=∑∞

i=k pn,i(x), the rate of convergence in simul-
taneous approximation for the above Bézier variant of Phillips operators can be obtained
along similar lines. We omit the details.
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