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The classical least squares solutions in C[−1,1] in terms of linear combinations of ul-
traspherical polynomials are extended in order to estimate power series on (−1,1). Ap-
proximate rates of uniform and pointwise convergence are obtained, which correspond
to recent results of U. Luther and G. Mastroianni on Fourier projections with respect to
Jacobi polynomials.
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1. Introduction

The ultraspherical or Gegenbauer polynomials pn(x) with given constant ρ ≥ 0, nor-
malized by pn(1) = 1, arise in solutions to least squares approximation problems (see
[3, 11, 12]): define an inner product on C[−1,1] by

〈 f ,g〉 :=
∫ 1

−1
f (x)g(x)

(
1− x2)(ρ−1)/2

dx. (1.1)

Then pn(x) is generated by applying the Gram-Schmidt procedure to 1,x, . . . ,xn, and is
given recursively by

p0(x)= 1, p1(x)= x, for n≥ 1,

pn+1(x)=− n

n+ ρ
pn−1(x) +

2n+ ρ

n+ ρ
xpn(x).

(1.2)

For each f in C[−1,1],

n∑
j=0

〈
f ,

pj∥∥pj

∥∥2

〉
pj(x) (1.3)

is the unique polynomial which minimizes ‖ f − p‖2 over all polynomials p of degree
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2 Least squares approximations of power series

at most n. A consequence of a recent result of Luther and Mastroianni [8, Theorem 2.1
(Corollary 3.3)] on Fourier projections with respect to normalized Jacobi polynomials is
the following.

If ρ/4≤ γ ≤ ρ/4 + 1/2, then

∣∣∣∣∣
[
f (x)−

n∑
j=0

〈
f ,

pj∥∥pj

∥∥2

〉
pj(x)

](
1− x2)γ

∣∣∣∣∣≤ cE
γ
n( f ) ln(n+ 2), (1.4)

where

E
γ
n( f ) := inf

{∥∥[ f (x)− p(x)
](

1− x2)γ∥∥∞ : p polynomial of degree ≤ n
}

(1.5)

and c is independent of f and n.
This extends a classical theorem on Chebyshev polynomial (ρ = 0) approximation (see

[5, Theorem 14.8.2], [11, Theorem 3.3]). In particular, if n ≥ k ≥ 1 and ‖ f (k)(x)(1−
x2)γ+k/2‖∞ <∞, then

E
γ
n( f )≤ c

(n+ 1)k
E
γ+k/2
n−k

(
f (k)), (1.6)

where c is independent of f and n, which generalizes Jackson’s theorem (see [3, Theorem
4.8], [7], [8, Corollary 3.4]).

In this paper we obtain analogs to (1.4) and (1.6) for power series f defined on the
open interval (−1,1). Such functions f (especially without closed forms) arise, for ex-
ample, in solutions to differential equations. It will be necessary to first extend the above
least squares polynomial. This is accomplished in Section 2 by replacing the integral in
(1.3) by a sum in terms of Maclaurin coefficients of f and inversion coefficients of expan-
sions of monomials as linear combinations of ultraspherical polynomials. After proving
key properties of the latter coefficients in Section 3, we then derive uniform or pointwise
estimates to f with these least squares extensions.

2. Generalized Fourier coefficients

We first consider a general notion of summability. The following implies the well-known
convergence tests of Abel and Dirichlet [2, Theorems 10.17, 10.18] but with modified
error estimates.

Proposition 2.1. Suppose that
∑
ai and

∑|bj+1− bj| converge. Then,

∣∣∣∣∣
∑
i>n

aibi

∣∣∣∣∣≤
(∣∣bn+1

∣∣+
∑
j>n

∣∣bj+1− bj

∣∣
)
εn
(〈
ai
〉)

, (2.1)

where

εn
(〈
ai
〉)

:=max

{∣∣∣∣∣
∑
i>k

ai

∣∣∣∣∣ : k ≥ n

}
(2.2)

converges to zero.
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Proof. Note that

∑
j>n

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣= lim
m→∞

m∑
j=n+1

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣

≤ lim
m→∞εn

(〈
ai
〉) m∑

j=n+1

∣∣bj+1− bj

∣∣ <∞
(2.3)

by the hypotheses. Moreover,

∑
j>n

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣= lim
m→∞

m−1∑
j=n+1

∣∣∣∣∣
m∑

i= j+1

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣ (2.4)

since by the triangle inequality,

∣∣∣∣∣
∑
j>n

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣−
m−1∑
j=n+1

∣∣∣∣∣
m∑

i= j+1

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∑
i>m

ai

∣∣∣∣∣
m−1∑
j=n+1

∣∣bj+1− bj

∣∣+
∑
j≥m

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣

≤ εm
(〈
ai
〉)∑

j>n

∣∣bj+1− bj

∣∣

(2.5)

which converges to zero as m tends to infinity.
Finally, since

m∑
i=n+1

aibi =
( m∑

i=n+1

ai

)
bn+1 +

m−1∑
j=n+1

( m∑
i= j+1

ai

)(
bj+1− bj

)
, (2.6)

we have
∣∣∣∣∣
∑
i>n

aibi

∣∣∣∣∣≤
∣∣∣∣∣
∑
i>n

ai

∣∣∣∣∣
∣∣bn+1

∣∣+
∑
j>n

∣∣∣∣∣
∑
i> j

ai

∣∣∣∣∣
∣∣bj+1− bj

∣∣

≤
(∣∣bn+1

∣∣+
∑
j>n

∣∣bj+1− bj

∣∣
)
εn
(〈
ai
〉)
.

(2.7)

�

The quantity εn(〈ai〉) was used in [6] to approximate power series with linear combi-
nations of Legendre polynomials (ρ = 1). By Abel’s theorem [4, page 325], f (x)=∑aixi

is in C[−1,1] if and only if
∑
a2i and

∑
a2i+1 both converge. In this case, we have for γ ≥ 0,

E
γ
n

(∑
i

aix
i

)
≤ 2λ

(
n+ 1,γ

)[
εn
(〈
a2i
〉)

+ εn
(〈
a2i+1

〉)]
, (2.8)
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where

λ(n,γ) :=
(

n

2γ+n+ 2

)(γ/2)(n/(γ+1))( 2γ+ 2
2γ+n+ 2

)γ
. (2.9)

This is immediate from the proposition since for fixed |x| < 1, bi = x2i(1− x2)γ is non-
negative and decreases to zero, and hence

∣∣∣∣∣
∑
i>n

aix
i
(
1− x2)γ

∣∣∣∣∣≤
1∑

t=0

|x|t
∣∣∣∣∣
∑

2i+t>n

a2i+t
[
x2i(1− x2)γ]

∣∣∣∣∣

≤
1∑

t=0

2|x|n+1(1− x2)γεn(〈a2i+t
〉)

= 2|x|(n+1)/(γ+1)[|x|γ((n+1)/(γ+1))(1− x2)γ] 1∑
t=0

εn
(〈
a2i+t

〉)
,

(2.10)

where ‖|x|γ((n+1)/(γ+1))(1−x2)γ‖∞=λ(n+1,γ) by a calculus argument. Note that λ(n,γ)≤
1, and for each γ > 0, limn→∞ λ(n,γ)= 0; and for each n > 0, limγ→∞ λ(n,γ)= 0. Further-
more, by Abel’s theorem and the proposition, (

∑
aixi)(k) is in C[−1,1] if and only if the

series
∑
a2i+t(2i+ t)k (t = 0,1) converge, in which case we have in (2.10) corresponding

to (1.6),

εn
(〈
a2i+t

〉)≤
(

2
n+ 1

)k
εn
(〈

(2i+ t)ka2i+t
〉)
. (2.11)

Suppose now that
∑
aixi is a convergent power series on (−1,1) and pn(x) is ultras-

pherical with constant ρ ≥ 0. By (1.2), since xi = xxi−1, we have the inversion formula

xi =
i∑

j=0

mij pj(x), (2.12)

where mij = 0 if i− j is odd, m00 = 1, otherwise

mij = j− 1 + ρ

2 j− 2 + ρ
mi−1, j−1 +

j + 1
2 j + 2 + ρ

mi−1, j+1 (2.13)

withmi1 :=mi−1,0 + (1/2)mi−1,2 when ρ= 0. (We assumemij := 0 if either i < j or j =−1.)

Clearly
∑i

j=0mij = 1 and 0 <mij ≤ 1. In fact, (2.13) is equivalent to m11 = 1,

mj j = j− 1 + ρ

2 j− 2 + ρ
mj−1, j−1, j ≥ 2,

mi+2, j = (i+ 2)(i+ 1)
(i− j + 2)(i+ j + 2 + ρ)

mij , i≥ j.

(2.14)
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This may be verified by first showing by induction on n, where i= j + 2n (with j fixed),
that if (mij) satisfies (2.14), then

mi−1, j−1 = j(2 j− 2 + ρ)(i+ j + ρ)
i( j− 1 + ρ)(2 j + ρ)

mij (2.15)

with mi−1,0 := ((i+ 1)/2i)mi1 when ρ= 0 and

mi−1, j+1 = (i− j)( j + ρ)(2 j + 2 + ρ)
i( j + 1)(2 j + ρ)

mij . (2.16)

Substituting (2.15) and (2.16) into (2.13), we conclude that the matrices coincide.
By (2.14) we have the following well-known closed form for mij (see [10, page 283]):

mij =
(ρ+ 2 j)

(
(i− j)/2 + 1

)
(i− j)/2(ρ) j

2i+1(ρ/2)(i+ j+2)/2

(
i

j

)
, (2.17)

where mij := ((2− δ0 j)/2i)( i
(i− j)/2 ) whenever ρ = 0. (Recall the factorial function (α)n :=

α(α+ 1)···(α+n− 1) when n≥ 1 and (α)0 := 1 for α 	= 0.)
We now define the general Fourier coefficient cj of

∑
aixi with respect to the sequence

〈pn〉 by

cj :=
∑
i

aimi j (2.18)

whenever this sum converges. Note that cnj :=∑n
i=0 aimij is the jth coefficient in the

expansion of the partial sum

n∑
i=0

aix
i =

n∑
i=0

ai

( i∑
j=0

mij pj(x)

)
=

n∑
j=0

cnj p j(x). (2.19)

If cj exists for every j, then for γ ≥ 0 we also have

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣=
∣∣∣∣∣
∑
i>n

aix
i
(
1− x2)γ +

n∑
j=0

(
cnj − cj

)
pj(x)

(
1− x2)γ

∣∣∣∣∣

≤
∣∣∣∣∣
∑
i>n

aix
i
(
1− x2)γ

∣∣∣∣∣+
n∑
j=0

∣∣∣∣∣
∑
i>n

aimi j

∣∣∣∣∣μ( j,γ),

(2.20)

where μ( j,γ) := ‖pj(x)(1− x2)γ‖∞. Note that pj(x) is bounded by one in [−1,1] since
pj(1) = 1, and hence by [12, page 95], pj is a convex combination of Chebyshev poly-
nomials. Thus μ( j,γ)≤ 1. Moreover, μ(0,γ)= μ( j,0)= 1; and for jγ 	= 0, since pj(−x)=
(−1) j p j(x) and

∥∥x j
(
1− x2)γ∥∥∞ =

(
j

2γ+ j

) j/2( 2γ
2γ+ j

)γ
(2.21)
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as above, it follows that

μ(2 j− t,γ)≥ ∣∣p2 j−t(0)
∣∣= (1− t)

j∏
k=1

2k− 1
2k− 1 + ρ

(2.22)

and limγ→∞μ(2 j− t,γ)= |p2 j−t(0)|. Furthermore we have the following.

Lemma 2.2. If 0 < ρ/4≤ γ, then there exists a constant c = c(ρ,γ) independent of j such that

μ( j,γ)2 ≤ c
j!

(ρ) j(2 j + ρ)
, j = 0,1, . . . . (2.23)

Proof. Suppose that ρ/4≤ γ. By [8, Remark 2.4],

sup
j

∥∥∥∥ pj(x)∥∥pj

∥∥
(
1− x2)γ∥∥∥∥

2

∞
<∞. (2.24)

Since pj(1) = 1 and the orthonormal sequence {pj/‖pj‖} is unique (see [3, Theorem
4.2]), it follows from [12, page 82, equation 4.7.15] that for ρ > 0,

∥∥pj

∥∥2 = 22−ρπΓ(ρ) j!
Γ(ρ/2)2(ρ) j(2 j + ρ)

. (2.25)

(Incidentally, if ρ= 0 then ‖p0‖2 = π and ‖pj‖2 = π/2 for j > 0.) �

3. Main properties of inversion coefficients

We will use (2.20) to approximate series
∑
aixi on (−1,1) such that

∑
(ai/is) converges for

some nonnegative number s. Since cj =
∑

i(ai/is)(ismi j), we first investigate convergence
of the sequence ismi j for fixed j. We begin with the following technical result.

Lemma 3.1. Let s ≥ −1 be real, and N := 2(1 + s)/−s if −1 < s < 0 and N := 1 otherwise.
The function

hs(x) := (x+ 1)
(
x+ 2
x

)s
− x (3.1)

is monotonically decreasing on [N ,∞) with limit 2s+ 1 as x approaches∞.

Proof. Letting y = 2/x, we have that h′s(x)≤ 0 for x ≥N if and only if

fs(y) := (1 + y)1−s +
s

2
y2− (1− s)y− 1≥ 0 (3.2)

for 0 < y ≤ 2/N . Now fs(0)= 0, and f ′s (y)≥ 0 is equivalent to

gs(y) := (1 + y)s
[
1− s(1 + y)

]≤ 1− s. (3.3)

However gs(0)= 1− s and

g′s (y)= (−s)(1 + y)s−1[s+ (1 + s)y
]≤ 0 (3.4)

on (0,2/N]. Hence hs(x) is decreasing on [N ,∞).
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Finally note that

hs(x)=
(

1 +
2
x

)s
+

(1 + 2/x)s− 1
1/x

(3.5)

and hence the limit follows from L’Hôpital’s rule. �

The next result is the key to our approximations.

Theorem 3.2. Let pn(x) be ultraspherical with constant ρ ≥ 0, let mij be defined by (2.13),
and suppose that s≥ 0. Then for each j,

L( j) := lim
n→∞( j + 2n)smj+2n, j (3.6)

exists if and only if ρ ≥ 2s− 1. If ρ ≤ 2s− 1, then the sequence ( j + 2n)smj+2n, j is monoton-
ically increasing. If ρ = 2s− 1, then with s′ := −�−s� (�·� = greatest integer function) and
ρ′ :=−�−ρ�,

L( j)≤ 2 j + ρ

j!
(1 + ρ)(2 + ρ)···( j− 1 + ρ)

[
1 · 3 · 5···(2s′ − 1)

]

≤ 2 j + ρ′

ρ′!
( j + 1)( j + 2)···( j + ρ′ − 1)

[
1 · 3 · 5···(2s′ − 1)

]
, ρ 	= 0,

(3.7)

where the inequalities are equalities if s is an integer; and the equality holds in the latter
inequality if ρ is an integer.

On the other hand suppose that ρ > 2s− 1. Then for each j,
(a) L( j)= 0,
(b) the sequence ( j + 2n)s−1mj+2n, j is summable,
(c) there exists an integer I( j) ≥ j such that whenever i− j is even the following are

equivalent:
(i) (i+ 2)smi+2, j ≤ ismi j ;

(ii) i≥ I( j);
(iii) is j( j + ρ)≤ (i+ 2){is(ρ− 1)− 2is−1− (i+ 1)(i+ 2)[(i+ 2)s−1− is−1]}, and

(d) ismi j =O(i−[ρ−(2s−1)−r]/2) for any r in (0,ρ− (2s− 1)).

Proof. Let s≥ 0 and 0 	= i≥ j. Then by (2.14), we have

(i+ 2)smi+2, j − ismi j = Ai(
1− j/(i+ 2)

)(
1 + ( j + 2 + ρ)/i

) is−1mij , (3.8)

where Ai = j( j + ρ)/(i+ 2) +hs(i)− (ρ+ 2) with hs(x) given by Lemma 3.1. It follows that
〈( j + 2n)smj+2n, j〉 is Cauchy if and only if

∑
i

Ai
(
is−1mij

)
(
1− j/(i+ 2)

)(
1 + ( j + 2 + ρ)/i

) <∞. (3.9)

Now

0 <
(

1− j

j + 2

)
≤
(

1− j

i+ 2

)(
1 +

j + 2 + ρ

i

)
≤ 3 + j + ρ (3.10)
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and Ai decreases to 2s− 1− ρ. Hence if 〈( j + 2n)s−1mj+2n, j〉 is summable, then L( j) ex-
ists by Proposition 2.1. Similarly, the converse is true if ρ 	= 2s− 1 since A−1

i increases
monotonically to (2s− 1− ρ)−1.

As in (3.8), we have

i
[

is−1mij

(i+ 2)s−1mi+2, j
− 1

]
= (1 + 2/i)

[
ρ+ 2−hs−1(i)

]− j( j + ρ)/i
(1 + 2/i)s(1 + 1/i)

(3.11)

which converges to ρ− 2s+ 3 by Lemma 3.1. Thus letting i= j + 2n we have

ρ− 2s+ 3= j(0) + 2 lim
n→∞

[
n

( j + 2n)s−1mj+2n, j

( j + 2n+ 2)s−1mj+2n+2, j
− 1

]
. (3.12)

By Raabe’s test [9, page 396],
∑

i i
s−1mij converges when the limit in this identity is greater

than one and diverges when it is less than one. Hence L( j) exists (and (b) follows) if
ρ > 2s− 1, and fails to exist if ρ < 2s− 1.

Next suppose that ρ > 2s− 1. We show L( j)= 0 by verifying
∑

i(ismi j)p <∞ for some
positive constant p. By Raabe’s test as above,

i

{[
ismi j

(i+ 2)smi+2, j

]p
− 1

}
= (iX)

(1 +X)p− 1
X

, (3.13)

where

X = ρ+ 2−hs(i)− j( j + ρ)/(i+ 2)
(i+ 1)(1 + 2/i)s

. (3.14)

Hence

lim
i→∞

X = 0, lim
i→∞

iX = ρ− (2s− 1). (3.15)

Therefore with i= j + 2n,

p
[
ρ− (2s− 1)

]= j(0) + 2 lim
n→∞n

{[ ( j + 2n)smj+2n, j

( j + 2n+ 2)smj+2n+2, j

]p
− 1

}
. (3.16)

By Raabe’s test
∑

i(ismi j)p <∞ if p is chosen such that p[ρ− (2s− 1)] > 2. Thus L( j)= 0.
By (3.8), (i+ 2)smi+2, j ≤ ismi j if and only if

j( j + ρ)
i+ 2

+hs(i)≤ ρ+ 2, (3.17)

where hs(i), i≥ 1, decreases to 2s+ 1 by Lemma 3.1. If ρ≤ 2s− 1, then

ρ+ 2≤ 2s+ 1≤ hs(i)≤ j( j + ρ)
i+ 2

+hs(i) (3.18)

so 〈( j + 2n)smj+2n, j〉 is increasing.
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Finally if ρ > 2s− 1 (and thus 2s+ 1 < ρ+ 2), then there exists an integer I( j)≥ j such
that (3.17) holds if and only if i≥ I( j). Furthermore, (c)(iii) follows from (3.17) and the
identity

hs−1(x)= 3 +
2
x

+
(
x+ 1
x

)(
x+ 2
x

)[
(x+ 2)s−2− xs−2

xs−3

]
. (3.19)

In order to show (d), let bn := [( j + 2n)smj+2n, j]p, where p is chosen above. Let q be
in the interval (1, p[ρ− (2s− 1)]/2). There exists an integer N0 such that if n≥ N0, then
qbn+1 < n(bn− bn+1). Thus if N =max{I( j),N0}, then

q
m∑
i=1

bN+i < NbN +
m−1∑
i=1

bN+i− (N +m− 1)bN+m (3.20)

so by (c)(i) it follows that

(q− 1)mbN+m ≤ (q− 1)
m∑
i=1

bN+i < NbN − (N +m)bN+m. (3.21)

Therefore for every m= 1,2, . . . ,

bN+m <
NbN

N + qm
<

NbN
N +m

(3.22)

and if r := ρ− (2s− 1)− 2/p, then r satisfies (d).
Finally suppose that ρ= 2s− 1. By solving (2.15) for mij when i− j is even, we have

ismi j = 2 j + ρ

j!
(1 + ρ)(2 + ρ)···( j− 1 + ρ)

( j−1∏
k=0

i− k

i+ j + ρ− 2k

)(
ismi− j,0

)
, (3.23)

where mi− j,0 = 1 · 3 · 5···(i− j− 1)/(2 + ρ)(4 + ρ)···(i− j + ρ). Note that if s is a posi-
tive integer, then

mi− j,0 = 1 · 3 · 5···(2s− 1)
(i− j + 1)(i− j + 3)···(i− j + 2s− 1)

(3.24)

and hence L( j) is given with s′ = s and equality in both inequalities in (3.7). Assume that
s is not an integer and i− j = 2n. Since ismi j is increasing and ismi j /ismi− j,0 is bounded
by and converges to ((2 j + ρ)/ j!)(1 + ρ)···( j − 1 + ρ) by (3.23), it suffices to show that
( j + 2n)sm2n,0 converges and is bounded by 1·3···(2s′ − 1). This will follow from the
integer case once we show for fixed j and n that

f (s) := ( j + 2n)s

(2s+ 1)(2s+ 3)···(2s+ 2n− 1)
(3.25)

is monotonically increasing for s≥ 1/2 since ρ = 2s− 1≥ 0. But f ′(s)≥ 0 if and only if

ln( j + 2n)≥ 2
(

1
2s+ 1

+
1

2s+ 3
+ ···+

1
2s+ 2n− 1

)
. (3.26)
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Since the right side is decreasing and ln( j + 2n)≥ ln(2n), the inequality will follow if we
show ln(2n)≥∑n

k=1(1/k). Now for every integer m in (1,n),

ln(n)=
∫ n

1

dx

x
≥ ln(m) +

n∑
k=m+1

1
k
≥ ln(m− 1) +

n∑
k=m

1
k

≥ ln(1) +
n∑

k=2

1
k
=

n∑
k=1

1
k
− 1.

(3.27)

Thus,

m−1∑
k=1

1
k
− ln(m− 1) + ln(n)≥

m∑
k=1

1
k
− ln(m) + ln(n)≥

n∑
k=1

1
k
. (3.28)

Since
∑4

k=1(1/k)−ln(4)< ln(2)<
∑5

k=1(1/k)−ln(5), we have that ln(2)+ ln(n)≥∑n
k=1(1/k)

for n≥ 5.
Hence for fixed n ≥ 5, f (s) is increasing and f (s) ≤ f (s′). Therefore ( j + 2n)sm2n,0 is

bounded and thus ismi j converges. It follows that

( j + 2n)sm2n,0 =
ismi j(

ismi j
)
/
(
ismi− j,0

) (3.29)

converges and has limit bounded by 1·3···(2s′ − 1). Finally ρ ≤ ρ′ and the second in-
equality follows by multiple cancellations when ρ 	= 0. �

If s is an integer, then I( j) may be estimated easily.

Proposition 3.3. Let s be a nonnegative integer, ρ > 2s− 1, and let I( j) be given as in
Theorem 3.2. Consider the following expressions:

σk = 2s+1−k
[(

s+ 1
s+ 2− k

)
+

(
s+ 2

s+ 2− k

)]
, k = 0,1, . . . ,s− 2,

σs−1 = 4

[
s2 +

(
s

3

)
+

(
s+ 1

3

)]
,

σs = σs( j)= j( j + ρ)− 2
(
ρ− s2− 2s+ 1

)
,

σs+1 = ρ− (2s− 1).

(3.30)

If s = 0, then I(0) = 0 and I( j) = −�−σs/σs+1� when j ≥ 1; and if s = 1, then I(0) =
−�−σs−1/2σs+1�. Otherwise, let s= 3k′ + t′ for nonnegative integers k′ and t′ ≤ 2, and define

R( j) := 1 +
max

{
σs( j),σk′+1

}
σs+1

. (3.31)

Then I( j) < R( j) + 1, and if σs( j)≥ σk′+1, then R( j)− 1 < I( j). In particular, if ρ = 2s, then
I( j)= R( j).
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Proof. By the binomial theorem and the identity ( s
k ) + ( s

k+1 ) = ( s+1
k+1 ), a straightforward

computation shows that (c)(iii) of Theorem 3.2 is equivalent to

σs+1i
s+1 ≥

s∑
k=0

σki
k. (3.32)

The special cases s = 0 and s = 1, when j = 0, follow easily from (3.32). Thus let s =
3k′ + t′ in the other cases. By the following argument (which is usually given to bound
the zeros of a polynomial [1, Theorem 6.1]) we have if

i≥M( j) :=max
{

σ0

σs+1
,1 +

σk
σs+1

: k = 1, . . . ,s
}

, (3.33)

then i satisfies (3.32),

s∑
k=0

σki
k ≤ [σs+1 + σs+1(i− 1)

]
+ σs+1(i− 1)

s∑
k=1

ik

= σs+1

[
1 + (i− 1)

is+1− 1
i− 1

]
= σs+1i

s+1.

(3.34)

Thus I( j) <M( j) + 1.
We will show that M( j) = R( j) for all j, which will imply the proposition since in

the case σs( j)≥ σk′+1 we will then have that M( j)= 1 + σs( j)/σs+1 and x =M− 1 fails to
satisfy (3.32). If

σs(M− 1)s = σs+1x
s+1 ≥

s∑
k=0

σkx
k, (3.35)

then 0 ≥∑s−1
k=0 σk(M − 1)k which is impossible since M ≥ 1, σk ≥ 0, and σ0 = 2s+1 > 0.

Thus by (3.17), since hs(x) decreases on [1,∞), it will follow that M( j)− 1 < I( j).
Thus it remains to show M( j)= R( j). The following results may be readily established

from the given definitions:
(a) if s= 1 ( j 	= 0), 2, or 3, then M( j)= R( j);
(b) σ0/σs+1 ≤ 1 + σ1/σs+1 for all s≥ 2.

We therefore assume henceforth that s= 3k′ + t′ ≥ 4, where k′ ≥ 1 and t′ = 0,1, or 2,
and we seek to verify that

max
{
σ1, . . . ,σs

}=max
{
σs,σk′+1

}
. (3.36)

We first show that σs−1 < σs−2 which may be rewritten as

s2 <

(
s+ 2

4

)
+ 2

(
s+ 1

4

)
+

(
s

4

)
(3.37)

or upon further simplification as

24s
s− 1

< (s+ 2)(s+ 1) + 2(s− 2)(s+ 1) + (s− 2)(s− 3). (3.38)
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This inequality is true when s= 4, and for s≥ 4 the left side decreases and the right side
increases. Hence σs−1 < σs−2.

Next we prove that

for i= 1, . . . ,s− 3, it follows that σi+1 > σi iff s≥ 3i. (3.39)

As above, we have that σi+1 > σi is equivalent to
(

s+ 2
s+ 1− i

)
> 3

(
s+ 1

s+ 2− i

)
+

(
s+ 2

s+ 2− i

)
(3.40)

which in turn is equivalent to

(3i− s− 1)(i+ s+ 2) + 2i < 0, i= 1, . . . ,s− 3. (3.41)

If s≥ 3i, then (3i− s− 1)(i+ s+ 2) + 2i≤ i− s− 2≤−5 since i≤ s− 3. And if s < 3i, then
s= 3i− k for some integer k ≥ 1. In this case

(3i− s− 1)(i+ s+ 2) + 2i= (k− 1)(i+ s+ 2) + 2i≥ 0. (3.42)

Hence (3.39) follows.
Finally since s = 3k′ + t′ ≥ 3i for i = 1, . . . ,k′, we have from (3.39) that σk+1 > σk (k =

1, . . . ,k′). Moreover, since s < 3i for i= k′ + 1, . . . ,s− 3, it follows from (3.39) that σk′+k ≥
σk′+k+1 (k = 1, . . . ,s− 3− k′). Since σs−1 < σs−2 above, we have the desired identity (3.36).

�

Remark 3.4. For each s in Proposition 3.3, there exists J = J(s) such that

R( j)− 1 < I( j) < R( j) + 1 (3.43)

for all j ≥ J .

4. Approximating power series

We consider power series
∑
aixi such that the series

∑
a2i+tβ2i+t (t = 0,1) converge for

some positive sequences β2i+t that are either both monotonically increasing or both satisfy
limi→∞(β2(i+1)+t/β2i+t) = 1. If they are both increasing, then by Proposition 2.1 and the
ratio test,

∑
aixi converges uniformly on [−1,1], and as in (2.10) we have the estimates

for γ ≥ 0:

∣∣∣∣∣
∑
i>n

aix
i
(
1− x2)γ

∣∣∣∣∣≤
1∑

t=0

|x|t
∣∣∣∣∣
∑

2i+t>n

(
a2i+tβ2i+t

)[x2i
(
1− x2

)γ
β2i+t

]∣∣∣∣∣

≤
1∑

t=0

2|x|n+1
(
1− x2

)γ
βn+1

εn
(〈
a2i+tβ2i+t

〉)

≤ 2|x|(n+1)/(γ+1) λ(n+ 1,γ)
βn+1

1∑
t=0

εn
(〈
a2i+tβ2i+t

〉)
.

(4.1)
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On the other hand, if the sequences satisfy limi→∞(β2(i+1)+t/β2i+t) = 1, then
∑
aixi con-

verges pointwise on (−1,1) and for each x in (−1,1), there exists N = N(x) such that
inequalities (4.1) hold for n≥N .

We begin with the uniformly convergent case.

Theorem 4.1. Suppose that
∑
aixi is a power series such that the series

∑
a2i+tβ2i+t (t = 0,1)

converge for some positive, monotonically increasing sequences β2i+t, let γ ≥ 0, and let pn(x)
be ultraspherical with constant ρ ≥ 0. For every j and t, the general Fourier coefficient c2 j+t

of
∑
aixi with respect to 〈pn〉 exists and satisfies

∣∣∣∣∣c2 j+t −
n∑
i=0

aimi,2 j+t

∣∣∣∣∣≤ 2
(

2
βn+1

− lim
i→∞

1
β2i+t

)
mmax{I(2 j+t),n+1},2 j+tεn

(〈
a2i+tβ2i+t

〉)
, (4.2)

where mmax{I(2 j+t),n+1},2 j+t =O((n+ 1)−(ρ+1−r)/2)≤ 1 for any r in (0,ρ+ 1).
Moreover, for each x in [−1,1],

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣

≤
1∑

t=0

2

⎧⎨
⎩|x|(n+1)/(γ+1) λ(n+ 1,γ)

βn+1

+
(

2
βn+1

− lim
i→∞

1
β2i+t

)[ ∑
2 j+t≤ρn

mn+1,2 j+tμ(2 j + t,γ)

+
∑

ρn<2 j+t≤n
mI(2 j+t),2 j+tμ(2 j + t,γ)

]⎫⎬
⎭εn

(〈
a2i+tβ2i+t

〉)
,

(4.3)

where

ρn := 1
2

(√
ρ2 + 4(n− 2)(ρ+ 1)− ρ

)
,

∑
2 j+t≤ρn

mn+1,2 j+tμ(2 j + t,γ)≤ 1.
(4.4)

If 1/4≤ ρ/4≤ γ, then there exists a constant c independent of n such that for n≥ 2,

∑
ρn<2 j+t≤n

mI(2 j+t),2 j+tμ(2 j + t,γ)

≤ c

[
1√

2t+ ρ
+

1√
4 + 2t+ ρ

+
1
2

(√
4
⌊
n− t

2

⌋
+ 2t+ ρ−

√
4 + 2t+ ρ

)] (4.5)
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and hence convergence is uniform in (4.3) if

lim
n→∞

√
n

βn+1
εn
(〈
a2i+tβ2i+t

〉)= 0, t = 0,1. (4.6)

Proof. By Theorem 3.2 with s= 0 and Proposition 2.1, we have that

∣∣∣∣∣c2 j+t −
n∑
i=0

aimi,2 j+t

∣∣∣∣∣=
∣∣∣∣∣
∑

2i+t>n

a2i+tm2i+t,2 j+t

∣∣∣∣∣≤ 2mmax{I(2 j+t),n+1},2 j+tεn
(〈
a2i+t

〉)
, (4.7)

where mmax{I(2 j+t),n+1},2 j+t satisfies the given identity,

εn
(〈
a2i+t

〉)=max

{∣∣∣∣∣
∑

2i+t>k

(
a2i+tβ2i+t

)( 1
β2i+t

)∣∣∣∣∣ : k ≥ n

}
, (4.8)

and 1/β2i+t decreases with nonnegative limit. Thus by Proposition 2.1,

εn
(〈
a2i+t

〉)≤max
{
εk
(〈
a2i+tβ2i+t

〉)( 2
βk+1

− lim
i→∞

1
β2i+t

)
: k ≥ n

}

≤
(

2
βn+1

− lim
i→∞

1
β2i+t

)
εn
(〈
a2i+tβ2i+t

〉)
.

(4.9)

Therefore (4.2) follows from (4.7).
By (2.20), we have

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣

≤
∣∣∣∣∣
∑
i>n

aix
i
(
1− x2)γ

∣∣∣∣∣+
1∑

t=0

∑
2 j+t≤n

∣∣∣∣∣
∑

2i+t>n

a2i+tm2i+t,2 j+t

∣∣∣∣∣μ(2 j + t,γ).

(4.10)

Hence (4.3) follows from (4.1) and (4.2) where, by Proposition 3.3, I( j) = ( j( j + ρ)−
2(ρ+ 1))/(ρ+ 1), and therefore I(2 j + t)≤ n+ 1 if and only if 2 j + t ≤ ρn.

Suppose that 1/4 ≤ ρ/4 ≤ γ. By Lemma 2.2, μ( j,γ)2 ≤ c/(2 j + ρ) for all j, and
mI(2 j+t),2 j+t ≤ 1, so the estimate follows by the proof of the integral test since for m≥ 2,

m∑
j=0

1√
2(2 j + t) + ρ

≤ 1√
2t+ ρ

+
1√

2(2 + t) + ρ
+

1
2

(√
2(2m+ t) + ρ−

√
2(2 + t) + ρ

)
.

(4.11)
�

Remark 4.2. If

lim
n→∞

n

βn+1
εn
(〈
a2i+tβ2i+t

〉)= 0, t = 0,1, (4.12)

then convergence in (4.3) is uniform since mijμ( j,γ)≤ 1 for all i and j.



James Guyker 15

The quantity εn(〈ai〉) was approximated in [6] for the standard Maclaurin series of
calculus. We will illustrate the other parts of our estimates. For Legendre polynomials, we
have an estimate that is comparable to (1.4).

Example 4.3. Let ρ = 1 in Theorem 4.1. By [6], mij ≤ 2/( j + 1) for all i and by the proof
of the integral test,

m∑
j=0

2
2 j + t+ 1

≤ 2− t+ ln
[
(2− t)m+ 1

]
. (4.13)

Hence in (4.3), it follows that

∑
ρn<2 j+t≤n

mI(2 j+t),2 j+tμ(2 j + t,γ)≤ max
ρn<2 j+t≤n

μ(2 j + t,γ)
{

2− t+ ln
[

(2− t)
⌊
n− t

2

⌋
+ 1
]}

.

(4.14)

Since

lim
n→∞

2− t+ ln
[
(2− t)�(n− t)/2�+ 1

]
ln(n+ 2)

= 1, (4.15)

we have as with (1.4), if

lim
n→∞ max

ρn<2 j+t≤n
μ(2 j + t,γ)εn

(〈
a2i+tβ2i+t

〉) ln(n+ 2)
βn+1

= 0, t = 0,1, (4.16)

then the approximations in (4.3) converge uniformly.
However, if 1/4= ρ/4≤ γ, then by Lemma 2.2

mI(2 j+t),2 j+tμ(2 j + t,γ)≤ c
2

2 j + t+ 1
1√

2(2 j + t) + 1
(4.17)

and for m≥ 2,

m∑
j=0

1
(2 j + t+ 1)3/2

≤ 2−(3/2)t
[

2 + t− 1 + t√
(2− t)m+ 1

]
. (4.18)

Therefore convergence is always uniform in this case.

Finally we consider pointwise convergence. The next result with s = 0 is identical to
Theorem 4.1 with βi ≡ 1.

Theorem 4.4. Suppose that
∑
aixi is a power series such that the series

∑
(a2i+t/(2i+ t)s)

(t = 0,1) converge for some nonnegative number s, let γ ≥ 0, and let pn(x) be ultraspherical
with nonnegative constant ρ ≥ 2s− 1. For every j and t the general Fourier coefficient c2 j+t

of
∑
aixi with respect to 〈pn〉 exists and the following estimates hold.

(a) Assume that ρ = 2s− 1. Then
∣∣∣∣∣c2 j+t −

n∑
i=0

aimi,2 j+t

∣∣∣∣∣≤ L(2 j + t)εn
(〈
a2i+t(2i+ t)−s

〉)
, (4.19)
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where L(2 j + t) is bounded as in (3.7). Moreover, if n≥2|x|2/s/(1−|x|2/s) (:= 0 when
s= 0), then

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣

≤
1∑

t=0

[
2(n+ 1)s|x|(n+1)/(γ+1)λ(n+ 1,γ)

+
∑

2 j+t≤n
L(2 j + t)μ(2 j + t,γ)

]
εn
(〈
a2i+t(2i+ t)−s

〉)
,

(4.20)

where
∑

2 j+t≤n L(2 j + t)μ(2 j + t,γ) is bounded by a polynomial in n with degree term
(1 · 3···(2s′ − 1)/(ρ′ + 1)!)nρ

′+1 if ρ 	= 0, and degree term 2n if ρ = 0. In particular,
if

lim
n→∞n

ρ′+1εn
(〈
a2i+t(2i+ t)−s

〉)= 0 (t = 0,1), (4.21)

then
∑n

j=0 cj p j(x)(1− x2)γ converges pointwise to
∑
aixi(1− x2)γ on (−1,1).

(b) Assume next that ρ > 2s− 1. Then for each j,

∣∣∣∣∣c2 j+t−
n∑
i=0

aimi,2 j+t

∣∣∣∣∣≤2max
{
I(2 j + t)s, (n+ 1)s

}
mmax{I(2 j+t),n+1},2 j+tεn

(〈
a2i+t(2i+ t)−s

〉)

=O
(
(n+ 1)−[ρ−(2s−1)−r]/2)εn(〈a2i+t(2i+ t)−s

〉)
(4.22)

for any r in (0,ρ− (2s− 1)). And if n≥ 2|x|2/s/(1−|x|2/s) (:= 0 when s= 0), then

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣

≤
1∑

t=0

2

{
(n+ 1)s

[
|x|(n+1)/(γ+1)λ(n+ 1,γ) +

∑
2 j+t≤ρ∗n

mn+1,2 j+tμ(2 j + t,γ)

]

+
∑

ρ∗n <2 j+t≤n
I(2 j + t)smI(2 j+t),2 j+tμ(2 j + t,γ)

}
εn
(〈
a2i+t(2i+ t)−s

〉)
,

(4.23)

where 2 j + t ≤ ρ∗n if and only if I(2 j + t) ≤ n+ 1; thus, ρ∗n may be solved from the
quadratic inequality (c)(iii) in j of Theorem 3.2. Furthermore,

∑
2 j+t≤ρ∗n

mn+1,2 j+tμ(2 j + t,γ)≤ 1. (4.24)
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Proof. Inequalities (4.19) and (4.22) follow from Proposition 2.1 and Theorem 3.2 since

∣∣∣∣∣c2 j+t −
n∑
i=0

aimi,2 j+t

∣∣∣∣∣=
∣∣∣∣∣
∑

2i+t>n

a2i+t

(2i+ t)s
(
(2i+ t)sm2i+t,2 j+t

)∣∣∣∣∣. (4.25)

Moreover, by (2.10) and (2.20),

∣∣∣∣∣
[∑

aix
i−

n∑
j=0

cj p j(x)

](
1− x2)γ

∣∣∣∣∣≤
1∑

t=0

|x|t
∣∣∣∣∣
∑

2i+t>n

a2i+t

(2i+ t)s
(2i+ t)sx2i(1− x2)γ

∣∣∣∣∣

+
1∑

t=0

∑
2 j+t≤n

∣∣∣∣∣
∑

2i+t>n

a2i+tm2i+t,2 j+t

∣∣∣∣∣μ(2 j + t,γ).

(4.26)

Therefore (4.20) and (4.23) follow from Proposition 2.1, (4.19), and (4.22), since for
fixed x in (−1,1) and t, the sequence (2i+ t)sx2i(1− x2)γ is decreasing for 2i+ t > 2|x|2/s/
(1−|x|2/s), and limn→∞(n+ 1)s|x|(n+1)/(γ+1) = 0 by the ratio test.

Suppose that ρ = 2s− 1. Then by (3.7),

∑
2 j+t≤n

L(2 j + t)μ(2 j + t,γ)≤
�(n−t)/2�∑

j=0

L(2 j + t) (4.27)

which is bounded by 2(�(n− t)/2�+ 1) if ρ= 0, and is otherwise bounded by

1 · 3···(2s′ − 1)
ρ′!

�(n−t)/2�∑
j=0

(4 j + 2t+ ρ′)(2 j + t+ 1)···(2 j + t+ ρ′ − 1)

= 1 · 3···(2s′ − 1)
ρ′!

2ρ
′+1
[

nρ
′+1

2ρ′+1(ρ′ + 1)
+ lower terms

]
.

(4.28)

(This follows from the observation that for any nonnegative integer k,
∑n

i=1 i
k is a poly-

nomial in n with degree term nk+1/(k+ 1).) �

Remark 4.5. I(2 j + t) may be difficult to approximate in (4.23) when s is not an integer
(see Example 4.9(c)). If s∗ :=min{−�−s�, (ρ+ 1)/2}(≥ s) and

∑
(a2i+t/(2i+ t)s) (t = 0,1)

converge, then so do

∑ a2i+t

(2i+ t)s∗
=
∑ a2i+t

(2i+ t)s
· 1

(2i+ t)s∗−s
;

εn
(〈
a2i+t(2i+ t)−s

∗〉)≤ 2
(n+ 1)s∗−s

εn
(〈
a2i+t(2i+ t)−s

〉) (4.29)

by Proposition 2.1. Thus, although the resulting estimates with s∗ (instead of s) would
be less accurate, we may use (4.20) when s∗ = (ρ+ 1)/2 and (4.23) with Proposition 3.3
when s∗ = −�−s�.
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Example 4.6. Let s= ρ = 1. Then L( j)= 2 j + 1 by (3.7), μ(2 j + t,γ)≤ 1, and in (4.20) for
n≥ 2x2/(1− x2), it follows that

∑
2 j+t≤n

L(2 j + t)μ(2 j + t,γ)≤
(⌊

n− t

2

⌋
+ 1
)(

2
⌊
n− t

2

⌋
+ 2t+ 1

)
(4.30)

and thus we have pointwise convergence when

lim
n→∞n

2εn
(〈
a2i+t(2i+ t)−1〉)= 0, t = 0,1. (4.31)

If ρ/4≤ γ, then by Lemma 2.2,

∑
2 j+t≤n

L(2 j + t)μ(2 j + t,γ)≤ c
(⌊

n− t

2

⌋
+ 1
)

; (4.32)

so pointwise convergence follows in this case when

lim
n→∞nεn

(〈
a2i+t(2i+ t)−1〉)= 0, t = 0,1. (4.33)

Example 4.7. Let s= 1 and ρ = 2 in Theorem 4.4. Then I(0)= 2, and by Proposition 3.3,
I( j)= ( j + 1)2 for j ≥ 1. Therefore, since μ(2 j + t,γ) and mI(2 j+t),2 j+t are bounded by one;
if n≥ 2x2/(1− x2), then in (4.23),

∑
ρ∗n <2 j+t≤n

I(2 j + t)mI(2 j+t),2 j+tμ(2 j + t,γ)

≤
(
t+ 1

3

)(⌊
n− t

2

⌋
+ 1
)(

2
⌊
n− t

2

⌋
+ 3
)[

(2− t)
⌊
n− t

2

⌋
+ t+ 1

]
;

(4.34)

so we have pointwise convergence when

lim
n→∞n

3εn
(〈
a2i+t(2i+ t)−1〉)= 0, t = 0,1. (4.35)

However, if ρ/4≤ γ, then by Lemma 2.2,
∑

ρ∗n <2 j+t≤n
I(2 j + t)mI(2 j+t),2 j+tμ(2 j + t,γ)≤ c

∑
ρ∗n <2 j+t≤n

(2 j + t+ 1); (4.36)

so as in Example 4.6 pointwise convergence follows in this case when

lim
n→∞n

2εn
(〈
a2i+t(2i+ t)−1〉)= 0, t = 0,1. (4.37)

Example 4.8. Let s= 2 and ρ = 5 in Theorem 4.4. By Proposition 3.3, I( j) < R( j) + 1 for
all j, andR( j)= ( j( j + 5) + 6)/2 < I( j) + 1 for j ≥ 3. It follows that I( j)= R( j) when j ≥ 3
since R( j) is an integer in this case. Therefore for n≥max{14,2|x|/(1−|x|)}, we have in
(4.23),

∑
ρ∗n <2 j+t≤n

I(2 j + t)2mI(2 j+t),2 j+tμ(2 j + t,γ)≤ 1
4

∑
ρ∗n <2 j+t≤n

[
(2 j + t)(2 j + t+ 5) + 6

]2
,

(4.38)
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where the latter sum is a polynomial with degree term n5/10. If ρ/4≤ γ in this case, then
by Lemma 2.2 the corresponding polynomial estimate is of degree four.

Example 4.9. Let us consider nonuniform approximation with Chebyshev polynomials,
that is, ρ= 0≥ 2s− 1 in Theorem 4.4.

(a) Let s= 1/2. By (3.7), L( j)≤ 2, and thus if n≥ 2x4/(1− x4), then in (4.20),

∑
2 j+t≤n

L(2 j + t)μ(2 j + t,γ)≤ 2
(⌊

n− t

2

⌋
+ 1
)

; (4.39)

so we have pointwise convergence if

lim
n→∞nεn

(〈
a2i+t(2i+ t)−1/2〉)= 0, t = 0,1. (4.40)

(b) Let s= 0. By Proposition 3.3, I( j)= j2− 2 and in (4.23),

∑
ρ∗n <2 j+t≤n

mI(2 j+t),2 j+tμ(2 j + t,γ)≤ n−√n+ 3. (4.41)

(c) Let 0 < s < 1/2. By (c)(iii) of Theorem 3.2, i≥ I( j) if and only if

j2is ≤ (i+ 2)2is− (i+ 2)1+s(i+ 1) (4.42)

(which may be used to find ρ∗n but can only be solved numerically for i, with j fixed,
to approximate I( j)). However we may obtain estimates to (4.23) by replacing s
with s∗ = 1/2 and using (4.20) as in (a) above and Remark 4.5.
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