ON SOME EXPONENTIAL MEANS. PART II

JÓZSEF SÁNDOR AND GHEORGHE TOADER

Received 18 May 2005; Revised 19 April 2006; Accepted 21 June 2006

We prove some new inequalities involving an exponential mean, its complementary, and some means derived from known means by applying the exp-log method.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

All the means that appear in this paper are functions $M: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$with the property that

$$
\begin{equation*}
\min (a, b) \leq M(a, b) \leq \max (a, b) \quad \forall a, b>0 . \tag{1.1}
\end{equation*}
$$

Of course $M(a, a)=a$, for all $a>0$. As usual A, G, L, I, A_{p} denote the arithmetic, geometric, logarithmic, identric, respectively, power means of two positive numbers, defined by

$$
\begin{gather*}
A=A(a, b)=\frac{a+b}{2}, \quad G=G(a, b)=\sqrt{a b}, \\
L=L(a, b)=\frac{b-a}{\log b-\log a}, \quad I=I(a, b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}, \tag{1.2}\\
A_{p}=A_{p}(a, b)=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}, \quad p \neq 0 .
\end{gather*}
$$

In [16], the first part of this paper, we have studied the exponential mean

$$
\begin{equation*}
E=E(a, b)=\frac{b e^{b}-a e^{a}}{e^{b}-e^{a}}-1 \tag{1.3}
\end{equation*}
$$

introduced in [23]. Another exponential mean was defined in [19] by

$$
\begin{equation*}
\bar{E}=\bar{E}(a, b)=\frac{a e^{b}-b e^{a}}{e^{b}-e^{a}}+1 \tag{1.4}
\end{equation*}
$$

2 On some exponential means. Part II

It is the complementary of E, according to a definition from [4], that is,

$$
\begin{equation*}
\bar{E}=2 A-E . \tag{1.5}
\end{equation*}
$$

A basic inequality proved in [23] is

$$
\begin{equation*}
E>A, \tag{1.6}
\end{equation*}
$$

which gives the new inequality

$$
\begin{equation*}
\bar{E}<A . \tag{1.7}
\end{equation*}
$$

More general means have been studied in [14, 17, 19]. For example, letting $f(x)=e^{x}$ in [14, Formula (5)], we recapture (1.6). We note that by selecting $f(x)=\log x$ in [14, Formula (8)], and then $f(x)=1 / x$, we get the standard inequalities

$$
\begin{equation*}
G<L<I<A \tag{1.8}
\end{equation*}
$$

(for history, see, e.g., [7]).
In what follows, for any mean M, we will denote by \mathcal{M} the new mean given by

$$
\begin{equation*}
\mathcal{M}(x, y)=\log M\left(e^{x}, e^{y}\right), \quad x, y>0 . \tag{1.9}
\end{equation*}
$$

As we put $a=e^{x}, b=e^{y}$ and then take logarithms, we call this procedure the exp-log method. The method will be applied also to some inequalities for deriving new inequalities. For example, in [16] we proved that

$$
\begin{equation*}
E=\mathscr{I} \tag{1.10}
\end{equation*}
$$

and so (1.8) becomes

$$
\begin{equation*}
A<\mathscr{L}<E<\mathscr{A} . \tag{1.11}
\end{equation*}
$$

In [16], it was also shown that

$$
\begin{gather*}
A+\mathscr{A}-\mathscr{L}<E<2 \mathscr{L}-A, \\
\mathscr{A}_{2 / 3}<E<\mathscr{A}_{\log 2} \tag{1.12}
\end{gather*}
$$

(see also [6, 22]). In [9], the first author improved the inequality (1.6) by

$$
\begin{equation*}
E>\frac{A+2 \mathscr{A}}{3}>A . \tag{1.13}
\end{equation*}
$$

This is based on the following identity proved there:

$$
\begin{equation*}
(E-A)(a, b)=\frac{A\left(e^{a}, e^{b}\right)}{L\left(e^{a}, e^{b}\right)}-1 \tag{1.14}
\end{equation*}
$$

We get the same result using the known result

$$
\begin{equation*}
I>\frac{2 A+G}{3}>\left(A^{2} G\right)^{1 / 3} \tag{1.15}
\end{equation*}
$$

and the exp-log method.
The aim of this paper is to obtain other inequalities related to the above means.

2. Main results

(1) After some computations, the inequality (1.6) becomes

$$
\begin{equation*}
\frac{e^{b}-e^{a}}{b-a}<\frac{e^{a}+e^{b}}{2} \tag{2.1}
\end{equation*}
$$

This follows at once from the Hadamard inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t<\frac{f(a)+f(b)}{2}, \tag{2.2}
\end{equation*}
$$

applied to the strictly convex function $f(t)=e^{t}$. We note that by the second Hadamard inequality, namely

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t>f\left(\frac{a+b}{2}\right), \tag{2.3}
\end{equation*}
$$

for the same function, one obtains

$$
\begin{equation*}
\frac{e^{b}-e^{a}}{b-a}>e^{(a+b) / 2} \tag{2.4}
\end{equation*}
$$

which has been proposed as a problem in [3].
The relation (1.11) improves the inequality (2.1), which means that $\mathscr{A}>\mathscr{L}$, and improves (2.4), which means that $\mathscr{L}>A$. In fact, by the above remarks, one can say that

$$
\begin{equation*}
E>A \Longleftrightarrow \mathscr{A}>\mathscr{L} . \tag{2.5}
\end{equation*}
$$

(2) In [23], it was proven that E is not comparable with A_{λ} for $\lambda>5 / 3$. Then in [17], we have shown, among others, that

$$
\begin{equation*}
A(a, b)<E(a, b)<A(a, b) \cdot e^{|b-a| / 2} \tag{2.6}
\end{equation*}
$$

Now, if $|b-a|$ becomes small, clearly $e^{|b-a| / 2}$ approaches to 1 , that is, the conjecture $E>A_{\lambda}$ of [23] cannot be true for any $1<\lambda \leq 5 / 3$.

We get another double inequality from (1.5) and (1.6):

$$
\begin{equation*}
A<E<2 A . \tag{2.7}
\end{equation*}
$$

These inequalities cannot be improved. Indeed, for $1<\lambda<2$, we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty}[E(1, x)-\lambda A(1, x)]=\infty, \tag{2.8}
\end{equation*}
$$

4 On some exponential means. Part II

but

$$
\begin{equation*}
E(1,1)-\lambda A(1,1)=1-\lambda<0, \tag{2.9}
\end{equation*}
$$

thus E is not comparable with λA.
On the other hand,

$$
\begin{equation*}
\bar{E}(a, b)=\frac{e^{b}(a+1)-e^{a}(b+1)}{e^{b}-e^{a}}=(a+1)(b+1) \cdot \frac{f(b)-f(a)}{e^{b}-e^{a}}, \tag{2.10}
\end{equation*}
$$

where $f(x)=e^{x} /(x+1)$. By Cauchy's mean value theorem,

$$
\begin{equation*}
\frac{f(b)-f(a)}{e^{b}-e^{a}}=\frac{f^{\prime}(c)}{e^{c}}, \quad c \in(a, b) . \tag{2.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{f^{\prime}(c)}{e^{c}}=\frac{c}{(c+1)^{2}} \leq \frac{1}{4}, \tag{2.12}
\end{equation*}
$$

we get

$$
\begin{equation*}
0<2 A-E \leq \frac{(a+1)(b+1)}{4} \tag{2.13}
\end{equation*}
$$

(3) By using the series representation

$$
\begin{equation*}
\log \frac{I}{G}=\sum_{k=1}^{\infty} \frac{1}{2 k+1}\left(\frac{b-a}{b+a}\right)^{2 k}, \tag{2.14}
\end{equation*}
$$

(see $[9,21]$), we can deduce the following series representation:

$$
\begin{equation*}
(E-A)(a, b)=\sum_{k=1}^{\infty} \frac{1}{2 k+1}\left(\frac{e^{b}-e^{a}}{e^{b}+e^{a}}\right)^{2 k} . \tag{2.15}
\end{equation*}
$$

By (2.1), $\left|e^{b}-e^{a}\right| /\left(e^{b}+e^{a}\right)<|b-a| / 2$, thus we get the estimate

$$
\begin{equation*}
(E-A)(a, b)<\sum_{k=1}^{\infty} \frac{1}{2 k+1}\left(\frac{b-a}{2}\right)^{2 k} . \tag{2.16}
\end{equation*}
$$

The series is convergent at least for $|b-a|<2$. Writing

$$
\begin{equation*}
\frac{A\left(e^{a}, e^{b}\right)}{L\left(e^{a}, e^{b}\right)}=e^{\mathcal{S}(a, b)-\mathscr{L}(a, b)} \tag{2.17}
\end{equation*}
$$

the identity (1.14) implies the relation

$$
\begin{equation*}
E-A=e^{\mathscr{X}-\mathscr{L}}-1 . \tag{2.18}
\end{equation*}
$$

This gives again the equivalence (2.5). But one can obtain also a stronger relation by writing $e^{x}>1+x+x^{2} / 2$, for $x>0$. Thus (2.18) gives

$$
\begin{equation*}
E-A>\mathscr{A}-\mathscr{L}+\frac{1}{2}(\mathscr{A}-\mathscr{L})^{2} . \tag{2.19}
\end{equation*}
$$

(4) Consider the inequality proved in [10]:

$$
\begin{equation*}
\frac{2}{e} A<I<A \tag{2.20}
\end{equation*}
$$

By the exp-log method, we deduce

$$
\begin{equation*}
\log 2-1+\mathscr{A}<E<\mathscr{A} . \tag{2.21}
\end{equation*}
$$

From the inequality

$$
\begin{equation*}
I<\frac{2}{e}(A+G)=\frac{4}{e}\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2}, \tag{2.22}
\end{equation*}
$$

given in [5], we have, by the same method,

$$
\begin{equation*}
E(x, y)<2 \log 2-1+2 \mathscr{A}\left(\frac{x}{2}, \frac{y}{2}\right) . \tag{2.23}
\end{equation*}
$$

Relation (2.23) may be compared with the left-hand side of (2.21). Take now the relation

$$
\begin{equation*}
L<L(A, G)=\frac{A-G}{\log (A / G)} \tag{2.24}
\end{equation*}
$$

from [5]. Since $A-G=1 / 2(\sqrt{a}-\sqrt{b})^{2}$, one obtains

$$
\begin{equation*}
\mathscr{A}-A<\frac{1}{2 e^{\mathscr{L}}}\left(e^{x / 2}-e^{y / 2}\right)^{2} . \tag{2.25}
\end{equation*}
$$

The relation

$$
\begin{equation*}
L^{3}>\left(\frac{A+G}{2}\right)^{2} G \tag{2.26}
\end{equation*}
$$

from [13], gives similarly

$$
\begin{equation*}
3 \mathscr{L}(x, y)>A(x, y)+4 \mathscr{A}\left(\frac{x}{2}, \frac{y}{2}\right) \tag{2.27}
\end{equation*}
$$

while the inequality

$$
\begin{equation*}
\log \frac{I}{L}>1-\frac{G}{L} \tag{2.28}
\end{equation*}
$$

from [7], offers the relation

$$
\begin{equation*}
E-\mathscr{L}>1-e^{A-\mathscr{L}} . \tag{2.29}
\end{equation*}
$$

6 On some exponential means. Part II
(5) The exp-log method applied to the inequality

$$
\begin{equation*}
L>\sqrt{G I} \tag{2.30}
\end{equation*}
$$

given in [2, 11], implies that

$$
\begin{equation*}
\mathscr{L}>\frac{A+E}{2}>\frac{2 A+\mathscr{A}}{3} \tag{2.31}
\end{equation*}
$$

On the other side, the inequality

$$
\begin{equation*}
I>\sqrt{A L} \tag{2.32}
\end{equation*}
$$

proven in [11], gives on the same way the inequality

$$
\begin{equation*}
E>\frac{\mathscr{A}+\mathscr{L}}{2} \tag{2.33}
\end{equation*}
$$

After all, we have the double inequality

$$
\begin{equation*}
\frac{\mathscr{A}+\mathscr{L}}{2}<E<2 \mathscr{L}-A . \tag{2.34}
\end{equation*}
$$

(6) Consider now the inequality

$$
\begin{equation*}
3 I^{2}<2 A^{2}+G^{2} \tag{2.35}
\end{equation*}
$$

from [20]. It gives

$$
\begin{equation*}
\log 3+2 E<\log \left(e^{2 A}+2 e^{2 A A}\right) \tag{2.36}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
I>\frac{2 A+G}{3} \tag{2.37}
\end{equation*}
$$

given in [8], implies that

$$
\begin{equation*}
\log 3+E>\log \left(2 e^{A}+e^{2 l}\right) \tag{2.38}
\end{equation*}
$$

In fact, the relation

$$
\begin{equation*}
I>\frac{A+L}{2} \tag{2.39}
\end{equation*}
$$

from [7], gives

$$
\begin{equation*}
\log 2+E>\log \left(e^{\mathscr{L}}+e^{\mathscr{A}}\right) \tag{2.40}
\end{equation*}
$$

but this is weaker than (2.38), as follows from [8]. The inequalities (2.33) and (2.40) can be combined as

$$
\begin{equation*}
E>\log \left(\frac{e^{\mathscr{L}}+e^{\mathscr{A}}}{2}\right)>\frac{\mathscr{L}+\mathscr{A}}{2} \tag{2.41}
\end{equation*}
$$

where the second inequality is a consequence of the concavity of the logarithmic function. We notice also that by

$$
\begin{equation*}
L+I<A+G, \tag{2.42}
\end{equation*}
$$

given in [1], one can write

$$
\begin{equation*}
e^{\mathscr{L}}+e^{E}<e^{\mathscr{A}}+e^{A} . \tag{2.43}
\end{equation*}
$$

(7) In [9] Sándor proved the inequality

$$
\begin{equation*}
I\left(a^{2}, b^{2}\right)<\frac{A^{4}(a, b)}{I^{2}(a, b)} \tag{2.44}
\end{equation*}
$$

By the exp-log method, we get

$$
\begin{equation*}
E(2 x, 2 y)<4 \mathscr{A}(x, y)-2 E(x, y) . \tag{2.45}
\end{equation*}
$$

It is interesting to note that by the equality

$$
\begin{equation*}
\log \frac{I^{2}(\sqrt{a}, \sqrt{b})}{I(a, b)}=\frac{G(a, b)}{L(a, b)}-1, \tag{2.46}
\end{equation*}
$$

given in [7], we have the identity

$$
\begin{equation*}
2 E\left(\frac{x}{2}, \frac{y}{2}\right)-E(x, y)=e^{A(x, y)-\mathscr{L}(x, y)}-1 . \tag{2.47}
\end{equation*}
$$

Putting $x \rightarrow x / 2, y \rightarrow y / 2$ in (2.45), and taking into account (2.47), we can write

$$
\begin{equation*}
2 E(x, y)+e^{A(x, y)-\mathscr{L}(x, y)}-1<4 \mathscr{A}\left(\frac{x}{2}, \frac{y}{2}\right) . \tag{2.48}
\end{equation*}
$$

This may be compared to (2.23).
(8) We consider now applications of the special Gini mean

$$
\begin{equation*}
S=S(a, b)=\left(a^{a} b^{b}\right)^{1 /(a+b)} \tag{2.49}
\end{equation*}
$$

(see [15]). Its attached mean (by the exp-log method)

$$
\begin{equation*}
\mathscr{S}(x, y)=\frac{x e^{x}+y e^{y}}{e^{x}+e^{y}}=\log S\left(e^{x}, e^{y}\right) \tag{2.50}
\end{equation*}
$$

is a special case of

$$
\begin{equation*}
M_{f}(x, y)=\frac{x f(x)+y f(y)}{f(x)+f(y)} \tag{2.51}
\end{equation*}
$$

which was defined in [18]. Using the inequality

$$
\begin{equation*}
\left(\frac{S}{A}\right)^{2}<\left(\frac{I}{G}\right)^{3} \tag{2.52}
\end{equation*}
$$

8 On some exponential means. Part II

from [15], we get

$$
\begin{equation*}
2 \mathscr{S}-2 \mathscr{A}<3 E-3 A \tag{2.53}
\end{equation*}
$$

The inequalities

$$
\begin{equation*}
\frac{A^{2}}{I}<S<\frac{A^{4}}{I^{3}}<\frac{A^{2}}{G} \tag{2.54}
\end{equation*}
$$

given in [15] imply that

$$
\begin{equation*}
2 \mathscr{A}-E<\mathscr{S}<4 \mathscr{A}-3 E<2 \mathscr{A}-A . \tag{2.55}
\end{equation*}
$$

These offer connections between the exponential means E and \mathscr{S}.
Let now the mean

$$
\begin{equation*}
U=U(a, b)=\frac{1}{3} \sqrt{(2 a+b)(a+2 b)} \tag{2.56}
\end{equation*}
$$

In [12], it is proved that

$$
\begin{equation*}
G<\sqrt[4]{U^{3} G}<I<\frac{U^{2}}{A}<U<A . \tag{2.57}
\end{equation*}
$$

By the exp-log method, we get

$$
\begin{equation*}
A<\frac{1}{4}(3 \cup+A)<E<2 U-\mathscr{A}<\boldsymbol{U}<\mathscr{A} . \tag{2.58}
\end{equation*}
$$

These relations offer a connection between the means E and U.

Acknowledgments

The authors thank the two referees for useful remarks which have improved the presentation of the paper.

References

[1] H. Alzer, Ungleichungen für Mittelwerte, Archiv der Mathematik 47 (1986), no. 5, 422-426.
[2] \qquad , Two inequalities for means, Comptes Rendus Mathématiques de L'Academie des Sciences. La Société Royale du Canada. (Mathematical Reports) 9 (1987), no. 1, 11-16.
[3] S.-J. Bang, Problem 4472, School Science and Mathematics 95 (1998), 222-223.
[4] C. Gini, Le Medie, Unione Tipografico Torinese, Milano, 1958.
[5] E. Neuman and J. Sándor, On certain means of two arguments and their extensions, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 16, 981-993.
[6] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika (1980), no. 678-715, 15-18 (1981).
[7] J. Sándor, On the identric and logarithmic means, Aequationes Mathematicae 40 (1990), no. 2-3, 261-270.
[8] , A note on some inequalities for means, Archiv der Mathematik 56 (1991), no. 5, 471473.
[9] \qquad , On certain identities for means, Studia Universitatis Babeş-Bolyai. Mathematica 38 (1993), no. 4, 7-14.
[10] , On certain inequalities for means, Journal of Mathematical Analysis and Applications 189 (1995), no. 2, 602-606.
[11] , On refinements of certain inequalities for means, Archivum Mathematicum (Brno) 31 (1995), no. 4, 279-282.
[12] , Two inequalities for means, International Journal of Mathematics and Mathematical Sciences 18 (1995), no. 3, 621-623.
[13] , On certain inequalities for means. II, Journal of Mathematical Analysis and Applications 199 (1996), no. 2, 629-635.
[14] , On means generated by derivatives of functions, International Journal of Mathematical Education in Science and Technology 28 (1997), no. 1, 146-148.
[15] J. Sándor and I. Raşa, Inequalities for certain means in two arguments, Nieuw Archief voor Wiskunde. Vierde Serie 15 (1997), no. 1-2, 51-55.
[16] J. Sándor and Gh. Toader, On some exponential means, Seminar on Mathematical Analysis (ClujNapoca, 1989-1990), Preprint, vol. 90, "Babeş-Bolyai" Univ., Cluj, 1990, pp. 35-40.
[17] , Some general means, Czechoslovak Mathematical Journal 49(124) (1999), no. 1, 53-62.
[18] , On means generated by two positive functions, Octogon Mathematical Magazine 19 (2002), no. 1, 70-73.
[19] , Inequalities for general integral means, Journal of Inequalities in Pure and Applied Mathematics 7 (2006), no. 1, article 13.
[20] J. Sándor and T. Trif, Some new inequalities for means of two arguments, International Journal of Mathematics and Mathematical Sciences 25 (2001), no. 8, 525-532.
[21] H.-J. Seiffert, Comment to problem 1365, Mathematics Magazine 65 (1992), 356.
[22] K. B. Stolarsky, The power and generalized logarithmic means, The American Mathematical Monthly 87 (1980), no. 7, 545-548.
[23] Gh. Toader, An exponential mean, Seminar on Mathematical Analysis (Cluj-Napoca, 19871988), Preprint, vol. 88, Univ. "Babeş-Bolyai", Cluj, 1988, pp. 51-54.

József Sándor: Department of Mathematics, Babes-Bolyai University,
3400 Cluj-Napoca, Romania
E-mail address: jsandor@math.ubbcluj.ro
Gheorghe Toader: Department of Mathematics, Technical University of Cluj-Napoca, 3400 Cluj-Napoca, Romania
E-mail address: gheorghe.toader@math.utcluj.ro

