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We investigate the empirical Bayes estimation problem of multivariate regression coeffi-
cients under squared error loss function. In particular, we consider the regression model
Y = Xβ+ ε, where Y is an m-vector of observations, X is a known m× k matrix, β is an
unknown k-vector, and ε is an m-vector of unobservable random variables. The problem
is squared error loss estimation of β based on some “previous” data Y1, . . . ,Yn as well as
the “current” data vector Y when β is distributed according to some unknown distribu-
tion G, where Yi satisfies Yi = Xβi + εi, i = 1, . . . ,n. We construct a new empirical Bayes
estimator of β when εi ∼N(0,σ2Im), i= 1, . . . ,n. The performance of the proposed empir-
ical Bayes estimator is measured using the mean squared error. The rates of convergence
of the mean squared error are obtained.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In an EB problem (Robbins [15, 16]), there is a sequence of independent random vectors
(Y1,β1),(Y2,β2), . . . , (Yn+1,βn+1), where the Yj ’s are observable whereas the βj ’s are not
observable. Furthermore, the βjs are independent identically distributed (i.i.d.) according
to some unknown distribution G and, given βj = β, Yj is distributed according to some
conditional distribution with density f (y | β). In this paper, we will assume that Yj and
βj are related by a multiple linear regression model given by

Yj = Xβj + εj , (1.1)

j = 1,2, . . . ,n+ 1, where Yj is an m-vector of observations, X is a known m× k matrix,
βj is a k-vector, and εj is an m-vector of unobservable random variables. We will further
assume that the conditional distribution of εj , given βj = β, is a multivariate normal dis-
tributionN(0,σ2Im), where σ2 is an unknown constant and Im denotes the identity matrix
of order m×m. The objective is to estimate βn+1 based on the observations (Y1, . . . ,Yn+1)
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2 Empirical Bayes estimation

under a squared error loss function given by

L(d,β)= ‖d−β‖2, (1.2)

where ‖a‖2 = a′a=∑m
i=1 a

2
i for anym-vector a= (a1, . . . ,am)′. Denote βn+1=β andYn+1 =

y. Let β̂n(y) denote an empirical Bayes (EB) estimator of β under the loss (1.2) based

on (Y1, . . . ,Yn) as well as Yn+1 = y. Then the sequence {β̂n} is said to be asymptotically

optimal if the “regret” EL(β̂n,β)− EL(βG,β)→ 0 as n→∞, where expectation E is with
respect to all the random variables involved, and βG denotes the Bayes estimator of β with
respect to G under the loss function (1.2).

Martz and Krutchkoff [8] have considered the EB estimation problem in the general
linear model of (1.1) above. They have, however, only studied their EB estimator of β
through some Monte Carlo simulations and have shown that for certain priors their EB
estimator performed better than the usual least squares estimator. Wind [21] has consid-
ered EB estimation of β when the error vector ε is assumed to have 0 mean and covariance
σ2Im, but is not assumed to take a specific parametric form, for example, normal. For
priors specifying their means and variances, he has exhibited restricted asymptotically
optimal EB estimators of β. Singh [17] extended their work and exhibited two classes of
estimators φ̂ and φ̃ for β, one for the case when nothing is known about the support of
the prior, and the other for the case when it is known that the prior distribution has a
compact support. He showed that φ̂ is asymptotically optimal (a.o.) with rates O(n−1+η)
of the corresponding regret uniformly over a class of all priors satisfying certain moment
conditions dependent on η, whereas φ̃ is shown to be a.o. with rates O(n−1+η) uniformly
over the class of all priors with compact support. Singh’s [17] results are for the case of
known error variance σ2 of ε. Recently, Zhang and Wei [22], Wei and Zhang [20], and Wei
[19] extended Singh’s work to the case of unknown error variance of ε. They discussed
asymptotic optimality and convergence rates of their EB estimators of the regression co-
efficient β.

All of the works mentioned above have employed the regret as a measure of goodness
in order to study the performance of their proposed EB estimators. In this paper, we study
the performance of our EB estimator using the “mean squared error” (MSE) criterion.
Our rationale to study the MSE of our EB estimator is motivated by the work of Pensky
[11], where she has argued that MSE is a more appropriate criterion as far as applications
are concerned. We will construct an EB estimator of β (for the unknown σ2 case) based
on some improved estimators of multivariate normal mixture density and its first partial
derivatives. In the work of Zhang and Wei [22], Wei and Zhang [20], and Wei [19], they
have used kernel-type estimators of the preceding functions. We show that the rate of
convergence of the MSE of the proposed EB estimator is of the order O(n−1(logn)m+1),
showing a considerable improvement over the MSEs of the estimators presented in the
above papers.

This paper is organized as follows. Section 2 contains the Bayes estimator of β under
the loss function (1.2). Section 3 presents a new method of density estimation of a mul-
tivariate normal mixture and its first partial derivatives. Section 4 contains the proposed
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EB estimator and the main result. Two applications are discussed in Section 5. Section 6
gives some concluding remarks. The proofs are deferred to the appendix.

2. The Bayes estimator of regression coefficient

In this section, we derive the Bayes estimator of β under the loss function (1.2) for the
model (1.1). First, we will assume that k < m and that X ′X is nonsingular throughout,
where X is as defined in (1.1). Further, assume that the error variance σ2 is bounded
away from zero and finite, that is, 0 < γ0 ≤ σ2 ≤ γ1 <∞ for some known constants γ0 and
γ1. We assume further that the prior distribution G of β is a member of the family given
by

�ω0 =
{

G :
∫

Ω
‖β‖ω0dG(β) <∞

}

, (2.1)

where ω0 ≥ 2. Then the conditional density of Y given β is

f (y | β)= (2πσ2)−m/2 exp
{−‖y−Xβ‖2

2σ2

}

, (2.2)

and the marginal density of Y with respect to G is given by

f (y)=
∫

Ω
f (y | β)dG(β). (2.3)

By (2.2) and [19, Lemma A.1], we obtain that

σ2∇ f (y)=−
∫

R
(y−Xβ) f (y | β)dG(β)

=−y f (y) +X
∫

Ω
β f (y | β)dG(β),

(2.4)

where∇ f (y) is the gradient of f at y and is defined by

∇ f (y)=
(
∂ f (y)
∂y1

, . . . ,
∂ f (y)
∂ym

)′
. (2.5)

Since (X ′X) is invertible by our assumption, from (2.5) we obtain
∫

Ω
β f (y | β)dG(β)= (X ′X)−1X ′

[
y f (y) + σ2∇ f (y)

]
. (2.6)

Under the loss function (1.2), the Bayes estimator of β is the posterior expected loss, that
is,

δG(y)= E(β | Y = y)

=
∫
β f (y | β)dG(β)

f (y)

= (X ′X)−1X ′
[
y + σ2ψ(y)

]
,

(2.7)
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where

ψ(y)= ∇ f (y)
f (y)

= (ψ1(y), . . . ,ψm(y)
)′

(2.8)

with ψi(y)= (∂ f (y)/∂yi)/ f (y), i= 1, . . . ,m.
In view of (2.7) and (2.8), an estimator of δG(y) can be constructed by developing

estimators of f (y) and ψ(y) given by (2.3) and (2.8), respectively, based on a sequence of
observations {Yi}ni=1 from f (y). This density estimation problem is discussed in the next
section.

3. Estimation of a multivariate normal mixture density and its first partial derivatives

Let φ(t) denote the characteristic function of f (y) given by (2.3) above. Then, it is easy
to show that

φ(t)=
∫

eit
′ y f (y)dy

= 1
(
2πσ2

)m/2

∫

Rm

∫

R
exp

{−‖y−Xβ‖2

2σ2

}

eit
′ ydG(β)dy

= e−σ2‖t‖2/2φG(X ′t),

(3.1)

where φG denotes the characteristic function of the prior distributionG. Since
∫ |φ(t)|dt <

∞, by Fourier inversion theorem, we have

f (y)= 1
(2π)m

∫

e−it
′ yφ(t)dt, (3.2)

here and in what follows, all integrals without limits are taken to be over Rm, the m-
dimensional Euclidean space. It is easy to show from (3.1) and (3.2) that for any 0 <M <
∞,

∣
∣
∣
∣
∣

(2π)m f (y)−
∫M

−M
···

∫M

−M
e−it

′ yφ(t)dt

∣
∣
∣
∣
∣
≤ c
(√
γ0
)m+1

1
Mm

e−m(M2γ0)/2, (3.3)

where c > 0 is a constant, see the appendix. Since, for large M, the right-hand side of the
inequality (3.3) is small, one can consider estimating

∫M
−M ···

∫M
−M e−it

′ yφ(t)dt with large
M in order to estimate f (y) given by (3.2). We define

f̃M(y)= 1
(2π)m

∫

[−M,M]m
e−it

′ yφ̂n(t)dt, (3.4)

where [−M,M]m denotes the m-dimensional interval [−M,M]× ··· × [−M,M] and
φ̂n(t) = n−1

∑n
j=1 e

it′Yj , the empirical characteristic function of an i.i.d. sample Y1, . . . ,Yn

from f (y) given by the formula (3.2). Then the f̃M(y) is an unbiased estimator of (1/

(2π)m)
∫

[−M,M]m e
−it′ yφ(t)dt. With an appropriate choice of M, as a function of n, f̃M(y)

can be used to estimate density f (y) given by (3.2). A similar estimator has been studied
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by Singh and Pensky [18]. This estimator provides optimal convergence rates, however,
its common drawback is that it has heavy tails (it is not integrable since its Fourier trans-
form is discontinuous). It would be therefore advantageous to use a smoother estimator
that will have the same convergence rates and will decrease faster at infinity. Thus, we
define the following modified estimator as our proposed estimator of f (y):

f̂M(y)= 1
(2π)m

∫

gM(t)e−it
′ yφ̂n(t)dt, (3.5)

where gM(t)=∏m
i=1 gM(ti) with gM(ti) is given by

gM
(
ti
)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if−M + a≤ ti ≤M− a,

−1
a

(
ti−M

)
if M− a≤ ti ≤M,

1
a

(
ti +M

)
if −M ≤ ti ≤−M + a,

0 otherwise,

(3.6)

where a=M−M−1e−M2γ0/2, and M will be chosen so that a satisfies 0 < a <M. Note that
gM(ti) is bounded and continuous on (−∞,∞), and vanishes outside [−M,M]. Further,

the Fourier transform of f̂M(y) is continuous on (−∞,∞). It can be shown that the mean

squared error of f̂M(y) satisfies the following inequality:

E
(
f̂M(y)− f (y)

)2 ≤ c1
(
M−1e−M

2γ0/2
)2m

+ c2n
−1M2m, (3.7)

where c1 and c2 are the positive constants independent of n, y, and M (see the appen-

dix). A similar bound holds for the mean squared error of f̃M(y). By choosing M =
((γ0m)−1 logn)1/2, we now obtain from (3.7) that

E
(
f̂M(y)− f (y)

)2 ≤ c3n
−1(logn)m, (3.8)

for some constant c3 > 0 independent of n and y.
For estimating ∇ f (y) = (∂ f /∂y1, . . . ,∂ f /∂ym)′, the gradient of f at y, observe that

since
∫ |tφ(t)|dt <∞, from (3.2),

∂ f (y)
∂yj

= 1
(2π)m

∫
(− it j

)
e−it

′ yφ(t)dt. (3.9)

Then an unbiased estimator of
∫N
−N ···

∫N
−N (−it j)e−it′ yφ(t)dt is

f̃ (1)
N , j(y)= 1

(2π)m

∫

[−N ,N]m

(− it j
)
e−it

′ yφ̂n(t)dt, (3.10)

with [−N ,N]m=[−N ,N]×···× [−N ,N] for some finite number 0 < N <∞ and φ̂n(t)=
n−1

∑n
j=1 e

it′Yj . Again a smooth version of f̃ (1)
N , j(y) is defined as

f̂ (1)
N , j(y)= 1

(2π)m

∫

gN (t)
(− it j

)
e−it

′ yφ̂n(t)dt, (3.11)
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where gN (t)=∏m
i=1 gN (ti) with gN (ti) is given by (3.6) withM replaced byN . By choosing

N = ((γ0m)−1 logn)1/2, it can be shown that (see the appendix)

E

(

f̂ (1)
N , j(y)− ∂ f (y)

∂yj

)2

≤ c4n
−1(logn)m+1, (3.12)

for some constant c4 > 0 independent of n and y, where ∂ f (y)/∂yj is given by (3.9).

Remark 3.1. The density estimators (3.5) and (3.11) present a multivariate extension of
similar estimators that have been investigated by O’Bryan and Susarla [9] for the univari-
ate case. Their estimators are, however, not smooth. The rates of convergence mentioned
at (3.8) and (3.12) are much faster than those which have been obtained by using the
kernel-type density estimators; see, for example, Wei [19] and Wei and Zhang [20]. The
reason for better rates attained here is that we have exploited the fact that the density f (y)
to be estimated is a mixture of multivariate normal densities.

4. Empirical Bayes estimator and main results

In view of (2.7), an EB estimator of δG(y) can be obtained by replacing ψ(y) in (2.7) with
an estimator of ψ(y) given by (2.8) based on Y1, . . . ,Yn, given Yn+1 = y. For this purpose,
following Pensky [11] and Penskaya [10], we introduce the function

Δ(x, y,α)= xy−1(1 +αx2τ y−2τ)−ω, τ = 1,2, . . . ; ω > 0; 2τω ≥ 1, α > 0; (4.1)

and define our proposed EB estimator of ψ(y) as

ψ̂(y)= (ψ̂1(y), . . . , ψ̂m(y)
)′

, (4.2)

where

ψ̂ j(y)= Δ
(
f̂ (1)
N , j(y), f̂M(y),αn(y)

)
, j = 1, . . . ,m, (4.3)

with f̂M(y) and f̂ (1)
N , j(y) are given by (3.5) and (3.11), respectively, j = 1, . . . ,m, and αn(y)

is a positive number that is to be specified later. Note that ψ̂(y) defined by (4.2) depends
on n but this is suppressed for notational convenience here and in what follows.

The (nuisance) parameter σ2 in (2.7) is estimated by

σ̂2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ̃2 ifγ0 ≤ σ̃2 ≤ γ1,

γ1 if σ̃2 > γ1,

γ0 if σ̃2 < γ0,

(4.4)

where γ0 and γ1 are as given in Section 2; see, before formula (2.1), and

σ̃2 = n−1
n∑

i=1

σ̃2
(i), σ̃2

(i) =
Y ′i HYi
s

, (4.5)
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withH = Im−X(X ′X)−1X ′ and s=m− k. Note thatH is an idempotent matrix such that
rank(H)= s and sσ̃2

(i)/σ
2
∼ χ2

(s), the chi-square distribution with s degrees of freedom. The
estimator σ̃2 has been previously studied by Rao [14] under the same model as in (1.1).

Finally, our proposed EB estimator of δG(y) given by (2.7) is defined by

φ̂(y)= (X ′X)−1X ′
(
y + σ̂2ψ̂(y)

)
, (4.6)

where ψ̂ and σ̂2 are given by (4.2) and (4.4), respectively.
We will measure the performance of φ̂(y) by the quantity

Rn(y)= E∥∥φ̂(y)− δG(y)
∥
∥2

, (4.7)

where the expectation E is with respect to density
∏n

i=1 f (yi) with f (y) given by (2.3).
In typical EB problems, the quality of an EB estimator is measured by the regret. In the
present problem, the regret of φ̂ is equal to

∫
Rn(y) f (y)dy with Rn(y) given by (4.7).

However, Pensky [11] pointed out at least two advantages of using (4.7) compared to
the regret. First, Rn(y) enables one to calculate the mean squared error for the given
observation Yn+1 = y which is the interesting quantity. Second, by using the risk function
(4.7), we eliminate the influence on the risk function of the observations having very low
probabilities. So, the use of Rn(y) provides a way of getting EB estimators with better
convergence rates. The next theorem is the main result of this paper, which establishes
the rates of convergence of Rn(y).

Theorem 4.1. Let δG(y) be given by (2.7) and let φ̂(y) be defined by (4.6) with M =N =
((γ0m)−1 logn)1/2 in (3.5) and (3.11), respectively. Let αn(y) in (4.3) be given by αn(y) =
n−2τ/(2τ+1)(logn)τ(4m+1+ε)/(2τ+1) for some number 0 < ε < 1 and τ is as defined in (4.1). Then

lim
n→∞n(logn)−(m+1)E

∥
∥φ̂(y)− δG(y)

∥
∥2
<∞. (4.8)

Remark 4.2. The inequality established in Theorem 4.1 means that there exists some con-
stant c0 > 0 such that for every large n,

En
∥
∥φ̂(y)− δG(y)

∥
∥2
< c0n

−1(logn)m+1. (4.9)

The preceding inequality shows a very fast convergence rate for the pointwise mean
squared error of the proposed EB estimator φ̂(y). It is easy to show that for the EB es-
timators of Zhang and Wei [22], Wei and Zhang [20], and Wei [19], which are based on
kernel-type density estimates, the rate of the mean squared error is only of the order n−ρ

with ρ (0 < ρ < 1) determined by the behavior of the prior distribution G. Thus, the pro-
posed estimator has a faster convergence rate for the mean squared error compared to
other competitors.

Remark 4.3. The purpose of introducing the function Δ(x, y,α) given at (4.1) is to con-
struct a mean square consistent estimator of the ratio ψ(y)= Δ f (y)/ f (y) given by (2.8).
Other possible forms of estimators of a ratio are given in Penskaya [10]. The “τ” in (4.1)
is chosen as a positive integer because it makes 2τ an even positive number. Therefore,
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the ratio x2τ /y2τ in (4.1) is a well-defined quantity. In applications, one can simply take
τ = 1. Furthermore, for w in (4.1), any positive number can be chosen so that 2τw ≥ 1
for the chosen value of τ. Thus, it is very easy to implement the proposed EB estimator
φ̂(y) defined by (4.6) in practical applications.

Remark 4.4. In the model (1.1), we have assumed that E(εj | βj) = 0 and Var(εj | βj) =
σ2Im, where σ2 is an unknown constant and Im denotes the identity matrix of order m×
m. The preceding variance assumption can be replaced by a more general assumption that
Var(εj | βj)= σ2V , whereV is a known nonsingular matrix. In this case, the proposed EB
estimator defined at (4.6) takes the form

φ̂(y)= (X ′V−1X
)−1

X ′V−1(y + σ̂2ψ̂(y)
)
, (4.10)

where ψ̂(y) is given by (4.2) and σ̂2 is given by (4.4) with σ̃2 is replaced by σ̃2
1 , where

σ̃2
1 =

1
n

n∑

i=1

(
Y ′1V

−1Yi−Y ′i V−1Xβ̂i
)

(4.11)

with β̂i = (X ′V−1X)−1X ′V−1Yi.

5. Applications

In this section, we discuss two applications. In each case, the construction of the Bayes
estimator as well as an empirical Bayes estimator is exhibited.

5.1. One-way classification. Suppose we have data in I groups, with Ji (i= 1, . . . ,I) ob-
servations in each group as follows:

Group1 : Y11,Y12, . . . ,Y1J1 mean= Ȳ1,

Group 2 : Y21,Y22, . . . ,Y2J2 mean= Ȳ2,

···
Group I : YI1,YI2, . . . ,YIJI mean= ȲI .

(5.1)

The usual fixed-effects analysis of variance model for such a situation is

Yij = μi + ei j , i= 1, . . . ,I ; j = 1, . . . , Ji, (5.2)

where ei j are i.i.d. (independently and identically distributed) as N(0,σ2). Then, in re-
gression terms, we can write the model (5.2) as

Y = Xβ+ ε, (5.3)
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where Y = (Y11,Y12, . . . ,Y1J1 ;Y21,Y22, . . . ,Y2J2 ; . . . ;YI1,YI2, . . . ,YIJI )
′, ε = (e11,e12, . . . ,e1J1 ;

e21,e22, . . . ,e2J2 ; . . . ;eI1,eI2, . . . ,eIJI )
′, β = (μ1,μ2, . . . ,μI)′, and

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ··· 0
1 0 0 ··· 0
··· ··· ··· ··· ···

1 0 0 ··· 0
0 1 0 ··· 0
0 1 0 ··· 0
··· ··· ··· ··· ···

0 1 0 ··· 0
··· ··· ··· ··· ···

0 0 0 ··· 1
0 0 0 ··· 1
··· ··· ··· ··· ···

0 0 0 ··· 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.4)

Note that ε∼N(0,σ2Im) with m=∑I
i=1 Ji. Then

X ′X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J1
J2 0

. . .
0 JI−1

JI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X ′Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

J1Ȳ1

J2Ȳ2
...

JI ȲI

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (5.5)

Since X ′X is a diagonal matrix with Ji in the ith diagonal position and is zero elsewhere,
its inverse is a diagonal matrix with 1/Ji in the ith diagonal position. Then the Bayes
estimator of β given by (2.7) takes the form

δG(Y)= Ȳ + σ2(X ′X)−1X ′ψ(Y), (5.6)

where Ȳ = (Ȳ1, . . . , ȲI)′,X and (X ′X)−1 are given by (5.4) and (5.5), respectively, and ψ(y)
is given by (2.8). An empirical Bayes estimator of (5.6) can be constructed by replacing
σ2 and ψ(y) by estimators σ̂2 and ψ̂(y) defined by (4.2) and (4.4), respectively, compare
with (4.6). For instance, σ̃2 defined by (4.5) now becomes

σ̃2 = 1
n(m− I)

n∑

i=1

Y ′i
(
Im−X(X ′X)−1X ′

)
Yi, (5.7)

where X given by (5.4), m =∑I
i=1 Ji, and {Yi}ni=1 are some independent auxiliary data

satisfying the same form as (5.3), that is, Yi = Xβi + εi, i = 1, . . . ,n. For ψ̂(y), one could

use the estimator f̃M(y), given by (3.4), and its first partial derivatives and then employ
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the function (4.1) to form an estimator as in (4.2) and (4.3). Note that f̃M(y) is equal to

f̃M(y)= Mm

n

n∑

j=1

{ m∏

i=1

K
(
M
(
yi−Yji

))
}

, (5.8)

where y=(y1, . . . , ym)′, Yj=(Yj1, . . . ,Yjm)′, j=1, . . . ,n, and K(x)= sinx/πx. Thus, f̃M(y)
has the usual kernel estimator form in a multivariate setting.

5.2. Two-way classification. Consider an experiment in which two factors A and B are
allowed to vary. Suppose there are I levels of A and J levels of B, and let Yijk be the kth
experimental observation (k = 1,2, . . . ,K , K > 1) on the combination of the ith level of A
with the jth level of B. We assume that the Yijk are independently distributed asN(μi j ,σ2)
so that

Yijk = μi j + ei jk, i= 1,2, . . . ,I ; j = 1,2, . . . , J ; k = 1,2, . . . ,K , (5.9)

where the ei jk are i.i.d. N(0,σ2). By writing

Y ′ = (Y111,Y112, . . . ,Y11K ,Y121,Y122, . . . ,Y12K , . . . ,YIJ1,YIJ2, . . . ,YIJK
)
,

β′ = (μ11,μ12, . . . ,μ1J ,μ21,μ22, . . . ,μ2J , . . . ,μI1,μI2, . . . ,μIJ
)
,

(5.10)

and so forth, and using the same approach which led to (5.3), we find that (5.9) can be
expressed in the regression form

Y = Xβ+ ε, (5.11)

where ε is N(0,σ2Im), m = IJK , and X is m× IJ of rank IJ . Then the Bayes estimator
of β given by (2.7) is obtained by using the X and Y of (5.9). Again, an empirical Bayes
estimator can be constructed by replacing σ2 and ψ(y) by their estimators based on some
auxiliary data {Yi}ni=1 as in Section 5.1.

6. Concluding remarks

In this paper, we investigated empirical Bayes estimation in a multivariate regression
model of the form Y = Xβ+ ε. An empirical Bayes estimator of β was constructed with
very fast rates of convergence of the corresponding mean squared error. The proposed
empirical Bayes estimator is based on a newly developed multivariate density estimator
of a normal mixture density and its first derivatives. The preceding results also extend
similar results of the univariate case of a normal mixture density available in the litera-
ture. The results of the present paper can be easily extended to more complicated linear
models such as Y = Zθ +Xβ+ ε and Y =Uμ+Zα+Xβ+ ε.
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The model and the estimator we developed in this paper are applicable in a wide vari-
ety of contexts. For instance, they can be used in the construction of a selection index for
choosing individuals with a high intrinsic genetic value. For example, βi may represent
unknown genetic parameters and Yi are observable characteristics on the ith individual,
while p′βi for given p is the genetic value to be estimated in terms of observed Yi. Early
examples of such estimation by computing the regression of p′βi on Yi (suggested by R.
A. Fisher) are due to Fairfield Smith [6]. A detailed study of the estimation problem from
a decision theoretic view point with an estimated parametric prior distribution of βi is
given by Rao [13]. Some applications are given by Rao [12, 13], and further developments
of parametric estimation theory are developed by Rao [14], Efron and Morris [3–5], and
Bunke and Gladitz [2], among others.

Appendix

Proof of (3.3). From (3.2), for any 0 <M <∞, we have

∣
∣
∣
∣
∣

(2π)m f (y)−
∫M

−M
···

∫M

−M
e−it

′ yφ(t)dt

∣
∣
∣
∣
∣

≤ c
∫∞

M
···

∫∞

M

∣
∣φ(t)

∣
∣dt

≤ c
∫∞

M
···

∫∞

M
e−σ

2t′t/2dt

= c
(∫∞

M
e−σ

2t21 /2dt1

)m

= c
(

σ−1
∫∞

Mσ
e−s

2/2ds

)m

≤ c
((
γ0
)−1/2

)m
(∫∞

M
√
γ0

e−s
2/2ds

)m

≤ c(γ0
)−m/2

(
1

M
√
γ0
e−M

2γ0/2

)m

= c
(
γ0
)(m+1)/2

1
Mm

e−mM
2γ0/2,

(
s= t1σ

) (
σ2 ≥ γ0

)
,

(A.1)

where c > 0 is a constant independent of n, y, and M. This completes the proof. �

Proof of (3.7). From (3.5), we write

E f̂M(y)= 1
(2π)m

∫

[−M,M]m
gM(t)e−it

′ yE
(
φn(t)

)
dt

= 1
(2π)m

∫

[−M,M]m
gM(t)e−it

′ yφ(t)dt.

(A.2)
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From (3.2) and (A.1), we now have

E f̂M(y)− f (y)= 1
(2π)m

∫

[−M,M]m

(
gm(t)− 1

)
e−it

′ yφ(t)dt

− 1
(2π)m

∫

([−M,M]m)c
e−it

′ yφ(t)dt,

(A.3)

where ([−M,M]m)c is the complement of the set [−M,M]m. As in (A.1), it is easy to show
that the second term on the right-hand side of (A.3) is bounded as follows:

∣
∣
∣
∣
∣

1
(2π)m

∫

([−M,M]m)c
e−it

′ yφ(t)dt

∣
∣
∣
∣
∣
≤ c

∫∞

M
···

∫∞

M

∣
∣φ(t)

∣
∣dt

≤ c 1
(
γ0
)(m+1)/2

1
Mm

e−mM
2γ0/2,

(A.4)

where c > 0 is a positive constant. Using the definition of g(t), the first term on the right-
hand side of (A.3) can be bounded as follows:

∣
∣
∣
∣
∣

∫

[−M,M]m

(
gM(t)− 1

)
e−it

′ yφ(t)dt

∣
∣
∣
∣
∣

≤
∫

[−M,M]m

∣
∣gm(t)− 1

∣
∣dt

=
{∫ −M+a

−M

(
1− gm(t)

)
dt+

∫M

M−a

(
1− gm(t)

)
dt

}m

=
(

2
M
e−M

2γ0/2
)m
.

(A.5)

Using the i.i.d. property of Y1, . . . ,Yn, we obtain the variance of f̂M(y) as

Var
(
f̂M(y)

)= 1
n

Var

{
1

(2π)m

∫

[−M,M]m
gM(t)e−it

′ yeitY1dt

}

≤ 1
n(2π)m

E

{∫

[−M,M]m
gM(t)e−it

′ yeitY1dt

}2

≤ n−1(π−1M2)m.

(A.6)

By combining (A.3) to (A.6), we now complete the proof of (3.7). �

Proof of (3.12). From (3.9) and (3.11), we have

E f̂ (1)
N , j(y)− ∂ f (y)

∂yi
= 1

(2π)m

∫

[−N ,N]m

(
gN (t)− 1

)(− it j
)
e−it

′ yφ(t)dt

− 1
(2π)m

∫

([−N ,N]m)c

(− it j
)
e−it

′ yφ(t)dt.

(A.7)
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The second term on the right-hand side of (A.7) can be bounded as follows:

∣
∣
∣
∣
∣

1
(2π)m

∫

([−N ,N]m)c

(− it j
)
eit

′ yφ(t)dt

∣
∣
∣
∣
∣

≤ c1

(2π)m

∫∞

N
···

∫∞

N

∣
∣t jφ(t)

∣
∣dt

= c2

∫∞

N
···

∫∞

N

∣
∣t j
∣
∣e−σ

2
∑m

j=1 t
2
j /2dt1 ···dtm

≤ c2

(∫∞

N

∣
∣t j
∣
∣e−σ

2t2j /2dtj

)(∫∞

N
e−σ

2t2/2dt

)m−1

≤ c3

(
1
N

)m−1(
e−γ0N2/2)m,

(A.8)

where ci (i= 1,2,3) are positive constants independent of y, n, and N . The first term on
the right-hand side of (A.7) can be bounded as follows:

∣
∣
∣
∣
∣

∫

[−N ,N]m

(
gN (t)− 1

)(− it j
)
e−it

′ yφ(t)dt

∣
∣
∣
∣
∣

≤ c4

∫

[−N ,N]m

∣
∣gN (t)− 1

∣
∣
∣
∣t j
∣
∣dt

≤ c5N
∫

[−N ,N]m

∣
∣gN (t)− 1

∣
∣dt

≤ c6N
(

2
N
e−M

2γ0/2
)N

= c6

(
1
N

)m−1(
e−γ0M2/2)N ,

(A.9)

where ci (i= 4,5,6) are positive constants independent of y, n, and N . Now the variance

of f̂
( j)
N , j(y) is bounded as follows:

Var
(
f̂ (1)
N , j(y)

)
≤ c7 Var

(∫

[−N ,N]m
gN (t)

(− it j
)
e−it

′ yeit
′Y1dt

)

≤ c7E

(∫

[−N ,N]m
gN (t)

(− it j
)
e−it

′ yeit
′Y1dt

)2

≤ c8
1
n

(
Nm+1)2

,

(A.10)

for some positive constants c7 and c8 independent of n, y, and N . Now by combining
(A.7) to (A.10) and choosing N2 = (γ0m)−1 logn, we complete the proof of (3.12). �
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In order to prove Theorem 4.1, we now state and prove two lemmas.

Lemma A.1. Let f (y) be given by (3.2), and let f̂M(y) be given by (3.5) with M =
((γ0m)−1 logn)1/2. Then

En
(
f̂n(y)− f (y)

)4 =O(n−2(logn)2m). (A.11)

Lemma A.2. Let ∂ f (y)/∂yj be defined by (3.9), and let f̂ (1)
N , j(y) ( j = 1, . . . ,m) be defined by

(3.11) with N = ((γ0m)−1 logn)1/2. Then

En

(

f̂ (1)
N , j(y)− ∂ f (y)

∂yi

)4

=O(n−2(logn)4m+1), j = 1, . . . ,m. (A.12)

Proof of Lemma A.1. First, observe that by Hölder’s inequality,

E
(
f̂M(y)−E f̂M(y)

)4 = 1
(2π)2m

E

(∫

[−M,M]m
gM(t)e−it

′ y(φ̂(t)−φ(t)
)
dt

)4

≤ CE
(∫

[−M,M]m

∣
∣φ̂(t)−φ(t)

∣
∣dt

)4

≤ C
(∫

[−M,M]m
E
∣
∣φ̂(t)−φ(t)

∣
∣4
dt

)(∫

[−M,M]m
dt

)3

,

(A.13)

here and in what follows, expectation “E” denotes the expectation as defined in (4.7), and
C denotes a constant independent of n, y, M, and N (which, in different positions, may
take different values). Now write φ̂(t)− φ(t) = n−1

∑n
j=1Tj , where Tj = (eit

′Yj − φ(t)).
Denote Sn =

∑n
j=1Ti. Then, since Tjs are i.i.d., we have

E
(
S4
n

)= κ4(t) + 3κ2(t)= nκ′4(t) + 3n2κ′22 (t), (A.14)

where κr(t) and κ′r(t) denote the rth cumulant of Sn and T1, respectively (see, e.g.,
Barndorff-Nielson and Cox [1]). Therefore,

E
(
φ̂(t)−φ(t)

)4 = n−4(nκ′4(t) + 3n2κ′22 (t)
)
. (A.15)

Note that κ′2(t) and κ′4(t) are bounded functions of t, since Tjs are bounded. From (A.13)
and (A.15), we obtain

E
(
f̂M(y)−E f̂M(y)

)4 ≤ Cn−4(2M)3m
∫

[−M,M]m

(
nκ′4(t) + 3n2κ′22 (t)

)
dt

≤ Cn−2M4m.
(A.16)

But from (A.2) to (A.5), we have

∣
∣E f̂M(y)− f (y)

∣
∣≤ CM−me−mγ0M2/2. (A.17)
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Now by combining (A.16) and (A.17) together with M2 = (γ0m)−1 logn, and the Cr-
inequality (Loève [7], page 157), we obtain

E
(
f̂M(y)− f (y)

)4 ≤ C
{
n−2M4m +

(
M−me−mγ0M2/2)4

}

= C
{
n−2(logn)2m +n−2(logn)2m

}

≤ Cn−2(logn)2m.

(A.18)

This completes the proof of Lemma A.1. �

Proof of Lemma A.2. Again by Hölder’s inequality, we have

E
(
f̂ (1)
N , j(y)−E f̂ (1)

N , j(y)
)4 ≤ CE

(∫

[−N ,N]m

∣
∣t j
∣
∣
∣
∣φ̂(t)−φ(t)

∣
∣dt

)4

≤ C
(∫

[−N ,N]m
E
∣
∣φ̂(t)−φ(t)

∣
∣4
dt

)(∫

[−N ,N]m

∣
∣t j
∣
∣4/3

dt

)3

≤ Cn−4

{∫

[−N ,N]m

(
nκ′4(t) +n2κ′22 (t)

)
dt

}
{

23mN4+3(m−1)}

≤ Cn−2N4m+1.
(A.19)

From (A.7) to (A.9), we have

∣
∣
∣
∣E f̂

(1)
N , j(y)− ∂ f (y)

∂yj

∣
∣
∣
∣≤ CN−(m−1)e−mγ0N2/2. (A.20)

Now by combining inequalities (A.19) and (A.20) together with N2 = (γ0m)−1 logn, and
the Cr-inequality, we obtain

E
(

f̂ (1)
N , j(y)− ∂ f (y)

∂yj

)4

≤ C
{
n−2N4m+1 +

(
N−(m−1)e−γ0mN2/2)4

}

≤ C
{
n−2(logn)4m+1 +n−2

}

≤ Cn−2(logn)4m+1.

(A.21)

This completes the proof of Lemma A.2. �

Proof of Theorem 4.1. Let λ1=max[root(X(X ′X)−1X ′)], where max[root(A)] denotes the
largest eigenvalue of a matrix A. Recall that γ0 ≤ σ̂2 ≤ γ1 by construction. Then by (2.7)



16 Empirical Bayes estimation

and (4.6), we obtain
∥
∥φ̂(y)− δG(y)

∥
∥2 = ∥∥σ̂2(X ′X)−1X ′ψ̂(y)− σ2(X ′X)−1X ′ψ(y)

∥
∥2

≤ C
{∥
∥(X ′X)−1X ′ψ(y)

(
σ̂2− σ2)∥∥2

+
∥
∥(X ′X)−1X ′σ̂2(ψ̂(y)−ψ(y)

)∥
∥2
}

≤ C
{
λ1
∥
∥
(
σ̂2− σ2)ψ(y)

∥
∥2

+ λ1γ
2
1

∥
∥ψ̂(y)−ψ(y)

∥
∥2
}

≤ C
{(
σ̂2− σ2)2∥∥ψ(y)

∥
∥2

+
∥
∥ψ̂(y)−ψ(y)

∥
∥2
}

= C
{
(
σ̂2− σ2)2∥∥ψ(y)

∥
∥2

+
m∑

j=1

∣
∣ψ̂ j(y)−ψj(y)

∣
∣2
}

,

(A.22)

where ψj(y) and ψ̂ j(y) are as given in (2.8) and (4.3), respectively. From (4.4) and (4.5)
we observe that (σ̂2 − σ2)2 ≤ (σ̃2 − σ2)2 and Var(σ̃2

(�)) = 2σ4/s, see circa (4.5). Thus, for
each y,

E
(
σ̂2− σ2)2∥∥ψ(y)

∥
∥2 ≤ ∥∥ψ(y)

∥
∥2
E
(
σ̃2− σ2)2

= ∥∥ψ(y)
∥
∥2

Var
(
σ̃2)

= 2σ4
∥
∥ψ(y)

∥
∥2

ns
.

(A.23)

Now denote

d2
n(y)= E

(
f̂ (1)
N , j(y)− f (1)

j (y)
)2

+E
(
f̂M(y)− f (y)

)2
, (A.24)

where f (1)
j (y)= ∂ f (y)/∂yj . Then from (3.8) and (3.12), we have

d2
n(y)=O(n−1(logn)m+1). (A.25)

In order to find the convergence rate of

E
∣
∣ψ̂ j(y)−ψj(y)

∣
∣2 = E

∣
∣
∣
∣
∣
Δ
(
f̂ (1)
j,N (y), f̂M(y),αn(y)

)
− f (1)

j (y)

f (y)

∣
∣
∣
∣
∣

2

, (A.26)

we will use [10, Theorem 2]. According to the preceding theorem, for n→∞,

E

(

Δ
(
f̂ (1)
N , j(y), f̂M(y),αn(y)

)
− f (1)

j (y)

f (y)

)2

=O(d2
n(y) +α2

n(y)
)

(A.27)

provided limn→∞αn(y)= 0 and

α−1/τ
n

{
E
(
f̂ (1)
N , j(y)− f (1)

j (y)
)4

+E
(
f̂M(y)− f (y)

)4
}
= o(α2

n(y) +d2
n(y)

)
. (A.28)

The preceding equality may be written in the form

lim
n→∞α

−2−1/τ
n

{
E
(
f̂ (1)
N , j(y)− f (1)

j (y)
)4

+E
(
f̂M(y)− f (y)

)4
}
= 0. (A.29)
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From Lemmas A.1 and A.2, we see that (A.29) is satisfied if α−2−1/τ
n = n2(logn)−(4m+1)−ε

for some positive number ε such that 0<ε<1. That is, αn=n−2τ/(2τ+1)(logn)τ(4m+1+ε)/(2τ+1).
With the preceding choice of αn, we now obtain from (A.25) and (A.27) that

E
∣
∣ψ̂ j(y)−ψj(y)

∣
∣2 =O

(
n−1(logn)m+1 +n−4τ/(2τ+1)(logn)2τ(4m+1+ε)/(2τ+1)

)
. (A.30)

The proof is now completed by (A.22)-(A.23), and (A.30). �
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