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Let R be a prime ring of characteristic different from 2, I a nonzero right ideal of R, d
and δ nonzero derivations of R, and s4(x1,x2,x3,x4) the standard identity of degree 4. If
the composition (dδ) is a Lie derivation of [I ,I] into R, then either s4(I ,I ,I ,I)I = 0 or
δ(I)I = d(I)I = 0.
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Throughout this note, R will be always a prime ring of characteristic different from 2
with center Z(R), extended centroid C, and two-sided Martindale quotient ring Q. Let
f : R→ R be additive mapping of R into itself. It is said to be a derivation of R if f (xy)=
f (x)y + x f (y), for all x, y ∈ R. Let S⊆ R be any subset of R. If for any x, y ∈ S, f ([x, y])=
[ f (x), y] + [x, f (y)], then the mapping f is called a Lie derivation on S. Obviously any
derivation of R is a Lie derivation on any arbitrary subset S of R.

A typical example of a Lie derivation is an additive mapping which is the sum of a
derivation and a central map sending commutators to zero.

The well-known Posner first theorem states that if δ and d are two nonzero derivations
of R, then the composition (dδ) cannot be a nonzero derivation of R [12, Theorem 1].
An analog of Posner’s result for Lie derivations was proved by Lanski [8]. More precisely,
Lanski showed that if δ and d are two nonzero derivations of R and L is a Lie ideal of R,
then (dδ) cannot be a Lie derivation of L into R unless char(R)= 2 and either R satisfies
s4(x1, . . . ,x4), the standard identity of degree 4, or d = αδ, for α∈ C.

This note is motived by the previous cited results. Our main theorem gives a general-
ization of Lanski’s result to the case when (dδ) is a Lie derivation of the subset [I ,I] into
R, where I is a nonzero right ideal of R and the characteristic of R is different from 2. The
statement of our result is the following.

Theorem 1. Let R be a prime ring of characteristic different from 2, I a nonzero right ideal
of R, d and δ nonzero derivations of R, and s4(x1, . . . ,x4) the standard identity of degree 4.
If the composition (dδ) is a Lie derivation of [I ,I] into R, then either s4(I ,I ,I ,I)I = 0 or
δ(I)I = d(I)I = 0.
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2 Products of derivations

Remark 2. Notice that for all u,v ∈ [I ,I], we obviously have that

(dδ)
(
[u,v]

)= [(dδ)(u),v
]

+
[
u, (dδ)(v)

]
+
[
δ(u),d(v)

]
+
[
d(u),δ(v)

]
. (1)

Hence, since we suppose that (dδ) is a Lie derivation on [I ,I], we will always assume as a
main hypothesis that [δ(u),d(v)] + [d(u),δ(v)]= 0, for any u,v ∈ [I ,I].

Remark 3. The assumption S4(I ,I ,I ,I)I �= 0 is essential to the main result. For example,
consider R =M3(F), for F a field of characteristic 3, and let ei j be the usual matrix unit
in R. Let I = (e11 + e22)R, δ the inner derivation induced by the element e13, d the inner
derivation induced by the element e12, that is, δ(x) = [e13,x] = e13x− xe13, and d(x) =
[e12,x]= e12x− xe12, for all x ∈ R. In this case, notice that S4(x1,x2,x3,x4)x5 is an identity
for I , moreover

[
δ
([(

e11 + e22
)
x1,
(
e11 + e22

)
x2
])

,d
([(

e11 + e22
)
y1,
(
e11 + e22

)
y2
])]

+
[
d
([(

e11 + e22
)
x1,
(
e11 + e22

)
x2
])

,δ
([(

e11 + e22
)
y1,
(
e11 + e22

)
y2
])]

= (d([(e11 + e22
)
x1,
(
e11 + e22

)
x2
])[(

e11 + e22
)
y1,
(
e11 + e22

)
y2
])
e13

− (d([(e11 + e22
)
y1,
(
e11 + e22

)
y2
])[(

e11 + e22
)
x1,
(
e11 + e22

)
x2
])
e13 = 0

(2)

for any x1,x2, y1, y2 ∈ R, but clearly d(I)I = [e12,I]I �= 0.

In the particular case I = R and both d, δ are inner derivations, induced, respectively,
by some elements a,b ∈ R, our theorem has the following flavor.

Lemma 4. Let R be a prime ring of characteristic different from 2, a,b ∈ R such that [[a,v],
[b,u]] + [[b,v],[a,u]]= 0, for all v,u∈ [R,R]. Then either a is a central element of R or b
is a central one.

The proof is a clear special case of [8, Theorem 6].
We first fix some notations and recall some useful facts.

Remark 5. Denote by T =Q∗C C{X} the free product over C of the C-algebra Q and the
free C-algebra C{X}, with X a countable set consisting of noncommuting indeterminates
{x1, . . . ,xn}. The elements of T are called generalized polynomials with coefficients in Q.
I , IR, and IQ satisfy the same generalized polynomial identities with coefficients in Q.
For more details about these objects, we refer the reader to [1, 2, 4].

Remark 6. Any derivation of R can be uniquely extended to a derivation of Q, and so any
derivation of R can be defined on the whole of Q [2, Proposition 2.5.1]. Moreover Q is a
prime ring as well as R and the extended centroid C of R coincides with the center of Q
[2, Proposition 2.1.7, Remark 2.3.1].

Remark 7. Let f (x1, . . . ,xn,d(x1), . . . ,d(xn)) be a differential identity of R. One of the fol-
lowing holds (see [7]):

(1) either d is an inner derivation in Q, in the sense that there exists q ∈ Q such
that d(x) = [q,x], for all x ∈ Q and Q satisfies the generalized polynomial iden-
tity f (x1, . . . ,xn, [q,x1], . . . , [q,xn]);
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(2) or R satisfies the generalized polynomial identity

f
(
x1, . . . ,xn, y1, . . . , yn

)
. (3)

Moreover I , IR, and IQ satisfy the same differential identities with coefficients in Q
(see [9]).

Finally, as a consequence of [11, Theorem 2], we have the following.

Remark 8. Let R be a prime ring and
∑m

i=1 aiXbi +
∑n

j=1 cjXdj = 0, for all X ∈ R, where
ai,bi,cj ,dj ∈ RC. If {a1, . . . ,am} are linearly C-independent, then each bi is C-dependent
on d1, . . . ,dn. Analogously, if {b1, . . . ,bm} are linearly C-independent, then each ai is C-
dependent on c1, . . . ,cn.

For the remainder of the note we will assume that the hypothesis of the theorem holds
but that the conclusion is false.

Thus, we will always suppose that there exist c1,c2,c3,c4,c5,c6,c7,c8,c9 ∈ I such that
s4(c1,c2,c3,c4)c5 �= 0, and either δ(c6)c7 �= 0 or d(c8)c9 �= 0.

We begin with the following.

Lemma 9. Let δ and d both be Q-inner derivations such that either δ(I)I �= 0 or d(I)I �= 0.
Then R is a ring satisfying a nontrivial generalized polynomial identity.

Proof. By Remark 2, we assume that [δ(u),d(v)] + [d(u),δ(v)] = 0, for any u,v ∈ [I ,I].
Let a,b ∈Q such that δ(x)= [a,x] and d(x)= [b,x], for all x ∈ R.

Without loss of generality, we may assume in this context that δ(I)I �= 0. Notice that
if {y,ay} are linearly C-dependent for all y ∈ I , then there exists α ∈ C, such that
(a− α)I = 0 (see [10, Lemma 3]). If we replace a by a− α, since they induce the same
inner derivation, it follows that δ(I)I = [a−α,I]I = 0, a contradiction. Thus there exists
x ∈ I such that {x,ax} are linearly C-independent.

Let x ∈ I such that {x,ax} are linearly C-independent and r1, r2, r3, r4 are any elements
of R. Then

[[
a,
[
xr1,xr2

]]
,
[
b,
[
xr3,xr4

]]]
+
[[
b,
[
xr1,xr2

]]
,
[
a,
[
xr3,xr4

]]]= 0. (4)

Denote

F1 =
(
r1xr2− r2xr1

)
b
[
xr3,xr4

]− (r1xr2− r2xr1
)[
xr3,xr4

]
b

− (r3xr4− r4xr3
)
b
[
xr1,xr2

]
+
(
r3xr4− r4xr3

)[
xr1,xr2

]
b,

F2 =−
(
r3xr4− r4xr3

)
a
[
xr1,xr2

]
+
(
r3xr4− r4xr3

)[
xr1,xr2

]
a

+
(
r1xr2− r2xr1

)
a
[
xr3,xr4

]− (r1xr2− r2xr1
)[
xr3,xr4

]
a,

F3 =
(
r3xr4− r4xr3

)
ba
[
xr1,xr2

]− (r1xr2− r2xr1
)
ba
[
xr3,xr4

]

+
(
r1xr2− r2xr1

)
a
[
xr3,xr4

]
b− (r3xr4− r4xr3

)
b
[
xr1,xr2

]
a

− (r1xr2− r2xr1
)
ba
[
xr3,xr4

]
+
(
r1xr2− r2xr1

)
b
[
xr3,xr4

]
a

+
(
r3xr4− r4xr3

)
ab
[
xr1,xr2

]− (r3xr4− r4xr3
)
a
[
xr1,xr2

]
b.

(5)
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Hence (4) is axF1 + bxF2 + xF3 = 0. If {ax,bx,x} are linearly C-independent, then (4) is a
nontrivial generalized polynomial identity for R, since F1 �= 0 in T , using b /∈ C. On the
other hand, if there exist α1,α2 ∈ C such that bx = α1x+α2ax, it follows that R satisfies

axF1 +α1xF2 +α2axF2 + xF3 = 0, (6)

that is, again a nontrivial GPI, because {x,ax} are linearly C-independent, by the choice
of x and since F1 +F2 �= 0 in T , using a,b /∈ C.

The same argument shows that if d(I)I �= 0, then there exists x ∈ I such that {x,bx}
are linearly C-independent and R satisfies in any case a nontrivial GPI. �

At this point, we need a result that will be useful in the continuation of the note.

Remark 10. Let R =Mn(F) be the ring of n× n matrices over the field F, denote by ei j
the usual matrix unit with 1 in the (i, j)-entry and zero elsewhere. Since there exists a set
of matrix units that contains the idempotent generator of a given minimal right ideal, we
observe that any minimal right ideal is part of a direct sum of minimal right ideals adding
to R. In light of this and applying [6, Proposition 5, page 52], we may assume that any
minimal right ideal of R is a direct sum of minimal right ideals, each of the form eiiR.

Lemma 11. Let R =Mn(F) be the ring of n× n matrices over the field F of characteristic
different from 2 and n≥ 2. Let d be a nonzero inner derivation of R, and I a nonzero right
ideal of R. If a is a nonzero element of I such that (d([x1,x2])[x3,x4]−d([x3,x4])[x1,x2])a=
0, for all x1,x2,x3,x4 ∈ I , then either s4(I ,I ,I ,I)I = 0 or d is induced by an element b ∈ R
such that (b−β)I = 0, for a suitable β ∈ Z(R).

Proof. Let b be an element of R which induces the derivation d, that is, d(x)= [b,x], for
all x ∈ R. As above, let ei j be the usual matrix unit with 1 in the (i, j)-entry and zero
elsewhere and write a=∑ai jei j , b =

∑
bi jei j , with ai j and bi j elements of F.

We know that I has a number of uniquely determinated simple components: they are
minimal right ideals of R and I is their direct sum. In light of Remark 10, we may write
I = eR for some e =∑t

i=1 eii and t ∈ {1,2, . . . ,n}. Since s4(I ,I ,I ,I)I = 0 in case t ≤ 2, we
may suppose that t ≥ 3.

First of all, we want to prove that brs = 0 for all s≤ t and r �= s. To do this, suppose by
contradiction that there exist i �= j such that bi j �= 0 ( j ≤ t). Without loss of generality, we
replace b by b−1

i j (b− bj j In), where In is the identity matrix in Mn(F) so that we assume
bi j = 1 and bj j = 0. Moreover a= ex for a suitable x ∈ R.

Let now k ≤ t, k �= i, j, [x1,x2]= eki, [x3,x4]= eji. In this case, we have

0= ([b,eki
]
ejia−

[
b,eji

]
eki
)
a (7)

and left multiplying by ekk,

ekibejia= 0, (8)

that is, since bi j = 1, eiia= 0.
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On the other hand, if we choose [x1,x2]= eki and [x3,x4]= ejk, we have

0= ([b,eki
]
ejk −

[
b,ejk

]
eki
)
a= [b,eki

]
ejka=−bi jekka. (9)

Therefore erra=0 for all r �= j, that is, a= ej ja. Finally, consider [x1,x2]=eki and [x3,x4]=
ekk − ej j . Then

0= ([b,eki
](
ekk − ej j

)− [b,ekk − ej j
]
eki
)
a= ekibej ja, (10)

that is, ej ja= 0. This implies that ea= 0, so that a= 0, a contradiction.
This argument says that if a �= 0, then bi j = 0 for all i �= j, j ≤ t.
Suppose that (b− β)I �= 0, for β ∈ F. In this case, there exist 1 ≤ r, s ≤ t, with r �= s,

such that brr �= bss.
Let f be the F-automorphism of R defined by f (x)= (1− ers)x(1 + ers). Thus we have

that f (x)∈ I , for all x ∈ I and

([
f (b),

[
x1,x2

]][
x3,x4

]− [ f (b),
[
x3,x4

]][
x1,x2

])
f (a)= 0 (11)

for all x1,x2,x3,x4 ∈ I . If a �= 0, then f (a) �= 0, and as above, the (r,s)-entry of f (b) is
zero. On the other hand,

f (b)= (1− ers
)
b
(
1 + ers

)= b+ brrers− bssers, (12)

that is, brr = bss, a contradiction. This means that there exists β ∈ F such that (b− β)I =
0. Denote b− β = p. Since b and p induce the same inner derivation d, we have that
([p, [x1,x2]][x3,x4]− [p, [x3,x4]][x1,x2])a= 0 with pI = 0. �

Lemma 12. Let R be a prime ring of characteristic different from 2, d a nonzero inner deriva-
tion of R, I a nonzero right ideal of R. If a is a nonzero element of I such that (d([x1,x2])[x3,
x4]− d([x3,x4])[x1,x2])a = 0, for all x1,x2,x3,x4 ∈ I , then either s4(I ,I ,I ,I)I = 0 or d is
induced by an element b ∈ R such that (b−β)I = 0, for a suitable β ∈ Z(R).

Proof. As a reduction of Lemma 9, we have that if R is not a GPI ring, then we are done.
Thus consider the only case when R satisfies a nontrivial generalized polynomial identity.

Thus the Martindale quotient ring Q of R is a primitive ring with nonzero socle H =
Soc(Q). H is a simple ring with minimal right ideals. Let D be the associated division
ring of H , by [11] D is a simple central algebra finite-dimensional over C = Z(Q). Thus
H ⊗C F is a simple ring with minimal right ideals, with F an algebraic closure of C. Let
b be an element of R which induces the derivation d. Moreover ([b, [x1,x2]][x3,x4]−
[b, [x3,x4]][x1,x2])a= 0, for all x1,x2,x3,x4 ∈ IH ⊗C F (see, e.g., [4, Theorem 2]). Notice
that if C is finite, we choose F = C.

Now we claim that for any c ∈ IH , there exists β ∈ C with (b− β)c = 0. If not, then
for some c ∈ IH , (b−β)c �= 0 for all β ∈ C, so in particular bc �= 0. Since H is regular [5],
there exists g2 = g ∈ IH , such that c ∈ gIH , and e2 = e ∈H ⊗C F, such that

g,bg,gb,a,c,bc,cb ∈ e
(
H ⊗C F

)
e ∼=Mn(F), n≥ 3. (13)
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Let x1,x2,x3,x4 ∈ ge(H ⊗C F)e and a= eae �= 0, then

0= e
([
b,
[
x1,x2

]][
x3,x4

]− [b,
[
x3,x4

]][
x1,x2

])
eae. (14)

Applying Lemma 11, we have that e(b− λ)ec = 0 for λ∈ C, so (b−β)c = 0, contradicting
the choice of c.

As in the proof of Lemma 9, by [10, Lemma 3], we conclude that there exists β ∈ C
such that (b−β)I = 0. �

Lemma 13. If δ and d are both inner derivations, then the theorem holds.

Proof. By Remark 2, we assume that [δ(u),d(v)] + [d(u),δ(v)] = 0, for any u,v ∈ [I ,I].
Let a,b ∈ Q such that δ(x) = [a,x] and d(x) = [b,x], for all x ∈ R. Since in light of
Lemma 9, R satisfies a nontrivial GPI, then without loss of generality, R is simple and
equal to its own socle and IR= I . In fact, Q has nonzero socle H with nonzero right ideal
J = IH [11]. Note that H is simple, J = JH , and J satisfies the same basic conditions as I .
Now just replace R by H , I by J , and we are done.

Recall that s4(c1,c2,c3,c4)c5 �= 0 and either δ(c6)c7 �= 0 or d(c8)c9 �= 0. By the regularity
of R, there exists an element e2 = e ∈ IR such that eR = c1R + c2R + c3R + c4R + c5R +
c6R+ c7R+ c8R+ c9R and eci = ci, for i = 1, . . . ,9. We note that s4(eRe,eRe,eRe,eRe) �= 0
(and dimC(eRe)≥ 9).

Let x, y,z ∈ R, so

[[
a,
[
e,ex(1− e)

]]
,
[
b, [ey,ez]

]]
+
[[
b,
[
e,ex(1− e)

]]
,
[
a, [ey,ez]

]]= 0. (15)

Denote A= (1− e)ae, B = (1− e)be. Assume that A= 0 but B �= 0. Consider first the
case when {1− e, (1− e)a} are linearly C-independent. Equation (15), multiplied on the
left by (1− e), says that

−(1− e)b[ey,ez]aex(1− e) + (1− e)b[ey,ez]ex(1− e)a= 0. (16)

By Remark 8 and since {1− e, (1− e)a} are linearly C-independent, it follows that there
exists λ1 ∈ C such that −(1− e)b[ey,ez]ae= λ1(1− e)b[ey,ez]e.

Therefore

(1− e)b[ey,ez]exλ1(1− e) + (1− e)b[ey,ez]ex(1− e)a= 0, (17)

which implies that (1 − e)b[ey,ez]e = 0, again since {1− e, (1 − e)a} are linearly
C-independent. If we denote T = eR, (1− e)b[T ,T]T = 0 forces (1− e)bT[T ,T]T = 0,
so either (1− e)bT = 0 or [T ,T]T = 0. Thus we have that either B = (1− e)be = 0 or
[x1,x2]x3 is an identity for eR. In this last case, a fortiori s4(x1,x2,x3,x4)x5 is an iden-
tity for eR. In both cases, we have a contradiction, since we suppose that B �= 0 and
s4(c1,c2,c3,c4)c5 �= 0.

Suppose now that (1− e)a= λ(1− e), for some λ∈ C. Equation (16) says that

−(1− e)b[ey,ez]aex(1− e) + λ(1− e)b[ey,ez]ex(1− e)= 0, (18)
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and so

−(1− e)b[ey,ez]ae+ λ(1− e)b[ey,ez]e= 0, (19)

that is, for a′ = λe− ae,

(1− e)b[ey,ez]a′ = 0. (20)

Denote U = [ey,ez]a′. Since (1− e)be[Ux1,ex2]a′ = 0, for all x1,x2 ∈ R, it follows that
(1− e)bex2Ux1a′ = 0, and so either a′ = 0 or U = 0. Again denote T = eR. If U = 0, we
have [T ,T]a′ = 0, so that [T ,T]Ta′ = 0, which implies either a′ = 0 or [T ,T]T = 0. Since
[eR,eR]e �= 0, we have ae = λe in any case.

All the previous arguments say that (a− λ)e= 0. Replacing a by a− λ= a′′, since they
induce the same inner derivation, we may assume that for all x, y,z, t ∈ R,

[[
a′′, [ex,ey]

]
,
[
b, [ez,et]

]]
+
[[
b, [ex,ey]

]
,
[
a′′, [ez,et]

]]= 0. (21)

Left multiplying (21) by (1− e), we have

(1− e)be
[
[ez,et],[ex,ey]

]
a′′ = 0, (22)

in particular

0= (1− e)be
[
[ez,et],

[
ex,ey(1− e)

]]
a′′ = (1− e)be[ez,et]exey(1− e)a′′, (23)

and by the previous same argument, (1− e)a′′ = 0, that is, a′′ = ea′′. In light of this, by
(22),

(
eR(1− e)be

)[
[eze,ete],[exe,eye]

]
(ea′′Re)= 0. (24)

Let G be the subgroup of eRe generated by the polynomial [[eze,ete],[exe,eye]]. It is
easy to see that G is a noncentral Lie ideal of eRe. In this condition, it is well known that
[eRe,eRe]⊆G, and so eR(1− e)be[eRe,eRe]ea′′Re = 0.

Consider now the simple Artinian ring eRe, then we have that

eR(1− e)be
[
ex1e,ex2e

]
(ea′′Re)= 0 ∀x1,x2 ∈ R. (25)

Let U = [ex1e,ex2e](ea′′Re), so eR(1− e)beU = 0. Since

(
eR(1− e)be

)[
Uex1e,ex2e

]
(ea′′Re)= 0, (26)

then

(
eR(1− e)be

)
x2Uex1(ea′′Re)= 0. (27)

It follows that if (1− e)be �= 0, then a′′ = 0, that is, a= λ∈ C, a contradiction. Thus the
conclusion is that if A= (1− e)ae= 0, then B = (1− e)be = 0.

Similarly, A= (1− e)ae= 0 follows from B = (1− e)be = 0.
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Now we assume that neither A= 0 nor B = 0, and proceed to get contradictions, prov-
ing that A= B = 0.

Left multiplying (15) by (1− e) and right multiplying by e, we get

(1− e)aex(1− e)b[ey,ez]e+ (1− e)b[ey,ez]ex(1− e)ae

+ (1− e)bex(1− e)a[ey,ez]e+ (1− e)a[ey,ez]ex(1− e)be= 0.
(28)

If we denote A′ = A[ye,ze], B′ = B[ye,ze], it follows that

AxB′ +B′xA+BxA′ +A′xB = 0. (29)

Consider now the case when A,B are linearly C-independent.
In light of Remark 8 and (29), it follows that there exist α1, α2, α3, α4 in C such that

B′ = α1A+α2B, A′ = α3A+α4B. So we rewrite (29) as follows:

2α1AxA+ 2α4BxB+
(
α2 +α3

)
AxB+

(
α2 +α3

)
BxA= 0, (30)

that is,

Ax
(
2α1A+

(
α2 +α3

)
B
)

+Bx
(
2α4B+

(
α2 +α3

)
A
)= 0. (31)

Since A, B are C-independent, by (31) and again Remark 8, it follows that 2α1A+ (α2 +
α3)B = 0 and 2α4B + (α2 + α3)A = 0, so the independence of A and B forces α1 = α4 =
α2 +α3 = 0.

Therefore we have that B[eRe,eRe] ⊆ CB. Notice that B[eRe,eRe] �= 0. In fact, if
B[eRe,eRe] = 0, since [eRe,eRe] �= (0) is a noncentral Lie ideal of the simple Artinian
ring eRe, the contradiction B = 0 is immediate.

Let u,v ∈ [eRe,eRe]. Hence there exist ω1, ω2, 0 �= ω ∈ C such that

B[u,v]= ωB �= 0, Bu= ω1B, Bv = ω2B, (32)

and by calculation we get the contradiction

0 �= ωB = B[u,v]= 0. (33)

Hence we may assume thatA and B are linearlyC-dependent, sayA=αB, for 0 �= α∈C,
so also A′ = αB′. Equation (29) is now 2αBxB′ + 2αB′xB = 0, and it follows that B and B′

must be linearly C-dependent, so that BxB = 0 and B = B′ = 0.
Therefore in any case, we have that if s4(eR,eR,eR,eR)e �= 0, then (1− e)be = (1−

e)ae = 0.
Let J = eR, J = J

/
J ∩ lR(J); J is a prime C-algebra. Since d(J)⊆ J and δ(J)⊆ J , d and δ

induce on J the following two derivations:

d : J −→ J such that d(x)= d(x),

δ : J −→ J such that δ(x)= δ(x).
(34)
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Therefore, we have

0= [δ([r1,r2
])

,d
[
r3,r4

]]
+
[
d
([
r1,r2

])
,δ
[
r3,r4

]]
(35)

for all r1,r2,r3,r4 ∈ J . By Lemma 4, we have that one of the following holds:

δ = 0, d = 0, J is commutative. (36)

Since s4(J , J , J , J)J �= 0, the last case cannot occur. On the other hand, now we prove that
also the other cases lead us to contradictions.

Suppose that the first case occurs, that is, δ(J)J = 0. By the lemma in [3], there exists
an element q = a− α ∈ Q, with α ∈ C, such that (a− α)J = 0. Moreover a and q induce
the same inner derivation δ, so that we have

([
b,
[
x1,x2

]][
x3,x4

]− [b,
[
x3,x4

]][
x1,x2

])
q = 0 ∀x1,x2,x3,x4 ∈ J. (37)

In particular, for any r ∈ R, choose [x1,x2]= [e,er(1− e)]= er(1− e). From (37), it fol-
lows that

[
b,
[
x3,x4

]]
eR(1− e)q = 0. (38)

If (1− e)q = 0, we have q = eq ∈ J . Under this condition, by Lemma 12, it follows from
(37) that either q = 0, which implies the contradiction a∈ C and δ = 0, or (b−β)J = 0 for
a suitable β ∈ C, that is, d(eR)eR = 0. So consider the case when [b, [x3,x4]]e = 0 for all
x3,x4 ∈ J , and remember that be = ebe. This implies that [ebe, [y1, y2]]= 0 for all y1, y2 ∈
eRe, that is, either eRe is a commutative central simple algebra or ebe ∈ Ce. In the first
case, we have the contradiction 0 = s4(ec1,ec2,ec3,ec4)ec5 = s4(c1,c2,c3,c4)c5 �= 0. In the
second one, we get again d(eR)eR= 0. Therefore we conclude that in any case, δ(eR)eR=
d(eR)eR= 0, which is again a contradiction because of δ(c6)c7 �= 0 or d(c8)c9 �= 0.

Obviously by a similar argument and (36), we are also finished when d(J)J = 0. �

For the proof of the main theorem, we need the following results.

Lemma 14. Let R be a prime ring of characteristic different from 2 and I a nonzero right
ideal of R. If for any x1,x2,x3,x4 ∈ I , [[x1,x2],[x3,x4]]= 0, then [I ,I]I = 0.

Proof. First note that if [y, [I ,I]]= 0, for some y ∈ R, then, for any s, t ∈ I , we have 0=
[y, [st, t]] = [s, t][y, t]. In particular, for any x ∈ IR, 0 = [sx, t][y, t] = [s, t]x[y, t], that is
[s, t]IR[y, t]= 0. By the primeness of R, we have that either [s, t]I = 0, that is, [I ,I]I = 0,
or [y,I]= 0. In this last case, 0= [y,IR]= I[y,R] forcing y ∈ Z(R).

Therefore, if we assume that [I ,I]I �= 0, the assumption [[I ,I],[I ,I]] = 0 forces 0 �=
[I ,I]⊆ Z(R). Let s, t ∈ I be such that [s, t]I �= 0 and [s, t]∈ Z(R). Then 2s[s, t]= [s2, t]∈
Z(R), so [s, t] �= 0 forces s∈ Z(R) and we have the contradiction [s,I]= 0. �

Lemma 15. Let R be a noncommutative prime ring of characteristic different from 2, q
a noncentral element of R, and I a nonzero right ideal of R. If for any x1,x2,x3,x4 ∈ I ,
[[q, [x1,x2]],[x3,x4]]= 0, then [I ,I]I = 0.
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Proof. Suppose that [I ,I]I �= 0. As in Lemma 14, first we recall that the condition [y, [I ,
I]] = 0 forces y ∈ Z(R). This means that [q, [I ,I]] ⊆ Z(R), since [[q, [I ,I]],[I ,I]] = 0.
Moreover we may assume that [q, [I ,I]] �= 0, if not, then we are finished by Lemma 14.

Note that from [q, [I ,I]] ⊆ Z(R), it follows that [q, [[I ,I],I]] ⊆ Z(R). Expanding this
yields [[I ,I],[q,I]]⊆ Z(R). Since for all x ∈ I , we have [[I ,I],[q,xq]]⊆ Z(R), then [[I ,I],
[q,I]q]⊆ Z(R). Hence

0= [[[I ,I],[q,I]q
]
,q
]= [q, [q,I]

][
q, [I ,I]

]
. (39)

Since the second factor is nonzero and central, we have [q, [q,I]]= 0, which implies that
for all x, y ∈ I ,

0= [q, [q,xy]
]= [q, [q,x]y + x[q, y]

]= 2[q,x][q, y]. (40)

This means that [q,I][q,I]= 0 and a fortiori [q, [I ,I]][q, [I ,I]]= 0 giving the contradic-
tion [q, [I ,I]]= 0. �

We are ready to prove the following main result.

Theorem 16. Let R be a prime ring of characteristic different from 2, I a nonzero right
ideal of R, d and δ nonzero derivations of R, s4(x1, . . . ,x4) the standard identity of degree
4. If the composition (dδ) is a Lie derivation of [I ,I] into R, then either s4(I ,I ,I ,I)I = 0 or
δ(I)I = d(I)I = 0.

Proof. By Remark 2, we assume that [δ(u),d(v)] + [d(u),δ(v)] = 0, for any u,v ∈ [I ,I].
Suppose by contradiction that there exist c1, c2, c3, c4, c5, c6, c7, c8, c9 in I such that
s4(c1,c2,c3,c4)c5 �= 0 and either δ(c6)c7 �= 0 or d(c8)c9 �= 0.

First suppose that δ and d are C-independent modulo Dint.
Let t1, t2, t3, t4 ∈ I , by assumption, R satisfies

[[
δ
(
t1x1

)
, t2x2

]
+
[
t1x1,δ

(
t2x2

)]
,
[
d
(
t3x3

)
, t4x4

]
+
[
t3x3,d

(
t4x4

)]]

+
[[
d
(
t1x1

)
, t2x2

]
+
[
t1x1,d

(
t2x2

)]
,
[
δ
(
t3x3

)
, t4x4

]
+
[
t3x3,δ

(
t4x4

)]]

= [[δ(t1
)
x1 + t1δ

(
x1
)
, t2x2

]
+
[
t1x1,δ

(
t2
)
x2 + t2δ

(
x2
)]

,

[
d
(
t3
)
x3 + t3d

(
x3
)
, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4d

(
x4
)]]

+
[[
d
(
t1
)
x1 + t1d

(
x1
)
, t2x2

]
+
[
t1x1,d

(
t2
)
x2 + t2d

(
x2
)]

,

[
δ
(
t3
)
x3 + t3δ

(
x3
)
, t4x4

]
+
[
t3x3,δ

(
t4
)
x4 + t4δ

(
x4
)]]= 0.

(41)

By Kharchenko’s theorem [7], R satisfies the generalized polynomial identity

[[
δ
(
t1
)
x1 +t1y1, t2x2

]
+
[
t1x1,δ

(
t2
)
x2 + t2y2

]
,
[
d
(
t3
)
x3 + t3z3, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4z4

]]

+
[[
d
(
t1
)
x1 +t1z1, t2x2

]
+
[
t1x1,d

(
t2
)
x2+ t2z2

]
,
[
δ
(
t3
)
x3 + t3y3, t4x4

]
+
[
t3x3,δ

(
t4
)
x4 + t4y4

]]

(42)
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in particular R satisfies [[t1y1, t2x2],[t3x3, t4z4]], so Q satisfies this as well, and for all y1 =
x2 = x3 = z4 = 1 ∈ Q, it follows that [[I ,I],[I ,I]] = 0. Thus by Lemma 14, we conclude
that [I ,I]I = 0, that is, s4(I ,I ,I ,I)I = 0, which contradicts s4(c1,c2,c3,c4)c5 �= 0.

Now let δ and d be C-dependent modulo Dint. There exist γ1,γ2 ∈ C, such that γ1δ +
γ2d ∈ Dint, and by Lemma 13, it is clear that at most one of the two derivations can be
inner.

Without loss of generality, we may assume that γ1 �= 0, so that δ = αd + ad(q), for
α∈ C and ad(q) the inner derivation induced by the element q ∈Q.

If d is inner, then also δ is inner, and we have that d is an outer derivation of R. Let
t1, t2, t3, t4 ∈ I , R satisfies

α
[[
d
(
t1x1

)
, t2x2

]
+
[
t1x1,d

(
t2x2

)]
,
[
d
(
t3x3

)
, t4x4

]
+
[
t3x3,d

(
t4x4

)]]

+
[[
q,
[
t1x1, t2x2

]]
,
[
d
(
t3x3

)
, t4x4

]
+
[
t3x3,d

(
t4x4

)]]

+α
[[
d
(
t1x1

)
, t2x2

]
+
[
t1x1,d

(
t2x2

)]
,
[
d
(
t3x3

)
, t4x4

]
+
[
t3x3,d

(
t4x4

)]]

+
[[
d
(
t1x1

)
, t2x2

]
+
[
t1x1,d

(
t2x2

)]
,
[
q,
[
t3x3, t4x4

]]]

= α
[[
d
(
t1
)
x1 + t1d

(
x1
)
, t2x2

]
+
[
t1x1,d

(
t2
)
x2 + t2d

(
x2
)]

,

[
d
(
t3
)
x3 + t3d

(
x3
)
, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4d

(
x4
)]]

+
[[
q,
[
t1x1, t2x2

]]
,
[
d
(
t3
)
x3 + t3d

(
x3
)
, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4d

(
x4
)]]

+α
[[
d
(
t1
)
x1 + t1d

(
x1
)
, t2x2

]
+
[
t1x1,d

(
t2
)
x2 + t2d

(
x2
)]

,

[
d
(
t3
)
x3 + t3d

(
x3
)
, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4d

(
x4
)]]

+
[[
d
(
t1
)
x1 + t1d

(
x1
)
, t2x2

]
+
[
t1x1,d

(
t2
)
x2 + t2d

(
x2
)]

,
[
q,
[
t3x3, t4x4

]]]
,

(43)

and so the Kharchenko theorem shows that R satisfies

α
[[
d
(
t1
)
x1 +t1y1, t2x2

]
+
[
t1x1,d

(
t2
)
x2 +t2y2

]
,
[
d
(
t3
)
x3 +t3y3, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4y4

]]

+
[[
q,
[
t1x1, t2x2

]]
,
[
d
(
t3
)
x3 + t3y3, t4x4

]
+
[
t3x3,d

(
t4
)
x4 + t4y4

]]

+α
[[
d
(
t1
)
x1 +t1y1, t2x2

]
+
[
t1x1,d

(
t2
)
x2+t2y2

]
,
[
d
(
t3
)
x3+t3y3, t4x4

]
+
[
t3x3,d

(
t4
)
x4+t4y4

]]

+
[[
d
(
t1
)
x1 + t1y1, t2x2

]
+
[
t1x1,d

(
t2
)
x2 + t2y2

]
,
[
q,
[
t3x3, t4x4

]]]
.

(44)

In case α �= 0, for x1 = x4 = 0 in (44), we have that R satisfies

2α
[[
t1y1, t2x2

]
,
[
t3x3, t4y4

]]
, (45)

so Q satisfies this as well and for all y1 = x2 = x3 = y4 = 1 ∈ Q, it follows that 2α[[I ,I],
[I ,I]]= 0. Hence, if α �= 0, by Lemma 14, we have the contradiction [I ,I]I = 0.



12 Products of derivations

Now let α= 0. In this case for x4 = 0 in (44), we have that R satisfies

[[
q,
[
t1x1, t2x2

]]
,
[
t3x3, t4y4

]]
. (46)

As above Q satisifes this and, taking x1,x2,x3, y4 = 1, it follows that

[[
q, [I ,I]

]
, [I ,I]

]= 0. (47)

Then, by Lemma 15, we conclude again with the contradiction [I ,I]I = 0.
Similarly, when γ2 �= 0, then d = βδ + ad(q), for some β ∈ C, and mimicking the argu-

ment above gives another contradiction. �
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