ON THE MEAN VALUE PROPERTY OF SUPERHARMONIC AND SUBHARMONIC FUNCTIONS

ROBERT DALMASSO

Received 19 October 2005; Revised 25 January 2006; Accepted 16 February 2006

We prove a converse of the mean value property for superharmonic and subharmonic functions. The case of harmonic functions was treated by Epstein and Schiffer.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

Recall that a function u is harmonic (superharmonic, subharmonic) in an open set $U \subset \mathbb{R}^n$ $(n \ge 1)$ if $u \in C^2(U)$ and $\Delta u = 0$ $(\Delta u \le 0, \Delta u \ge 0)$ on U. Denote by H(U) the space of harmonic functions in U and SH(U) (sH(U)) the subset of $C^2(U)$ consisting of superharmonic (subharmonic) functions in U. If $A \subset \mathbb{R}^n$ is Lebesgue measurable, $L^1(A)$ denotes the space of Lebesgue integrable functions on A and |A| denotes the Lebesgue measure of A when A is bounded.

We also recall the mean value property of harmonic, superharmonic, and subharmonic functions in U([2]): if $x \in U$ and $B(x,r) = \{y \in \mathbb{R}^n; \|y - x\| < r\}, r > 0$, is such that $\overline{B}(x,r) \subset U$, then for all $u \in H(U)$ (SH(U),sH(U)),

$$u(x) = (\geq, \leq) \frac{1}{|B(x,r)|} \int_{B(x,r)} u(y) dy.$$
 (1)

Using the Lebesgue-dominated convergence theorem we see that the conclusion above holds whenever $B(x,r) \subset U$ if $u \in H(U) \cap L^1(B(x,r))$ $(SH(U) \cap L^1(B(x,r)), sH(U) \cap L^1(B(x,r)))$. Epstein and Schiffer [1] proved the following converse.

THEOREM 1. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ be a bounded open set. Suppose that there exists $x_0 \in \Omega$ such that

$$u(x_0) = \frac{1}{|\Omega|} \int_{\Omega} u(x) dx \tag{2}$$

for every $u \in H(\Omega) \cap L^1(\Omega)$. Then Ω is a ball with center x_0 .

A more general result was obtained by Kuran [3]. In this note we give a proof of the following converse.

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 57340, Pages 1–3 DOI 10.1155/IJMMS/2006/57340

2 Mean value property of super (sub) harmonic functions

THEOREM 2. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ be a bounded open set. Suppose that there exists $x_0 \in \Omega$ such that

$$u(x_0) \ge (\le) \frac{1}{|\Omega|} \int_{\Omega} u(x) dx \tag{3}$$

for every $u \in SH(\Omega) \cap L^1(\Omega) \setminus H(\Omega)$ $(sH(\Omega) \cap L^1(\Omega) \setminus H(\Omega))$. Then Ω is a ball with center x_0 .

Proof. Clearly it is enough to consider the case of superharmonic functions. Since Ω is bounded, there exists a largest open ball *B* centered at x_0 of radius r_1 which lies in Ω . The compactness of $\partial\Omega$ implies that there is some $x_1 \in \partial\Omega$ such that $||x_1 - x_0|| = r_1$. We will show that $\Omega = B$. Define

$$h(x) = r_1^{n-2} \left(||x - x_0||^2 - r_1^2 \right) ||x - x_1||^{-n}$$
(4)

for $x \in \mathbb{R}^n \setminus \{x_1\}$. Then $h \in H(\mathbb{R}^n \setminus \{x_1\})$ and $h(x_0) = -1$. Now let $R > r_1$ be such that $\Omega \subset B(x_0, R)$. For $k \in \mathbb{N}^*$ we set

$$u_k(x) = 1 + h(x) + \frac{1}{2nk} \left(R^2 - ||x - x_0||^2 \right), \quad x \in \Omega.$$
(5)

Obviously $u_k \in C^2(\Omega)$ and $\Delta u_k = -1/k$ in Ω , hence $u_k \in SH(\Omega) \setminus H(\Omega)$. Moreover $u_k \in L^1(\Omega)$ and $u_k(x) \ge 1$ for $x \in \Omega \setminus B$. Since $1 + h \in H(\Omega) \cap L^1(\Omega)$, we have

$$0 = 1 + h(x_0) = \int_B (1 + h(x)) dx.$$
(6)

Now using (6) we can write

$$\frac{R^{2}}{2nk} = u_{k}(x_{0}) \geq \frac{1}{|\Omega|} \int_{\Omega} u_{k}(x) dx = \frac{1}{|\Omega|} \int_{\Omega \setminus B} u_{k}(x) dx + \frac{1}{|\Omega|} \int_{B} u_{k}(x) dx
= \frac{1}{|\Omega|} \int_{\Omega \setminus B} u_{k}(x) dx + \frac{1}{2nk|\Omega|} \int_{B} \left(R^{2} - ||x - x_{0}||^{2}\right) dx
\geq \frac{|\Omega \setminus B|}{|\Omega|} + \frac{\omega_{n}r_{1}^{n}}{2nk|\Omega|} \left(\frac{R^{2}}{n} - \frac{r_{1}^{2}}{n+2}\right)
\geq \frac{|\Omega \setminus \overline{B}|}{|\Omega|} + \frac{\omega_{n}r_{1}^{n}}{2nk|\Omega|} \left(\frac{R^{2}}{n} - \frac{r_{1}^{2}}{n+2}\right)$$
(7)

for all $k \in \mathbb{N}^*$, where ω_n denotes the measure of the unit sphere in \mathbb{R}^n . This implies that $|\Omega \setminus \overline{B}| = 0$. Then the open set $\Omega \setminus \overline{B}$ must be empty, hence $\Omega \subset \overline{B}$. Since Ω is open and $B \subset \Omega \subset \overline{B}$, we deduce that $\Omega = B$.

References

- B. Epstein and M. Schiffer, On the mean-value property of harmonic functions, Journal d'Analyse Mathématique 14 (1965), 109–111.
- [2] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer, Berlin, 1977.

[3] Ü. Kuran, *On the mean-value property of harmonic functions*, The Bulletin of the London Mathematical Society **4** (1972), 311–312.

Robert Dalmasso: Laboratoire LMC-IMAG, Equipe EDP, Tour IRMA, BP 53, 38041 Grenoble Cedex 9, France *E-mail address*: robert.dalmasso@imag.fr