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We consider the existence of analytic solutions of a certain class of iterative second-order

functional differential equation of the form x
′′

(x[r](z))= c0z2 + c1(x(z))2 + (c2x[2](z))
2

+

··· + cm(x[m](z))
2
, m,r ≥ 0.
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1. Introduction

In recent years, the study of the existence of analytic solutions of iterative functional
differential equations has attracted several researchers, see [2–11] and references cited
therein. In [3], the authors studied the existence of analytic solutions of iterative func-
tional differential equation of the following form:

x′′(z)= (x[m](z)
)2

, (1.1)

wherem is a nonnegative integer. In the present paper, we propose to study a more general
form of iterative functional differential equations than (1.1) as follows:

x′′
(
x[r](z)

)= c0z
2 + c1

(
x(z)

)2
+ c2

(
x[2](z)

)2
+ ···+ cm

(
x[m](z)

)2
, (1.2)

where r and m are nonnegative integers, c0,c1,c2, . . . ,cm are complex numbers,
∑m

j=0 |cj| �=
0, and x[ j] denotes the jth iterate of x. In order to obtain analytic solutions of (1.1), we
first seek the analytic solutions y(z) of the following companion equation:

α2y′′
(
αr+1z

)
y′
(
αrz
)= αy′

(
αr+1z

)
y′′
(
αrz
)

+
[
y′
(
αrz
)]3
[ m∑

j=0

cj
(
y
(
αjz
))2
]

(1.3)

satisfying the initial value conditions

y(0)= μ, y′(0)= η �= 0, (1.4)
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2 Analytic solution of functional differential equation

where μ, η are complex numbers, and α satisfies one of the following conditions:
(H1) |α| > 1;
(H2) 0 < |α| < 1;
(H3) |α| = 1, α is not a root of unity, and log(1/|αn− 1|)≤ K logn, n= 2,3,4, . . . ,

for some positive constant K . Then we show that (1.2) has an analytic solution of the
form

x(z)= y
(
αy−1(z)

)
, (1.5)

in a neighborhood of the number μ, where y−1(z) is the inverse function of y(z). Finally,
we make use of (1.5) to show how to derive an explicit power series solution of (1.2).

2. Preliminary lemmas

We first obtain the analytic solutions y(z) of the companion equation (1.3). By (1.3), we
have that

α2y′′
(
αr+1z

)
y′
(
αrz
)−αy′

(
αr+1z

)
y′′
(
αrz
)

[
y′
(
αrz
)]2 = y′

(
αrz
) m∑

j=0

cj
(
y
(
αjz
))2

, or

1
αr−1

(
y′
(
αr+1z

)

y′
(
αrz
)

)′
= y′

(
αrz
) m∑

j=0

cj
(
y
(
αjz
))2

, or

1
αr−1

[
y′
(
αr+1z

)

y′
(
αrz
) − y′(0)

y′(0)

]

=
∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt, or

1
αr−1

[
y′
(
αr+1z

)

y′
(
αrz
) − 1

]

=
∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt, or

1
αr−1

[
y′
(
αr+1z

)− y′
(
αrz
)]= y′

(
αrz
)
∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt.

(2.1)

Since y(z) is an analytic function in a neighborhood of 0, y(z) can be represented by a
power series of the form

y(z)=
+∞∑

n=0

bnz
n, (2.2)

and we can see easily that b0 = μ, b1 = η, and y′(z)=∑+∞
n=0(n+ 1)bn+1zn. We have

1
αr−1

[
y′
(
αr+1z

)− y′
(
αrz
)]

= 1
αr−1

[ +∞∑

n=0

(n+ 1)bn+1α
(r+1)nzn−

+∞∑

n=0

(n+ 1)bn+1α
rnzn

]

= 1
αr−1

[ +∞∑

n=0

(n+ 1)bn+1
(
αn− 1

)
αrnzn

]
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= 1
αr−1

[ +∞∑

n=1

(n+ 1)bn+1
(
αn− 1

)
αrnzn

]

= 1
αr−1

[ +∞∑

n=0

(n+ 2)bn+2
(
αn+1− 1

)
αr(n+1)zn+1

]

=
+∞∑

n=0

(n+ 2)
(
αn+1− 1

)
αrn+1bn+2z

n+1.

(2.3)

Therefore,

1
αr−1

[
y′
(
αr+1z

)− y′
(
αrz
)]=

+∞∑

n=0

(n+ 2)
(
αn+1− 1

)
αrn+1bn+2z

n+1. (2.4)

By means of (2.2), we get that

y2(z)=
( +∞∑

n=0

bnz
n

)2

=
+∞∑

n=0

( n∑

i=0

bibn−i

)

zn. (2.5)

Then

y2(αjz
)=

+∞∑

n=0

( n∑

i=0

bibn−i

)

αjnzn, j = 0,1,2, . . . ,m. (2.6)

This implies

∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt

=
∫ z

0

( +∞∑

n=0

(n+ 1)bn+1α
rntn

)( +∞∑

n= 0

n∑

i= 0

m∑

j = 0

cjα
jnbibn−itn

)

dt

=
∫ z

0

+∞∑

n= 0

n∑

k = 0

n−k∑

i= 0

m∑

j = 0

cjα
(n−k) j+r(k+ 1)bibk+1bn−k−itndt

=
+∞∑

n=0

(∑n
k=0

∑n−k
i=0

∑m
j=0 cjα

(n−k) j+kr

n+ 1
(k+ 1)bibk+1bn−k−i

)

zn+1.

(2.7)

Therefore,

∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt=
+∞∑

n=0

∑n
k=0

∑n−k
i=0

∑m
j=0 cjα

(n−k) j+(k+1)r

n+ 1
(k+1)bibk+1bn−k−izn+1.

(2.8)
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Next, we will consider

y′
(
αrz
)
∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt

=
( +∞∑

n=0

(n+ 1)bn+1α
rnzn

) +∞∑

n=0

∑n
k=0

∑n−k
i=0

∑m
j=0 cjα

(n−k) j+kr

n+ 1
(k+ 1)bibk+1bn−k−izn+1

=
+∞∑

n=0

∑n
s=0

∑n−s
k=0

∑n−k−s
i=0

∑m
j=0 cjα

(n−s−k) j+(k+s)r

n− s+ 1
(s+ 1)(k+ 1)bibs+1bk+1bn−s−k−izn+1.

(2.9)

Therefore,

y′
(
αrz
)
∫ z

0
y′
(
αrt
) m∑

j=0

cj
(
y
(
αjt
))2

dt

=
+∞∑

n=0

∑n
s=0

∑n−s
k=0

∑n−k−s
i=0

∑m
j=0 cjα

(n−s−k) j+(k+s)r

n− s+ 1
(s+ 1)(k+ 1)bibs+1bk+1bn−s−k−izn+1.

(2.10)

We see that (1.3) is equivalent to the integrodifferential equation (2.1). By (2.1), (2.4),
and (2.10), we see that

(n+ 2)
(
αn+1− 1

)
αrn+1bn+2 =

∑n
s=0

∑n−s
k=0

∑n−k−s
i=0

∑m
j=0 cjα

(n−s−k) j+(k+s)r

n− s+ 1

×(s+ 1)(k+ 1)bibs+1bk+1bn−s−k−i, n= 0,1,2 . . . .

(2.11)

Therefore,

bn+2 =
∑n

s=0

∑n−s
k=0

∑n−k−s
i=0

∑m
j=0 cjα

(n−s−k) j+(k+s)r−rn−1

(n+ 2)(n− s+ 1)(αn+1− 1)
(s+ 1)(k+ 1)bibs+1bk+1bn−s−k−i,

(2.12)

where n = 0,1,2 . . . . Next, we show that such a power series solution is majorized by a
convergent power series. Now we begin with the following preparatory lemma, the proof
of which can be found in [1, Chapter 6].

Lemma 2.1. Assume that (H3) holds. Then there is a positive number δ such that |αn −
1|−1 < (2n)δ for n = 1,2,3, . . . . Furthermore, the sequence {dn}∞n=1 defined by d1 = 1 and
dn = (1/|αn−1 − 1|)maxn=n1+n2+···+nt ,0<n1≤n2≤···≤nt ,t≥2{dn1dn2 ···dnt}, n = 2,3,4, . . . satisfy
dn ≤ (25δ+1)n−1n−2δ , n= 1,2,3, . . . .

Lemma 2.2. Suppose that (H3) holds. Then, when 0 < |η| ≤ 1, (1.3) has an analytic solution
of the form (2.2) in a neighborhood of the origin.
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Proof. For convenience, we let M =∑m
j=0 |cj|. By means of (2.12), it follows that for each

n= 0,1,2, . . . ,

∣
∣bn+2

∣
∣≤

∑n
s=0

∑n−s
k=0

∑n−k−s
i=0

∑m
j=0

∣
∣cj
∣
∣|α|(n−s−k) j+(k+s)r−rn−1

(n+ 2)(n− s+ 1)
∣
∣(αn+1− 1

)∣∣

× (s+ 1)(k+ 1)
∣
∣bi
∣
∣
∣
∣bs+1

∣
∣
∣
∣bk+1

∣
∣
∣
∣bn−s−k−i

∣
∣

≤ M
∣
∣(αn+1− 1

)∣∣

n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

∣
∣bi
∣
∣
∣
∣bs+1

∣
∣
∣
∣bk+1

∣
∣
∣
∣bn−s−k−i

∣
∣.

(2.13)

Therefore,

∣
∣bn+2

∣
∣≤ M

∣
∣(αn+1− 1

)∣∣

n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

∣
∣bi
∣
∣
∣
∣bs+1

∣
∣
∣
∣bk+1

∣
∣
∣
∣bn−s−k−i

∣
∣, (2.14)

where n= 0,1, . . . . Let

Q(z,ω)= ω4− 2|μ|ω3 + |μ|2ω2− 1
M

(
ω−|μ|− z

)
(2.15)

for (z,ω) in a neighbor of (0, |μ|). We see thatQ(0,|μ|)= |μ|4− 2|μ|4 + |μ|4− (1/M)(|μ|−
|μ| − 0) = 0 and Q′ω(z,ω) = 4ω3 − 6|μ|ω2 + 2|μ|2ω − 1/M, so Q′ω(0,|μ|) = −1/M �= 0.
Therefore, there exists a unique analytic function G(z) in a neighborhood of 0 such that
G(0)= |μ|, G′(0)= 1 satisfy the equality Q(z,G(z))= 0. It follows that

G(z)=
+∞∑

n=0

Cnz
n, (2.16)

where C0 = |μ|, C1 = 1 in a neighborhood of 0. Next, we will show that

Cn+2 =M
n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

CiCs+1Ck+1Cn−s−k−i, n= 0,1, . . . . (2.17)

Suppose that (2.17) is true, by (2.16), we will get that

G3(z)=G(z)G2(z)=
(

C0 +
+∞∑

n=0

Cn+1z
n+1

)( +∞∑

n=0

( n∑

i=0

CiCn−i

)

zn
)

= C0

+∞∑

n=0

( n∑

i=0

CiCn−i)zn +
+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

CiCk+1Cn−k−i

)

zn+1,

G4(z)=G(z)G3(z)=
(

C0 +
+∞∑

n=0

Cn+1z
n+1

)

×
[

C0

+∞∑

n=0

( n∑

i=0

CiCn−i

)

zn +
+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

CiCk+1Cn−k−i

)

zn+1

]
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= C2
0

+∞∑

n=0

( n∑

i=0

CiCn−i

)

zn + 2C0

+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

CiCk+1Cn−k−i

)

zn+1

+
+∞∑

n=0

(

M
n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

CiCs+1Ck+1Cn−s−k−i

)

zn+2

= C2
0G

2(z) + 2C0
[
G3(z)−C0G

2(z)
]

+
1
M

+∞∑

n=0

Cn+2z
n+2

= 2C0G
3(z)−C2

0G
2(z) +

1
M

(
G(z)−C0−C1z

)

= 2|μ|G3(z)−|μ|2G2(z) +
1
M

(
G(z)−|μ|− z

)
,

(2.18)

that is,

G4(z)= 2|μ|G3(z)−|μ|2G2(z) +
1
M

(
G(z)−|μ|− z

)
, (2.19)

or

G4(z)− 2|μ|G3(z) + |μ|2G2(z)− 1
M

(
G(z)−|μ|− z

)= 0. (2.20)

Hence, Q(z,G(z)) = 0. Furthermore, we see that Q(z,G(z)) = 0 if and only if (2.17) is
true. Therefore, we conclude that (2.17) holds. Now, we know that the power series (2.16)
converges in a neighborhood of 0. Therefore, there exists a positive constant P such that

Cn < Pn (2.21)

for n = 1,2,3, . . . . In the following lemma, we show that |bn| ≤ Cndn, n = 1,2, . . . , where
the sequence {dn}∞n=1 is defined as in Lemma 2.1. Indeed, |b1| = |η| ≤ 1 = C1d1, so it
suffices to prove that |bn+1| ≤ Cn+1dn+1, n = 1,2, . . . . Let P(n) denote the statement that
|bn+1| ≤ Cn+1dn+1. From (2.14) and (2.17), we obtain

∣
∣b2
∣
∣≤

( m∑

j=0

∣
∣cj
∣
∣
)

|α− 1|−1
∣
∣b0
∣
∣
∣
∣b1
∣
∣
∣
∣b1
∣
∣
∣
∣b0
∣
∣

≤M|α− 1|−1C0C1d1C1d1C0

= (MC0C1C1C0
)(|α− 1|−1d1d1

)

= C2|α− 1|−1 max
n1+n2=2
0<n1≤n2

{
dn1dn2

}= C2d2.

(2.22)

Thus, P(2) is true. Next, suppose that P(1),P(2), . . . ,P(n) are true, that is, |bs+1|≤Cs+1ds+1,
for all s= 1,2, . . . ,n. By (2.14) and (2.17), we get that

∣
∣bn+2

∣
∣≤ M

∣
∣(αn+1− 1

)∣∣

n∑

s=0

n−s∑

k=0

n−k−s∑

i=0

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
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= M
∣
∣(αn+1− 1

)∣∣

n∑

s=0

n−s∑

k=0

(
∣
∣b0
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k

∣
∣

+
∣
∣bn−s−k

∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣b0
∣
∣

+
n−k−s−1∑

i=1

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
)

= M
∣
∣(αn+1− 1

)∣∣

n∑

s=0

n−s∑

k=0

(

2
∣
∣b0
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k

∣
∣

+
n−k−s−1∑

i=1

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
)

= M
∣
∣(αn+1− 1

)∣∣

( n∑

s=0

n−s∑

k=0

2
∣
∣b0
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k

∣
∣

+
n∑

s=0

n−s∑

k=0

n−k−s−1∑

i=1

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
)

= M
∣
∣(αn+1− 1

)∣∣

[ n∑

s=0

(

2
∣
∣b0
∣
∣
∣
∣bn−s+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣b0
∣
∣

+
n−s−1∑

k=0

2
∣
∣b0
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k

∣
∣
)

+
n∑

s=0

n−s∑

k=0

n−k−s−1∑

i=1

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
]

= M
∣
∣(αn+1− 1

)∣∣

[ n∑

s=0

2
∣
∣b0
∣
∣
∣
∣bn−s+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣b0
∣
∣

+
n∑

s=0

n−s−1∑

k=0

2
∣
∣b0
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k

∣
∣

+
n∑

s=0

n−s∑

k=0

n−k−s−1∑

i=1

∣
∣bi
∣
∣
∣
∣bk+1

∣
∣
∣
∣bs+1

∣
∣
∣
∣bn−s−k−i

∣
∣
]

≤ M
∣
∣(αn+1− 1

)∣∣

[ n∑

s=0

2C2
0Cn−s+1dn−s+1Cs+1ds+1

+
n∑

s=0

n−s−1∑

k=0

2C0Ck+1dk+1Cs+1ds+1Cn−s−kdn−s−k

+
n∑

s=0

n−s∑

k=0

n−k−s−1∑

i=1

CidiCk+1dk+1Cs+1ds+1Cn−s−k−idn−s−k−i

]



8 Analytic solution of functional differential equation

= M
∣
∣(αn+1− 1

)∣∣

[ n∑

s=0

2C2
0Cn−s+1Cs+1dn−s+1ds+1

+
n∑

s=0

n−s−1∑

k=0

2C0Ck+1Cs+1Cn−s−kdk+1ds+1dn−s−k

+
n∑

s= 0

n−s∑

k = 0

n−k−s−1∑

i= 1

CiCk+1Cs+1Cn−s−k−ididk+1ds+1dn−s−k−i

]

≤ M
∣
∣(αn+1− 1

)∣∣ max
n1+n2+···+nt=n+2

0<n1≤n2≤···≤nt , t≥2

{
dn1dn2 ···dnt

}

×
[ n∑

s=0

2C2
0Cn−s+1Cs+1 +

n∑

s=0

n−s−1∑

k=0

2C0Ck+1Cs+1Cn−s−k

+
n∑

s= 0

n−s∑

k = 0

n−k−s−1∑

i= 1

CiCk+1Cs+1Cn−s−k−i

]

= dn+2Cn+2.

(2.23)

Therefore, P(n+ 1) is true, we conclude that |bn| ≤ Cndn, for all n= 1,2,3, . . . . In view of
(2.21) and Lemma 2.1, we see that

∣
∣bn
∣
∣≤ Pn

(
25δ+1)n−1

n−2δ , n= 1,2,3, . . . . (2.24)

Therefore,

limsup
∣
∣bn
∣
∣1/n ≤ limsupP

(
25δ+1)(n−1)/n

n−2δ/n

= limP
(
25δ+1)(n−1)/n

n−2δ/n = P25δ+1.
(2.25)

Thus, 1/ limsup|bn|1/n ≥ 1/P25δ+1, which shows that power series (2.2) converges for
|z| < 1/P25δ+1. The proof is complete. �

Lemma 2.3. Suppose that (H1) holds. Then for any r ≥m, (1.3) has an analytic solution of
the form (2.2) in a neighborhood of 0.

Proof. For r ≥m, 0≤ k+ s≤ n, we have s+ 1≤ n+ 1, and k+ 1≤ n− s+ 1, it follows that
(s+ 1)/(n+ 1)≤ 1 and (k+ 1)/(n− s+ 1)≤ 1. Next, we have

(k+ s+ 1)r + j(n− s− k)− rn

= (k+ s)r + r− (k+ s) j + jn− rn

= (k+ s)(r− j)−n(r− j) + r

= (k+ s−n)(r− j) + r, so

(k+ s+ 1)r + j(n− s− k)− rn= (k+ s−n)(r− j) + r.

(2.26)
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Since |α| > 1, |α|(k+s+1)r+ j(n−s−k)−rn = |α|(k+s−n)(r− j)+r = |α|(k+s−n)(r− j)|α|r ≤ |α|r and the
sequence

{ |α|r−1
∑m

j=0

∣
∣cj
∣
∣

|α|n+1− 1

}∞

n=1

(2.27)

converges to 0, this sequence is bounded, namely, there exists M > 0 such that

|α|r−1
∑m

j=0

∣
∣cj
∣
∣

|α|n+1− 1
≤M, ∀n= 1,2,3, . . . . (2.28)

Therefore,

∣
∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0

∣
∣cj
∣
∣
∣
∣α
∣
∣(k+s+1)r+ j(n−s−k)−rn−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣

≤ |α|
r−1
∑m

j=0

∣
∣cj
∣
∣

∣
∣αn+1− 1

∣
∣ ≤ |α|

r−1
∑m

j=0

∣
∣cj
∣
∣

|α|n+1− 1
≤M, ∀n= 1,2,3, . . . .

(2.29)

In view of (2.10), we get that

∣
∣bn+2

∣
∣≤M

n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

∣
∣bi
∣
∣bs+1

∣
∣bk+1

∣
∣
∣
∣bn−s−k−i

∣
∣, ∀n= 0,1,2, . . . . (2.30)

We define a sequence {Dn}∞n=0 by D0 = |μ|, D1 = |η| and

Dn+2 =M
n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

DiDs+1Dk+1Dn−s−k−i, ∀n= 0,1,2, . . . . (2.31)

Next, we will show that |bn+1| ≤Dn+1, n= 1,2,3, . . . . By definition of Dn, we have |b0| ≤
D0, |b1| ≤D1 and we let P(n) denote the statement that |bn+1| ≤Dn+1. Then

∣
∣b2
∣
∣≤M

0∑

s= 0

0−s∑

k = 0

0−k−s∑

i= 0

∣
∣bi
∣
∣bs+1

∣
∣bk+1

∣
∣
∣
∣b0−s−k−i

∣
∣

=M
∣
∣b0
∣
∣
∣
∣b1
∣
∣
∣
∣b1
∣
∣
∣
∣b0
∣
∣=M

∣
∣b0
∣
∣2∣∣b1

∣
∣2 =D2.

(2.32)

Therefore, P(1) is true. Next, suppose that P(1),P(2), . . . ,P(n) are true, so |bt+1| ≤ Dt+1,
for t = 1,2,3, . . . ,n. Therefore,

∣
∣bn+2

∣
∣≤M

n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

∣
∣bi
∣
∣bs+1

∣
∣bk+1

∣
∣
∣
∣bn−s−k−i

∣
∣

≤M
n∑

s=0

n−s∑

k=0

n−k−s∑

i=0

DiDs+1Dk+1Dn−s−k−i =Dn+2.

(2.33)
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Hence, P(n+ 1) is true, so we can conclude that |bn| ≤ Dn, for n= 0,1,2, . . . . Now, if we
define

G(z)=
+∞∑

n=0

Dnz
n, (2.34)

then

G3(z)=G(z)G2(z)=
(

D0 +
+∞∑

n=0

Dn+1z
n+1

)( +∞∑

n=0

( n∑

i=0

DiDn−i

)

zn
)

=D0

+∞∑

n=0

( n∑

i=0

DiDn−i

)

zn +
+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

DiDk+1Dn−k−i

)

zn+1,

G4(z)=G(z)G3(z)=
(

D0 +
+∞∑

n=0

Dn+1z
n+1

)

×
[

D0

+∞∑

n=0

( n∑

i=0

DiDn−i

)

zn +
+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

DiDk+1Dn−k−i

)

zn+1

]

[5pt]=D2
0

+∞∑

n=0

( n∑

i=0

DiDn−i

)

zn + 2D0

+∞∑

n=0

( n∑

k = 0

n−k∑

i= 0

DiDk+1Dn−k−i

)

zn+1

+
+∞∑

n=0

(

M
n∑

s= 0

n−s∑

k = 0

n−k−s∑

i= 0

DiDs+1Dk+1Dn−s−k−i

)

zn+2

=D2
0G

2(z) + 2D0
[
G3(z)−D0G

2(z)
]

+
1
M

+∞∑

n=0

Dn+2z
n+2

= 2D0G
3(z)−D2

0G
2(z) +

1
M

(
G(z)−D0−D1z

)

= 2|μ|G3(z)−|μ|2G2(z) +
1
M

(
G(z)−|μ|− |η|z).

(2.35)

Thus,

G4(z)− 2|μ|G3(z) + |μ|2G2(z)− 1
M

(
G(z)−|μ|− |η|z)= 0. (2.36)

Let

R(z,ω)= ω4− 2|μ|ω3 + |μ|2ω2− 1
M

(
ω−|μ|− |η|z) (2.37)

for (z,ω) in a neighborhood of (0, |μ|), so we see that R(0,μ) = |μ|4 − 2|μ|4 + |μ|4 −
(1/M)(|μ| − |μ| − |η|0) = 0 and R′ω(z,ω) = 4ω3 − 6|μ|ω2 + 2|μ|2ω − 1/M, then R′ω(0,
|μ|) = −1/M �= 0. Therefore, there exists a unique function ω(z) which is analytic in a
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neighborhood of 0 such that ω(0)= |μ|, ω′(0)= |η| and satisfies R(z,ω(z))= 0. Accord-
ing to (2.34) and (2.36), we have G(z)= ω(z). It follows that the power series (2.34) con-
verges in a neighborhood of 0, which implies that the power series (2.2) is also convergent
in a neighborhood of 0. The proof is complete. �

Lemma 2.4. Suppose that (H2) holds. Then for either 0<r≤m and c0=0,c1=0, . . . ,cr−1=
0, or r = 0, (1.3) has an analytic solution of the from (2.2) in a neighborhood of 0.

Proof. By assumption, we get that

{ |α|−1
∑m

j=0

∣
∣cj
∣
∣

1−|α|n+1

}+∞

n=1

(2.38)

converges to |α|−1
∑m

j=0 |cj|, so it is a bounded sequence which implies that there exists
M > 0 such that

|α|−1
∑m

j=0

∣
∣cj
∣
∣

1−|α|n+1
≤M, ∀n= 1,2,3, . . . . (2.39)

There are two cases to consider as follows.
Case 1. r = 0. As 0≤ k+ s≤ n, we have

∣
∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0 cjα
(n−s−k) j+(k+s+1)r−rn−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0 cjα
(n−s−k) j−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣≤

|α|−1
∑m

j=0

∣
∣cj
∣
∣

1−|α|n+1
.

(2.40)

Case 2. 0 < r ≤ m and c0 = 0,c1 = 0, . . . ,cr−1 = 0. We see that |α|(r− j)(k+s−n) ≤ 1, where
r ≤ j ≤m. Then,

|α|(n−s−k) j+(k+s+1)r−rn−1 = |α|(r− j)(k+s−n)+r−1

= |α|(r− j)(k+s−n)|α|r|α|−1 ≤ |α|−1.
(2.41)

Thus,

|α|(n−s−k) j+(k+s+1)r−rn−1 ≤ |α|−1. (2.42)

Next, we consider

∣
∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0 cjα
(n−s−k) j+(k+s+1)r−rn−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣

≤
∑m

j=0

∣
∣cj
∣
∣|α|(n−s−k) j+(k+s+1)r−rn−1

1−|α|n+1
≤ |α|

−1∑m
j=0

∣
∣cj
∣
∣

1−|α|n+1
.

(2.43)
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Therefore, by both cases, we have

∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0 cjα
(n−s−k) j+(k+s+1)r−rn−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣≤

|α|−1∑m
j=0

∣
∣cj
∣
∣

1−|α|n+1
. (2.44)

It follows that
∣
∣
∣
∣
∣

(s+ 1)(k+ 1)
∑m

j=0 cjα
(n−s−k) j+(k+s+1)r−rn−1

(n+ 2)(n− s+ 1)
(
αn+1− 1

)

∣
∣
∣
∣
∣≤M for n= 1,2,3, . . . . (2.45)

The conclusion of Lemma 2.4 now follows easily from the same argument as in the proof
of Lemma 2.3. �

3. Main results

We now state the main result of this paper. Consider the following three hypotheses:
(i) (H3) holds;

(ii) (H1) holds, and r ≥m;
(iii) (H2) holds, and either 0 < r ≤m and c0 = 0,c1 = 0, . . . ,cr−1 = 0, or r = 0.

Theorem 3.1. Suppose one of the conditions (i), (ii), or (iii) is fulfilled. Then, for any μ,
(1.2) has an analytic solution x(z) in a neighborhood of μ satisfying the initial conditions
x(μ)= μ, x′(μ)= α. This solution has the form x(z)= y(αy−1(z)), where y(z) is an analytic
solution of the initial value problem (1.3)-(1.4).

Proof. In view of Lemmas 2.2–2.4, we may find a sequence {bn}∞n=2 such that the function
y(z) of the form (2.2) is an analytic solution of (1.3) in a neighborhood of 0. Since y′(0)=
η �= 0, the function y−1(z) is analytic in a neighborhood of the y(0)= μ. If we define x(z)
by means of (1.5), then

x′′
(
x[r](z)

)= x′′
(
y
(
αr y−1(z)

))

= α2y′′
(
αr+1y−1(z)

)
y′
(
αr y−1(z)

)−αy′
(
αr+1y−1(z)

)
y′′
(
αr y−1(z)

)

[
y′
(
αr y−1(z)

)]3

=
m∑

j=0

cj
(
y
(
αj y−1(z)

))2
, by (1.3),

=
m∑

j=0

cj
(
x[ j](z)

)2
, as required.

(3.1)

The proof is complete. �

We now show how to explicitly construct an analytic solution of (1.2). Since x(z) =
y(αy−1(z)), x(μ)= y(αy−1(μ))= y(0)= μ. By Theorem 3.1, x(z) is an analytic function
in a neighborhood of μ. Thus x(z) can be written in a neighborhood of μ as

x(z)= μ+ x′(μ)(z−μ) +
x′′(μ)(z−μ)2

2!
+
x′′′(μ)(z−μ)3

3!
+ ··· . (3.2)
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Next, we will determine the derivatives x(n)(μ), n= 1,2, . . . . We have x(z)= y(αy−1(z)), so
that x′(z)= αy′(αy−1(z))/y′(y−1(z)). That is, x′(μ)=αy′(αy−1(μ))/y′(y−1(μ))= αy′(0)/
y′(0)= α. Hence x′(μ)= α. By means of (1.2), we get that

x′′(μ)= x′′
(
x[r](μ)

)=
m∑

j=0

cj
(
x[ j](μ)

)2 = μ2
m∑

j=0

cj ; (3.3)

hence x′′(μ)= μ2
∑m

j=0 cj . Next, we have

(
x′′
(
x[r](z)

))′ = x′′′
(
x[r](z)

)(
x[r](z)

)′

= x′′′
(
x[r](z)

)
x′
(
x[r−1](z)

)
x′
(
x[r−2](z)

)···x′(x(z)
)
x′(z).

(3.4)

Therefore, the derivative of (x′′(x[r](z))) at z = μ is

x′′′
(
x[r](μ)

)
x′
(
x[r−1](μ)

)
x′
(
x[r−2](μ)

)···x′(x(μ)
)
x′(μ)= x′′′(μ)

[
x′(μ)

]r = x′′′(μ)αr ,

( m∑

j=0

cj
(
x[ j](z)

)2
)′
=

m∑

j=0

cj
((
x[ j](z)

)2)′ = 2
m∑

j=0

cjx
[ j](z)

(
x[ j](z)

)′

= 2
m∑

j=0

cjx
[ j](z)x′

(
x[ j−1](z)

)
x′
(
x[ j−2](z)

)···x′(x(z)
)
x′(z).

(3.5)

Hence, the first derivative of (
∑m

j=0 cj(x
[ j](z))2) at z = μ is 2μ

∑m
j=0 cjα

j . Next, by taking
the first derivative of (1.2) at z = μ, we get that

x′′′(μ)αr = 2μ
m∑

j=0

cjα
j . (3.6)

Thus,

x′′′(μ)= 2μ
m∑

j=0

cjα
j−r . (3.7)

In general, we can show by induction that

(
x′′
(
x[r](z)

))(n+1) = ((x[r](z)
)′)n+1

x(n+3)(x[r](z)
)

+
n∑

k=1

[
Pk,n+1

((
x[r](z)

)′
,
(
x[r](z)

)′′
, . . . ,

(
x[r](z)

)(n+1)
)]
x(k+2)(x[r](z)

)
,

(3.8)

for n= 1,2, . . . , and

(
x[ j](z)

)(l) =Qjl
(
x10(z), . . . ,x1, j−1(z); . . . ;xl0(z), . . . ,xl, j−1(z)

)
, (3.9)
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respectively, where xi j(z) = x(i)(x[ j](z)), Pjk and Qjl are polynomials with nonnegative
coefficients. Next, we have

( m∑

j=0

cj
((
x[ j](z)

)2
)
)(n+1)

=
m∑

j=0

cj
((
x[ j](z)

)2
)(n+1)

= 2
m∑

j=0

cj
(
x[ j](z)

)((
x[ j](z)

)′)(n)

= 2
m∑

j=0

cj

( n∑

k=0

Cn
k

(
x[ j](z)

)(k)(
x[ j](z)

)(n−k+1)
)

= 2
m∑

j=0

n∑

k=0

cjC
n
k

(
x[ j](z)

)(k)(
x[ j](z)

)(n−k+1)
, n= 1,2, . . . .

(3.10)

For convenience, we denote the following notations:

βjl =Qjl
(
x′(μ), . . . ,x′(μ); . . . ;x( j)(μ), . . . ,x( j)(μ)

)
, (3.11)

where the number of repeats of x(t)(μ) is l, for t = 1,2, . . . , j. Then, we see that βl j =
(x[ j](μ))(l). By differentiating (1.1) for n+ 1 times at z = μ, we get

((
x[r](μ)

)′)n+1
x(n+3)(x[r](μ)

)

+
n∑

k=1

[
Pk,n+1

((
x[r](μ)

)′
,
(
x[r](μ)

)′′
, . . . ,

(
x[r](μ)

)(n+1)
)]
x(k+2)(x[r](μ)

)

= 2
m∑

j=0

n∑

k=0

cjC
n
k

(
x[ j](μ)

)(k)(
x[ j](μ)

)(n−k+1)
.

(3.12)

Thus,

αr(n+1)x(n+3)(μ) +
n∑

k=1

[
Pk,n+1

(
β1r ,β2r , . . . ,βn+1,r

)]
x(k+2)(μ)= 2

m∑

j=0

n∑

k=0

cjC
n
kβk jβn−k+1, j .

(3.13)

This shows that

x(n+3)(μ)= 2
∑m

j=0

∑n
k=0 cjC

n
kβk jβn−k+1, j −

∑n
k=1

[
Pk,n+1

(
β1r ,β2r , . . . ,βn+1,r

)]
x(k+2)(μ)

αr(n+1)
,

(3.14)
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where n= 1,2, . . . . By means of this formula, it is then easy to write out the explicit form
of our solution x(z) as follows:

x(z)= μ+α(z−μ) +
μ2

2!

m∑

j=0

cj(z−μ)2 +
2μ
3!

m∑

j=0

cjα
j−r(z−μ)3

+
+∞∑

n=1

1
(n+ 3)!

x(n+3)(μ)(z−μ)n+3.

(3.15)

Example 3.2. The following example shows how to construct an analytic solution by using
the previous argument. Consider the following functional equation:

x′′
(
x(z)

)= x2(z) +
(
x[2](z)

)2
. (3.16)

This is just (1.2) with the choice of r = 1, m= 2, c0 = 1, c1 = 1, and c2 = 1. We can easily
see that (3.16) satisfies condition (iii) of Theorem 3.1; hence, for any complex numbers
μ and α such that 0 < |α| < 1, (3.16) has an analytic solution x(z) in a neighborhood of μ
which satisfies x(μ)= μ and x′(μ)= α. This analytic solution has the form as in (3.2) in
case r = 1, m= 2, c0 = 1, c1 = 1, and c2 = 1. We already know that x(μ)= μ and x′(μ)= α.
We will find x(n)(μ), n≥ 2. For n= 2, it follows from (3.16) that

x′′(μ)= x′′
(
x(μ)

)= x2(μ) +
(
x[2](μ)

)2 = 2μ2. (3.17)

For n= 3, it follows from (3.16) that

x′′
(
x(z)

)′ = (x2(z)
)′

+
((
x[2](z)

)2
)′
. (3.18)

Thus,

x′′′
(
x(z)

)
x′(z)= 2x(z)x′(z) + 2x[2](z)x′

(
x(z)

)
x′(z)

= 2x′(z)
[
x(z) + x[2](z)x′

(
x(z)

)]
.

(3.19)

By putting z = μ, we obtain

x′′′(μ)α= 2α[μ+μα], (3.20)

which gives

x′′′(μ)= 2(1 +α)μ. (3.21)

Similarly, for n= 4, we obtain

x(4)(μ)= 2
(
1 + 2μ3 +α2)+

4(1 +μ)μ3

α2
. (3.22)
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By continuing this process, we obtain an analytic solution of (3.16) as

x(z)= μ+α(z−μ) +μ2(z−μ)2 +
(1 +α)

3
(z−μ)3

+
(

1 + 2μ3 +α2

12
+

(1 +μ)μ3

6α2

)
(z−μ)4 + ··· .

(3.23)
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