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Let 0= U0,n ≤ U1,n ≤ ··· ≤ Un−1,n ≤ Un,n = 1 be an ordered sample from uniform [0,1]
distribution, and Din = Ui,n −Ui−1,n, i = 1,2, . . . ,n; n = 1,2, . . . , be their spacings, and let
f1n, . . . , fnn be a set of measurable functions. In this paper, the probabilities of the mod-
erate and Cramer-type large deviation theorems for statistics Rn(D)= f1n(nD1n) + ···+
fnn(nDnn) are proved. Application of these theorems for determination of the intermedi-
ate efficiencies of the tests based on Rn(D)-type statistic is presented here too.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let U1,U2, . . . be a sequence of independent uniform (0,1) random variables (r.v.). We
denote the order of U1,U2, . . . ,Un−1 by U1n ≤ ··· ≤ Un−1,n ≤ Unn. Putting U0,n = 0 and
Un,n = 1, we define spacings as Din = Uin −Ui−1,n, i = 1,2, . . . ,n; n = 1,2, . . . , and denote
D = (D1n, . . . ,Dnn). Let fm(y)= fmn(y), m= 1,2, . . . ,n, be a measurable functions of non-
negative argument y. We consider statistics of type

Rn(D)=
n∑

m=1

fm
(
nDmn

)
, n= 1,2, . . . . (1.1)

Statistics of this form have wide application, for example, goodness of fit tests, test-
ing the dispersive ordering, for estimation of unknown parameters, in the problems of
random coverage of the circle. An extensive survey on the distribution theory of these
statistics and its applications can be found in Pyke [13, 14] and Deheuvels [2], see also,
Feller [4], L’Ecuyer [10], and Ghosh and Jammalamadaka [5], and references therein.

The optimal condition of the asymptotical normality and the lower estimation of the
remainder in CLT, Mirakhmedov [11], and Edgworth-type asymptotical expansion, Does
et al. [3], and the probability of “supper large” deviation result (i.e., of order c

√
n), Zhou

and Jammalamadaka [16], have been obtained for r.v. (1.1). But the topics of interest
to us here are not readily available in the literature. In the present paper, we will prove
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2 Large deviations of the sum functions of spacings

a probability of large deviation theorems in moderate zone (i.e., of order c
√

lnn) and
Cramer’s zone (i.e., of order o(

√
n)).

Many authors have considered spacings-based tests testing hypothesis whether a ran-
dom sample comes from a specified distribution. Most papers are dedicated to Pitman’s
approach (see, e.g., Holst and Rao [6], Jammalamadaka et al. [8]). Also in Zhou and Jam-
malamadaka [16], Bahadur’s asymptotic efficiency and in Bartoszewicz [1] Bahadur’s and
Hodjes-Lehman approximate efficiencies have been studied. In the present paper, the in-
termediate efficiencies due to Kallenberg [9], see also Ivchenko and Mirakhmedov [7], of
the spacings-based tests are presented too.

Thus the results of the present paper are filling existing gaps in the investigation of the
large deviation probabilities of the statistics of type (1.1) and efficiencies of the tests based
on this statistics.

The method developed in the present paper is based on following property of the
uniform spacings. Let Y1(λ),Y2(λ), . . . be a sequence of independent r.v.’s with common
exponential distribution exp(λ), and let Y(λ)= (Y1(λ), . . . ,Yn(λ)), Sn(λ)= Y1(λ) + ···+
Yn(λ). For arbitrary λ > 0, there is a regular variant of the conditional distribution of the
random vector Y(λ) given Sn(λ)= n such that �(nD)= �(Y(λ)/Sn(λ)= n), where �(X)
denoted the distribution of the random vector X . This equality is known and usually
used at λ = 1 (see, Pyke [13], Holst and Rao [6], Does et al. [3]). Its validity for arbi-
trary λ > 0 follows from the fact that Sn(λ) is a sufficient statistic for parameter λ. Thus
for arbitrary measurable function L(x1, . . . ,xn) of nonnegative arguments and each λ >
0, we have �(L(nD1n, . . . ,nDnn)) = �(L(Y1, . . . ,Yn)/Sn(λ) = n), and if

∫∞
−∞
∣∣EL(Y1(λ), . . . ,

Yn(λ))exp{iτSn(λ)}|dτ <∞, then

EL
(
nD1n, . . . ,nDnn

)= 1
2πpn(n,λ)

∫∞

−∞
E
(
L
(
Y1(λ), . . . ,Yn(λ)

)
exp

{
iτ
(
Sn(λ)−n)})dτ,

(1.2)

where pn(z,λ) is the density function of r.v. Sn(λ). We note that the proof of the Cramer-
type theorem (Theorem 2.2) rests on a special choice of the parameter λ, see Lemma 3.2.

Few words about notations. Many quantities like gm, ρ, g̃m depend on n, however for
notational convenience, we will suppress this suffix, except cases where it is essential. Ci is
a positive constant that may not be the same in the different expressions, ε is an arbitrary
small positive constant. All asymptotic expressions are considered as n→∞.

The organization of this paper is as follows. The probabilities of large deviation results
are formulated in Section 2. A proof of the theorems of Section 2 is given in Section 3.
The application of the theorems of Section 2 to the study of the intermediate efficiency of
tests based on spacing statistics are presented in Section 4. Appendix contains proofs of
auxiliary lemmas.

2. Results

For simplicity of notations below, we put Ym = Ym(1), Sn = Sn(1). Also we let

Rn(Y)=
n∑

m=1

fm
(
Ym
)
, ρ = corr

(
Rn(Y),Sn

)
,
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gm(u)= fm(u)−E fm
(
Ym
)− (u− 1)ρ

√
VarRn(Y)

n
,

Tn(D)=
n∑

m=1

gm
(
nDm

)
, Tn(Y)=

n∑

m=1

gm
(
Ym
)
.

(2.1)

Note that σ2
n ≡VarTn(Y)= (1− ρ2)VarRn(Y) and

ETn(Y)= 0, cov
(
Tn(Y),Sn

)= 0. (2.2)

It is obviously that Tn(D) = Rn(D)− ERn(Y). Let Pn(x) = P(Tn(D) < xσn) and let Φ(x)
be the standard normal distribution function.

Theorem 2.1. If

lim
1
n
σ2
n > 0, (2.3)

lim
1
n

n∑

m=1

E
∣∣gm

(
Ym
)∣∣2+δ

<∞, (2.4)

for some δ > 0. Then for all x such that 0≤ x ≤√δ lnn,

1−Pn(x)= (1−Φ(x)
)(

1 + o(1)
)
, Pn(−x)=Φ(−x)

(
1 + o(1)

)
. (2.5)

Theorem 2.2. Let (2.3) be fulfilled and for some H > 0,

χm
def= Eexp

{
H
∣∣gm

(
Ym
)∣∣}≤ C. (2.6)

Then for x ≥ 0 and x = o(
√
n),

1−Pn(x)= (1−Φ(x)
)

exp
{
x3

√
n
Ln

(
x√
n

)}(
1 +O

(
x+ 1√
n

))
,

Pn(−x)=Φ(−x)exp
{
− x3

√
n
Ln

(
− x√

n

)}(
1 +O

(
x+ 1√
n

))
,

(2.7)

where Ln(u) = 
0n + 
1nu+ ··· is a special Cramer-type power series. Particularly, putting
σ̂2
n = n−1σ2

n , qi j = n−1
∑n

m=1 qi jm,


0n = 1
n
σ̂−3
n q30, 
1n = 1

24σ̂4
n
q40− 1

8σ̂6
n
q2

30−
1

8σ̂4
n
q21
(
q21 + 2σ̂2

n

)− 1
8σ̂4

nn

n∑

m=1

q2
20m.

(2.8)

3. Proof of Theorems 2.1 and 2.2

Proofs based on the Cramer’s transform. If EeH|Y | <∞, for some H > 0, then the r.v. X with
distribution function P{X < u} = E(exp{hY}1{Y < u})/Eexp{hY} is called the Cramer’s
transform with parameter h of the r.v. Y , where |h| <H . For r.v. Y , we have

P{Y > u} = EehYE(exp{−hX}1{X > u}). (3.1)
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Proof of Theorem 2.1. We will prove first relation from (2.5). Second relation can be ob-
tained from first by substituting −gm(u) instead of gm(u), m= 1,2, . . . . Under conditions
of the Theorem 2.1 from [11, Corollary 3], it follows that |Pn(x)−Φ(x)| ≤ C1n−δ

′/2,
where δ′ =min(1,δ). Using this and well-known relation

1−Φ(x)= 1√
2πx

e−x
2/2
(

1 +O
(

1
x

))
, (3.2)

it is easy to check that Theorem 2.1 holds true for 0 ≤ x ≤ √δ′ lnn/2. From now on, we
suppose that

√
δ′

2
lnn≤ x ≤

√
δ lnn. (3.3)

We introduce the truncated functions g̃m(u) = gm(u)1{|gm(u)| ≤ εσn}, m = 1,2, . . . ,
where ε > 0 will be chosen sufficiently small later on. Putting T̃m(D) =∑n

m=1 g̃m(nDm),
P̃n(x)= P(T̃n(D) < xσn), we have

∣∣1−Pn(x)− (1−Φ(x)
)∣∣≤ ∣∣(1− P̃n(x)

)− (1−Φ(x)
)∣∣+

∣∣Pn(x)− P̃n(x)
∣∣≡∇1 +∇2.

(3.4)

(i) Estimation of ∇1. For a complex variable z, we denote ϕ̃n(z) = Eexp{zT̃n(D)}.
Let G̃n be the Cramer’s transform with parameter h = x/σn of the r.v. T̃n(D). Note that
ϕ̃n(h) ≥ 1/2 for sufficiently large n. Estimation of the ∇1 rests on the following lemma,
proof of which (being long) is given in the appendix.

Lemma 3.1. Under conditions of Theorem 2.1,
(1) supu |P{G̃∗n < u}−Φ(u)| =O(n−δ′/3(2+δ′)), where G̃∗n = (G̃n− xσn)/σn;
(2) ϕ̃n(h)= exp{x2/2}(1 +O(n−δ′/3(2+δ′))), where δ′ =min(1,δ).

Due to (3.1),

P
(
T̃n(D) > xσn

)= ϕ̃n(h)E
[

exp
{−hG̃n

}
1
{
G̃n > xσn

}]

= exp
{

ln ϕ̃n(h)− x2}E
[

exp
{−hG̃∗n

}
1
{
G̃∗n > 0

}]

= exp
{

ln ϕ̃n(h)− x2}
[∫∞

0
exp{−xu}dΦ(u)

+
∫∞

0
exp{−xu}d(P{G̃∗n < u

}−Φ(u)
)]
.

(3.5)

We denote the first and second summands inside the square brackets by A1 and A2,
respectively. It can be readily shown that A1 =Φ(−x)exp{x2/2}. In A2, first of all we inte-
grate by part, and after this we use first assertion of Lemma 3.1 to getA2 =O(n−δ′/3(2+δ′)).
Use second assertion of Lemma 3.1 to get exp{ln ϕ̃n(h) − x2} = exp{−x2/2}(1 +
O(n−δ′/3(2+δ′))). Now apply this and estimations of A1 and A2 in the equality (3.5) to
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get

P
(
T̃n(D) > xσn

)

= exp
{
−x

2

2

}(
1 +O

(
n−δ

′/3(2+δ′)))
[
Φ(−x)exp

{
x2

2

}
+O

(
n−δ

′/3(2+δ′))
]
.

(3.6)

Thus taking into account (3.2), we have

∇1 =
(
1−Φ(x)

)
O
(
xn−δ

′/3(2+δ′)). (3.7)

(ii) Estimation of ∇2. Note that pn(n,1)= nn(n!)−1en, hence using Stirling’s formula,
we obtain

∣∣∣∣
1√

2πnpn(n,1)
− 1

∣∣∣∣≤
C

n
. (3.8)

We have

{
T̃n(D) > u

}=
{
Tn(D) > u,

n⋂

m=1

{∣∣gm
(
nDmn

)∣∣≤ εxσn
}}⊆ {Tn(D) > u

}
,

{
Tn(D)>u

}=
{
Tn(D)>u,

n⋂

m=1

{∣∣gm
(
nDmn

)∣∣≤εxσn
}∪

{
Tn(D)>u,

n⋃

m=1

{∣∣gm
(
nDmn

)∣∣>εxσn
}}

⊆
{
T̃n(D) > u

} n⋃

m=1

{∣∣gm
(
nDmn

)∣∣ > εxσn
}}
.

(3.9)

Hence putting Xm(u)= 1{|gm(u) > εxσn|} and using formula (1.2), we get

∇2 ≤
n∑

m=1

P{∣∣gm
(
nDmn

)∣∣ > εxσn
}

=
n∑

m=1

EXm
(
nDmn

)≤
n∑

m=1

1
2πpn(n,1)

∫∞

−∞

∣∣E
(
Xm
(
Ym
)

exp
{
iτ
(
Sn−n

)})∣∣dτ

≤
n∑

m=1

EXm
(
Ym
)

2πpn(n,1)

∫∞

−∞

∣∣Eexp
{
iτ
(
Sn−Ym

})∣∣dτ.

(3.10)

Note that

∣∣Eexp
{
iτYk

}∣∣= (1 + τ2)−1/2
. (3.11)

Therefore, quite clear calculations show that the integral in the right-hand side of (3.10)
does not exceed π. Thus taking into account (3.8) and using successively Chebishev-type
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inequality, condition (2.3), and relations (3.2) and (3.3) in (3.10), we get

∇2 ≤ C
n∑

m=1

EXm
(
Ym
)≤ C

(
ε · x · σn

)2+δ

∑

m

∣∣gm
(
Ym
)∣∣2+δ =O(n−δ/2x−(2+δ))

= (1−Φ(x)
)
O
(
n−δ/2x−(1+δ) exp

{
x2

2

})

= (1−Φ(x)
)
O
(
(lnn)−(1+δ)δ′/2).

(3.12)

Substituting in (3.4) the estimates obtained for ∇1 and ∇2 in (3.7) and (3.12) yields
Theorem 2.1. �

Proof of Theorem 2.2. Let us prove the first relation and for x > 1 only. The case x < 1
is not of interest here. Second relation can be obtained from first by substituting −gm(u)
instead of gm(u),m= 1,2, . . . . For any λ∈ Jε = (1− ε,1 + ε), ε > 0, and |h| ≤H1 <min(1−
ε,H)/4 using Holder’s inequality and inequality aj ≤ j!exp{H|a|}/H j , a ∈ R, j ≥ 0, we
have

E
∣∣gm

(
Ym(λ)

)∣∣ jY i
m(λ)exp

{
h
∣∣gm

(
Ym(λ)

)∣∣}

≤ λE∣∣gm
(
Ym
)∣∣ jY i

m exp
{
h
∣∣gm

(
Ym
)∣∣+ εYm

}

≤ λi! j!H−(i+ j)
1

(
C0

1− 2
(
H1 + ε

)
)1/2

.

(3.13)

Putting Ỹm(λ)= Ym(λ)− 1, we introduce functions of the complex variables u and v:

Km(u,v,λ)= Eexp
{
ugm

(
Ym(λ)

)
+ vỸm(λ)

}

= λ
∫∞

0
exp

{
v(t− 1)− λt}Eexp

{
ugm(t)

}
dt, m= 1, . . . ,n.

(3.14)

We will consider an analytical continuity of the function Km(u,v,λ) as a function of the
variable λ into disk Jε = {λ : |λ− 1| < ε} and we will use the same denotation for it. Put
S(H ,ε) = {(u,v,λ) : |u| ≤ H , |v| ≤ H , λ ∈ Jε}. By (3.13), the function Km(u,v,λ) is an-
alytical in the region S(H1,ε) and moreover in S(H2,ε), where H2=H1

√
1−2(H1+ε)/

8eH1
√
C0, we have

∣∣Km(u,v,λ)− 1
∣∣≤ E∣∣ugm

(
Ym(λ)

)
+ vYm(λ)

∣∣exp
{
H1
∣∣gm

(
Ym(λ)

)∣∣+H1
∣∣Ỹm(λ)

∣∣}≤ 1
2
.

(3.15)

Hence, also the function K̂m(u,v,λ)= lnKm(u,v,λ) is analytic in the region S(H2,ε) and

∣∣K̂m(u,v,λ)
∣∣≤

∞∑

j=1

∣∣1−Km(u,v,λ)
∣∣ j

j
≤ ln2, (3.16)

for each m= 1, . . . ,n.
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Let (ηm,ξm) be a random vector with distribution function (depending on real param-
eters h and λ):

P
{
ηm < u, ξm < v

}= 1
Km(h,0,λ)

Eexp
{
hgm

(
Ym(λ)

)}
1
{
gm
(
Ym(λ)

)
< u, Ỹm(λ) < v

}
.

(3.17)

Note that (η1,ξ1),(η2,ξ2), . . . is a sequence of independent random vectors. We denote

ϕn(z)= Eexp
{
zTn(D)

}
, η =

n∑

m=1

ηm, ξ =
n∑

m=1

ξm, A(h,λ)= Eη,

Λ(h,λ)= Eξ, σ2(h,λ)=Dη,

B2(h,λ)=Dξ, ρ(h,λ)= cov(η,ξ), μ2(h,λ)= σ2(h,λ)− ρ2(h,λ)B−2(h,λ).
(3.18)

Let Gn be the Cramer’s transform of the r.v. Tn(D) then putting G∗n (h,λ) = (Gn −
A(h,λ))/μ(h,λ) due to (3.1), we get

P
{
Tn(D)>xσn

}=exp
{

lnϕn(h)−hA(h,λ)
}

·E
[

exp
{
−hμ(h,λ)G∗n (h,λ)

}
1
{
G∗n (h,λ) >

xσn−hA(h,λ)
μ(h,λ)

}]
.

(3.19)

�

We will choose λ and h according to Lemmas 3.2 and 3.3.

Lemma 3.2. Under conditions of Theorem 2.2, there exists a unique solution of the equation

Λ(h,λ)= 0. (3.20)

This solution can be represented as the power series

λ(h)=
∞∑

j=0

λjnh
j (3.21)

which is convergent for |h| ≤H0, where H0 > 0 does not depend on n and

∣∣λin
∣∣≤ (1 + ε)

Hi
0

, i= 1,2, . . . . (3.22)

In particular, λ0n = 1, λ1n = 0, λ2n = n−1
∑n

m=1E(Ym− 1)g2
m(Ym).

Proof. Function Λ̄(h,λ)≡ (1/n)Λ(h,λ)= (1/n)
∑

m(∂/∂v)K̂m(u,v,λ)|u=h,v=0 is analytic in
the region S(H2,ε). Also by (3.16) and Cauchy’s inequality, |Λ̄(h,λ)| ≤ ln2/H2. Hence in
the region S(H2,ε), the function Λ̄(h,λ) is bounded uniformly with respect to h, λ, n, and
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it can be represented as power series with respect to variables h and λ− 1. This series
is convergent uniformly with respect to n. It can be easily checked that Λ̄(0,1) = 0 and
(∂/∂λ)Λ̄(h,λ)h=0,λ=1 = −1. Therefore Lemma 3.2 follows from well-known theorem on
series solution of an equation. We can readily check that H0 = ε

√
H2/4(ε + 2ln2)2. The

inequalities (3.22) follow from Cauchy’s inequality for coefficient of the power series since
the root λ(h) is analytic at zero. �

Lemma 3.3. Let λ(h) be the root of (3.20). Under conditions of Theorem 2.2, there exists a
unique real solution of the equation

A
(
h,λ(h)

)= xσn. (3.23)

This solution can be represented as the power series

h=
∞∑

j=1

hjn

(
x

σn

) j
, (3.24)

where h1n = 1, and there is H0 > 0 such that

∣∣hin
∣∣≤ C

Hi
0

, i= 1,2, . . . . (3.25)

Proof. Putting A(h)= n−1A(h,λ(h)), we rewrite (3.23) as A(h)= n−1xσn. Obviously,

A(h)= 1
n

n∑

m=1

∂

∂u
K̂m(u,0,λ)|u=h,λ=λ(h). (3.26)

Therefore, A(h) is an analytic function in the region |h| ≤ H2, and |A(h)| ≤ ln2/H2

(by (3.16) and Cauchy’s inequality), A(0) = 0, and its derivative at point h = 0 equals
n−1σ2

n > 0 (by (2.3)). Thus Lemma 3.3 follows from the theorem on inversion of the ana-
lytic functions.

In what follows, h and λ are roots of (3.20) and (3.23). It is evident that for each i and j,

the function Q
(i, j)
m (u,v,λ)

def= ∂i+ j K̂m(u,v,λ)/∂ui∂v j is analytic in the region S(H2,ε), and
hence can be represented as power series in a neighborhood of the point (0,0,1). Due to
(3.16), (3.21), (3.22), and Cauchy’s inequality, we have for each i and j,

Q
(i, j)
m (h,0,λ)=

∞∑

l=1

q
(i, j)
lmn h

l =
k∑

l=1

q
(i, j)
lmn h

l +O
(
hk+1),

∣∣q(i, j)
lmn

∣∣≤ C(H2,H0,ε
)
. (3.27)
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From (3.27) taking into account (2.2), we get

A
(
h,λ(h)

)=
n∑

m=1

Q(1,0)
m (h,0,λ)= σ2

nh+O
(
nh2)= σ2

nh+O
(
nh2), (3.28)

Λ
(
h,λ(h)

)=
n∑

m=1

Q(0,1)
m (h,0,λ)= 1

2

n∑

m=1

Eg2
m

(
Ym
)(
Ym− 1

)
+O

(
nh3), (3.29)

B2(h,λ(h)
)=

n∑

m=1

Q(0,2)
m (h,0,λ)= n+h

n∑

m=1

Egm
(
Ym
)(
Ym− 1

)2
+O

(
nh2)= n(1 +O(h)

)
,

(3.30)

σ2(h,λ(h)
)=

n∑

m=1

Q(2,0)
m (h,0,λ)= σ2

n +h
n∑

m=1

Eg3
m

(
Ym
)

+O
(
nh2)= σ2

n

(
1 +O(h)

)
, (3.31)

ρ
(
h,λ(h)

)=
n∑

m=1

Q(1,1)
m (h,0,λ)= h

n∑

m=1

Eg2
m

(
Ym
)(
Ym− 1

)
+O

(
nh2), (3.32)

It follows from (3.30), (3.31), and (3.32) that

μ2(h,λ)= σ2
n

(
1 +O

(
h2)). (3.33)

By (3.27), we have

lnKm
(
h,0,λ(h)

)=
∞∑

l=2

klmnh
l, (3.34)

where k2mn = Eg2
m(Ym)/2 and by Cauchy’s inequality,

∣∣kimn
∣∣≤ 3

2Hi
0

, i= 1,2, . . . , m= 1,2, . . . ,n. (3.35)

Future proof rests on Lemma 3.4, which will be proved in the appendix. �

Lemma 3.4. Let λ and h be the roots of (3.20) and (3.23), respectively, and the conditions of
Theorem 2.2 are fulfilled. Then

(1) supu |P{G∗n (h,λ) < u}−Φ(u)| =O(1/
√
n).

(2) ϕn(h)= (
√

2πnpn(n,λ))−1
∏n

m=1Km(h,0,λ)(1 +O(h)).
From (3.19) using first assertion of Lemma 3.4,

1−Pn(x)

= exp
{

lnϕn(h)−hA(h,λ(h)
)}

×
[∫∞

0
exp

{−hσ(h,λ(h)
)
v
}
dΦ(v)+

∫∞

0
exp

{−hσ(h,λ(h)
)
v
}
d
(
P
{
G∗n <v

}−Φ(v)
)]

=exp
{

lnϕn(h)−hA(h,λ(h)
)}[

exp
{
h2σ2(h,λ(h)

)
/2
}
Φ
(−hσ(h,λ(h)

))]
+O

(
n−1/2).

(3.36)
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Also, exp{h2σ2(h,λ(h))/2}Φ(−hσ(h,λ(h))) = (2π)−1/2M(hσ(h,λ(h))), where M(u) =
Φ(−u)/Φ′(u) is the ratio of Mills. Taking into account (3.31) and that h = xσ−1

n (1 +
O(xn−1/2)) by standard manipulations, (see, Petrov [12]) M(hσ(h,λ(h))) = M(x)(1 +
O(xn−1/2)). Substitute this expression in (3.36) and take into account that M(x) ≥ x−1 to
get

1−Pn(x)= exp
{

lnϕn(h)−hA(h,λ(h)
)

+ x2/2
}(

1−Φ(x)
)(

1 +O
(
xn−1/2)). (3.37)

Since pn(z,λ)= λnzn−1e−λn/(n− 1)! using Stirling’s formula and Lemma 3.2,

√
2πnpn(n,λ)= λnen(1−λ)(1 +O

(
n−1))= exp

{
n ln

(
1− (1− λ)

)
+n(1− λ)

}

= exp
{
n
∞∑

k=4

pknh
k
}

,
(3.38)

where |pkn| ≤ C(ε,H0). From this relation and second assertion of Lemma 3.4 and (3.34),
we get

1
n

lnϕn(h)= 1
n

n∑

m=1

lnKm
(
h,0,λ(h)

)− 1
n

ln
(√

2πnpn
(
n,λ)

)
+O(h)=

∞∑

j=2

ϕjnh
j +O(h),

(3.39)

where |ϕjn| ≤ C(ε,H0), j = 2,3, . . . with ϕ2n = σ2
n/2n.

Due to (3.26) and (3.34), we have

1
n
A
(
h,λ(h)

)=
∞∑

l=1

amnh
l,

∣∣ain
∣∣ < C

(
H0,H2,ε

)
, j = 1,2, . . . (3.40)

with a1n = σ2
n/n.

From relations (3.39) and (3.40), substituting instead of h its expression from (3.32),
and collecting coefficients at powers of x/

√
n,

lnϕn(h)−hA(h,λ(h)
)

+
x2

2
= n

∞∑

l=3

(
ϕjn− aj−1,n

)
hl +O(h)= x3

√
n
Ln

(
x√
n

)
+O(h).

(3.41)

From (3.25), (3.35), (3.31), and (3.40), it follows that the series Ln(u) are majorized by the
power series with coefficient not depending on n. Theorem 2.2 follows now from (3.37)
and (3.41).

4. Asymptotical relative indeterminate efficiency

Let X1n,X2n, . . . ,Xn−1,n be an ordered sample from distribution F(x), and Wkn = Xkn −
Xk−1,n, k = 1, . . . ,n, with notations Xon = 0 and Xnn = 1. We wish to test null hypothesis
H0 : F(x)= x, 0≤ x ≤ 1, versus sequence of alternatives

H1n : Fn(x)= x+L(x)δ(n), 0≤ x ≤ 1, (4.1)
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where δ(n)→ 0, as n→∞, and function L(x) satisfy smoothness conditions, under which
Wkn can be related to the uniform spacings Dkn by the relation (cf. [6, (3.2)]) nWkn=
n[F−1

n (Ukn)−F−1
n (Uk−1,n)]=nDkn(1− l(rkn)δ(n) + op(δ(n))), where l(u)=L′(u), rkn =

(k− 0.5)/n, and op(·) is uniform in k. Hence, Theorems 2.1 and 2.2 can be applied for
test statistics of type

Rn =
n∑

k=1

f
(
nWkn,rkn

)
. (4.2)

We assume that function f (u, y) is defined on [0,∞]× [0,1] and has continuous deriva-
tives of first and second orders with respect to u. Statistic Rn is called symmetric if func-
tion f (y,u) = f (y) does not depend on u, in otherwise statistic Rn is nonsymmetric. A
test based on statistic Rn is called f -test.

We will apply Theorems 2.1 and 2.2 to the analysis of the intermediate asymptotic
efficiency (IAE) due to Kallenberg [9] (see, also Ivchenko and Mirakhmedov [7]) of the
f -tests. Note that asymptotical properties of the f -tests are different for nonsymmetric
and symmetric tests.

In what follows Pi, Ei, Vari denote the probability, expectation, and variance under
Hi, i = 0,1. Let Ain and B2

in stand for the asymptotic values of n−1EiRn and n−1 Vari Rn,
receptively, and xn = √n(A1n −A0n)/B0n. We briefly outline here the scheme of asymp-
totic study of ω-IAE, the β-IAE is analyzed similarly. Performance of statistic Rn will be
measured by the asymptotic value of

eωn ( f )=− logP0
{
Rn > nA1n

}=− logP0

{
Rn−nA0n√

nB0n
> xn

}
. (4.3)

Nonsymmetric tests. It is known by Holst and Rao [6] that the nonsymmetric tests dis-
criminate alternatives H1 (4.1) with δ(n)= n−1/2, and asymptotically optimal test in Pit-
man’s sense is a linear test with test statistic Ln =

∑n
k=1 l(rkn)Wkn. The intermediate alter-

natives H1 determine δ(n) such that

δ(n)−→ 0,
√
nδ(n)−→∞. (4.4)

Denote ρ( f ) ≡ (1/σ0)
∫ 1

0 l(u)cov( f (Y ,u),Y)du = ∫ 1
0 l(u)corr( f (Y ,u),Y)du. It can be

shown that xn = −√nδ(n)ρ( f ) = o(
√
n). Therefore, eωn is determined by the asymptotic

behavior of large deviation probabilities for Rn under H0, which is given by Theorems
2.1 and 2.2. In agreement with Kallenberg [9], this efficiency will be called weak ω-IAE
when

√
nδ(n) = O(

√
lnn), when

√
nδ(n) = o(n1/6), we say middle ω-IAE, and we speak

of strong ω-IAE when
√
nδ(n)= o(

√
n). Applying Theorems 2.1 and 2.2, we get the fol-

lowing theorem.

Theorem 4.1. Let alternative H1 be specified by (4.1) and (4.4). If

(i)
∫ 1

0 E| f (Y ,u)|2+εdu <∞, for some ε > 0 and
√
nδ(n)=O(

√
logn),

or
(ii)

∫ 1
0 Eexp{H| f (Y ,u)|}du <∞ for some H > 0,
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then

eωn ( f )
nδ2(n)

= 1
2
ρ2( f )

(
1 + o(1)

)
. (4.5)

It follows from Theorem 4.1 that ρ2( f ) can be taken as a measure in sense of ω-IAE
of the f -test. Obviously |ρ( f )| ≤ (

∫ 1
0 l

2(u)du)1/2 and equality is achieved if and only if
f (y,u) = l(u)y. Thus, within the class of nonsymmetric tests, the linear test (based on
statistics Ln) is most efficient in the of ω-IAE (all three types) as it was in Pitman’s sense,
since it satisfies condition (ii) of this theorem.

As follows from Theorem 4.1, nonsymmetric tests are “thin directed” in sense that
each nonsymmetric f -test essentially depends on alternative H1. Note that for linear test,
ρ2( f )= ∫ 1

0 l
2(u)du.

Symmetric tests. Symmetric tests cannot distinguish alternative H1 (4.1) that is at a “dis-
tance” δ(n)= n−1/2, and can distinguish more distant (4.1) alternatives with δ(n)= n−1/4.
Moreover within the class of symmetric tests, the optimal test in Pitman’s sense is Green-
wood’s test based on statistics: Gn =W2

1n +W2
2n + ···+W2

nn, see Holst and Rao [6]. For
symmetric tests, intermediate alternatives H1 determine δ(n) such that

δ(n)−→ 0, 4
√
nδ(n)−→∞. (4.6)

This efficiency will be weak ω-IAE when 4
√
nδ(n) = O( 4

√
logn), when 4

√
nδ(n) = o(n1/12),

it will be ω-IAE, and strong ω-IAE when 4
√
nδ(n)= o( 4

√
n).

Put c( f )≡ corr(g(Y),Y 2− 4y + 2). Using Theorems 2.1 and 2.2, we get the following
theorem.

Theorem 4.2. Let alternative H1 be specified by (4.1) and (4.6). If (i) E| f (Y)|2+ε <∞, for

some ε > 0 and 4
√
nδ(n)=O( 4

√
logn), or (ii) Eexp{H| f (Y)|} <∞, for some H > 0, then

eωn ( f )√
nδ2(n)

= 1
2
c2( f )

(∫ 1

0
l2(u)du

)2(
1 + o(1)

)
. (4.7)

The properties of the correlation coefficient imply that c2( f )≤1 and c2( f )= 1 if and
only if f (y) = ay2 + by + c (which is equivalent to f (y) = y2 in terms of the test statis-
tic). Thus, within the class of symmetric tests, the Greenwood statistic Gn is most effi-
cient in the sense of weak ω-IAE (as it was in Pitman’s sense) since it satisfies condition
(i) of Theorem 4.2. However, for more distant alternatives when δ(n) 4

√
n/ logn→∞, ω-

IAE of Gn remains an open question since this statistic does not satisfy condition (ii)
of Theorem 4.2. The optimality of symmetrical tests in the sense of strong ω-IAE can
be deduced from Theorem 4.2 only for some subclasses of statistics satisfying Cramer’s
condition (ii).

Remark 4.3. The central limit theorem for Rn implies that for δ(n) 4
√
n→ χ > 0 (i.e., for

Pitman alternatives), one has P0{Rn ≥ A1n} = Φ(−χ2 · c( f )
∫ 1

0 l
2(u)du), that is, the as-

ymptotic efficiency of test statistic Rn is still determined by the functional c2( f ). In other
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words, a Pitman efficient test remains optimal in the sense of ω-IAE as long as Theorems
2.1 and 2.2 hold true for test statistic.

Remark 4.4. The Greenwood statistic satisfies the well-known Linnik’s condition with
parameter α= 1/6, hence relations (2.5) should be true for x = o(n1/6) (but as yet do not
have a proof). Therefore, we suspect that Greenwood test must still be most efficient in
middle ω-IAE sense.

The proofs of Theorems 4.1 and 4.2 follow from Theorems 2.1 and 2.2 and calculations
analogous to that presented by Holst and Rao [6] and Ivchenko and Mirakhmedov [7].

The analysis of β-IAE goes along the same lines. According to the general principle

stated above, the efficiency of f -test is measured by the asymptotic value of e
β
n( f ) =

− lnP1(Rn(W) > nAon). We have

P1
{
Rn(W) < u

}= P0
(
R̃n(D) < u

)
, (4.8)

where

R̃n(D)=
n∑

m=1

f̃mn
(
nDmn

)
, f̃mn(x)= fmn

(
x
(
1− l(rmn

)
δ(n)

)
+ o
(
δ(n)

)
. (4.9)

Omitting summand o(δ(n)) for simplicity of notes and putting z = l(rmn)δ(n), we get

Eexp
{
H f̃mn(Y)

}= Eexp
{
H fmn

(
Y(1− z)

)}= 1
1− z

∫∞

0
exp

{
H fmn(v)− v

1− z
}
dv

= 1
1− z

∫∞

0
exp

{
H fmn(v)− v− vz

1− z
}
dv

≤ 1
1− z

∫∞

0
exp

{
H fmn(v)− v}dv ≤ 2Eexp

{
H fmn(Y)

}
.

(4.10)

Thus we can use Theorems 2.1 and 2.2 to asymptotic analysis of e
β
n( f ). Corresponding

calculation shows that for e
β
n( f ), the assertions of Theorems 4.1 and 4.2 are still true, that

is, e
β
n( f ) and eωn ( f ) are asymptotically equivalent.

Appendix

In this section, the proof of Lemmas 3.1 and 3.4 are presented. We will use the notations
of Section 3. Also for notational convenience, we will write gm and g̃m instead of gm (Ym)
and g̃m (Ym) correspondingly.

Let F and V be the distribution functions and f and v their characteristic functions
correspondingly. We have, see Mirakhmedov [11],

∣∣F(x)−V(x)
∣∣

≤ 1
π

[∫

1≤|t|≤T

∣∣ f (t)− v(t)
∣∣dt+ sup

|t|≤1

∣∣Dt
(
f (t)− v(t)

)∣∣+
24
T

max
x

∣∣DxV(x)
∣∣
]
.

(A.1)
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Proof of Lemma 3.1. Put u= itσ−1
n +h, h=x/σn, ψ̃mn(u,τ)=Eexp{ug̃m + iτ(Ym− 1)n−1/2},

Ψ̃n(u,τ)=
n∏

m=1

ψ̃mn(u,τ), Q̃(t,τ,x)= itx+
x2

2
− t2

2
− τ2

2
. (A.2)

We have eitψ̃mn(u,τ
√
n) = Eexp{ug̃m + itYm} =

∫∞
0 eitτ[e−y exp{ug̃m(y)}1{y ≥ 0}]dy.

So eitτ ψ̃mn(u,τ
√
n) is the Fourier transformation of the complex function k(y) =

[e−yEexp{ug̃m(y)}1{y ≥ 0}], and k(y) and |k(y)|2 are integrable functions. Recall the
definition of g̃m and that 0≤ x ≤√δ lnn to get |Eexp{ug̃m}| ≤ Eexp{hg̃m} ≤ nεδ . There-
fore by Plansherel’s identity,

∫∞

−∞

∣∣eiτ ψ̃mn(u,τ
√
n)
∣∣2
dτ = 2π

∫∞

−∞

∣∣k(y)
∣∣2
dy ≤ 2πn2εδ . (A.3)

From this using Holder’s inequality, we see that
∫∞

−∞

∣∣Ψ̃n(t,τ)
∣∣dτ ≤ 2πn2εδ+0.5. (A.4)

Hence we can use formula (1.2) to get

ϕ̃n(u)= 1
2π
√
npn(n,1)

∫∞

−∞
Ψ̃n(u,τ)dτ. (A.5)

Putting ϕ̃n(t,h)
def= Eexp{itG̃∗n }, we obtain

ϕ̃n(t,h)= exp{−itx}ϕ̃n(u)
ϕ̃n(h)

. (A.6)

Let an = C1nδ
′/3(2+δ′), bn = C2 n1/2−εδ/δ′ . From (A.5), we have

exp{−itx}ϕ̃n(u)

= 1
2π
√
npn(n,1)

×
[∫ +∞

−∞
exp

{− itx+ Q̃(t,τ,x)
}
dτ +

∫

|τ|≤an
e−itx

(
Ψ̃n(u,τ)− eQ̃(t,τ,x))dτ

+
∫

an≤|τ|≤bn
e−itxΨ̃n(u,τ)dτ +

∫

bn≤|τ|
e−itxΨ̃n(u,τ)dτ −

∫

an≤|τ|
e−itx+Q̃(t,τ,x)dτ

]

≡ 1
2π
√
npn(n,1)

[ 5∑

j=1

Bj

]
,

(A.7)

where Bj denotes the jth summand inside of square brackets. It is obvious that

B1 =
√

2π exp
{
x2

2
− t2

2

}
. (A.8)

Estimation of B2 and B3 rests on the following lemma.
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Lemma A.5. Under conditions of Lemma 3.1, there exist constants C1, C2 such that C1 < C2

and for j = 0,1 the following assertions are true:
(1) if |t| ≤ an, |τ| ≤ a′n, then

D
j
t Ψ̃n(t,τ)= (−t+ ix) j exp

{
Q̃(t,τ,x)

}(
1 +O

((
x+ |t|+ |τ|)2+δ′

n−δ
′/2+εδ)), (A.9)

where a′n = C2an/C1;
(2) if |t| ≤ an, a′n ≤ |τ| ≤ bn, then

∣∣Dj
t Ψ̃n(u,τ)

∣∣≤ C exp
{
x2

2
− t2

2
− τ2

4

}(|t|+ |τ|+hnεδ
) j
. (A.10)

The proof of Lemma A.5 is alike to the proof of Lemma 2 from [7], and we omit it.
Using Lemma A.5 with j = 0 after simple and quite clear calculations choosing ε < δ′/4δ,
we obtain

B2 +B3 = exp
{
x2− t2

2

}(
1 +O

((
x+ t2+δ′)n−(δ′/4))). (A.11)

Let now |t| ≤ an, |τ| > bn. Using successively inequalities x < exp{x− 1} and x− 1 <
0.5(x2− 1), we have
∣∣ψ̃mn(u,τ)

∣∣≤∣∣Eexp
{
iτȲm

}(
exp

{
iug̃n

}− 1
)

+Eexp
{
iτȲm

}∣∣≤∣∣Eexp
{
iτȲm

}∣∣+|u|E∣∣g̃m
∣∣

≤ exp
{− (1−∣∣Eexp

{
iτȲm

}∣∣)+ |u|E∣∣g̃m
∣∣}

≤ exp
{
− 1

2

(
1−∣∣Eexp

{
iτȲm

}∣∣2)
+
(|t|σ−1

n +h
)
E
∣∣g̃m

∣∣}

(A.12)

since u= tσ−1
n +h. By (3.11) for |τ| > bn and n≥ Cδ′/εδ2 , we get

1−∣∣Eexp
{
iτȲm

}∣∣2 ≥ 0.5C2n
−2εδ/δ′ . (A.13)

Using Holder’s inequality, we see that
∑n

m=1E|g̃m| ≤ σn
√
n. Therefore for |t| ≤ an,

|t|
σn

n∑

m=1

E
∣∣g̃m

∣∣≤ C1n
1/2+δ′/3(2+δ′), h

n∑

m=1

E
∣∣g̃m

∣∣≤ δ√n lnn. (A.14)

From (A.12), (A.13), (A.14), it follows that for any integer k and s such that 1≤ k, s≤ n
and n≥ Cδ′/εδ2 ,

n∏

m=1,m�=k,s

∣∣ψ̃mn(u,τ)
∣∣≤ exp

{
− C2

2
(n− 2)n−2εδ/δ′ +C1n

1/2+δ′/3(2+δ′) + δ
√
n lnn

}
.

(A.15)

Choose here ε < δ′/6δ, and C2 > 2C1 to get

n∏

m=1,m�=k,s

∣∣ψ̃mn(u,τ)
∣∣≤ C3 exp

{−C4n
2/3}. (A.16)



16 Large deviations of the sum functions of spacings

Using Holder’s inequality and (A.3), we have

∫∞

−∞

∣∣ψ̃sn(u,τ)ψ̃kn(u,τ)
∣∣dτ ≤ Cnεδ+0,5. (A.17)

From this and (A.16) for B4, we obtain

∣∣B4
∣∣≤ C exp

{− cn2/3}. (A.18)

It is easy to see that

∣∣B5
∣∣≤ C exp

{
x2

2
− t2

2
− a2

n

2

}
. (A.19)

Substituting relations (A.8), (A.11), (A.18), (A.19) into (A.7), we get that if |t| ≤
C1nδ

′/3(2+δ′), then

exp{−itx}ϕ̃n(u)= exp
{

(x2− t2)/2
}(

1 +O
(
n−δ′/4

))
√

2πnpn(n,1)
. (A.20)

Particularly, at t = 0 from (A.20) and (3.11), we have

ϕ̃n(h)= exp
{
x2/2

}(
1 +O

(
n−δ′/4

))
√

2πnpn(n,1)
= exp

{
x2

2

}(
1 +O

(
n−δ

′/4)). (A.21)

The second assertion of Lemma 3.1 is proved.
Since (A.6) from (A.20) and (A.21), we obtain

ϕ̃n(t,h)= exp
{−t2

2

}(
1 +O

(
n−δ

′/4)). (A.22)

From (A.5), (A.20), (A.21), it follows that

d

dt
ϕ̃n(u,h)= exp{−itx}

ϕ̃n(h)

[
d

dt
ϕ̃n(u)− itϕ̃n(u)

]

= 1√
2π

exp
{
− itx− x2

2

}(
1 +O

(
n−δ

′/4))
∫∞

−∞

[
d

dt
Ψ̃n(u,τ)− ixΨ̃n(u,τ)

]
dτ

= 1√
2π

exp
{
− itx− x2

2

}(
1 +O

(
n−δ

′/4))[J1 + J2
]
,

(A.23)

where

J1 =
∫

|τ|≤an

[
d

dt
Ψ̃n(u,τ)− ixΨ̃n(u,τ)

]
dτ, J2 =

∫

|τ|>an

[
d

dt
Ψ̃n(u,τ)− ixΨ̃n(u,τ)

]
dτ.

(A.24)
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We have

J1 =
∫

|τ|≤an

d

dt

(
Ψ̃n(u,τ)− exp

{
Q̃(t,τ,x)

})
dτ − ix

∫

|τ|≤an

(
Ψ̃n(u,τ)− exp

{
Q̃(t,τ,x)

})
dτ

+
∫

|τ|≤an

(
d

dt
exp

{
Q̃(t,τ,x)

}− ixexp
{
Q̃(t,τ,x)

})
dτ.

(A.25)

Hence using first assertion of Lemma A.5 with j = 1, we obtain

1√
2π

exp
{
− itx− x2

2

}
J1 =−t exp

{
− t2

2

}
+ exp

{
− t2

2

}(
1 +O

((
x+ |t|)2+δ′

n−δ
′/2+εδ)),

(A.26)

because

1√
2π

exp
{
− itx− x2

2

}∫

|τ|≤an

(
d

dt
exp

{
Q̃(t,τ,x)

}− ixexp
{
Q̃(t,τ,x)

})
dτ

=−t exp
{
− t2

2

}(
1 +

1√
2π

∫

|τ|>an
e−τ

2/2dτ
)
.

(A.27)

Since n > 2, there are integers k, s such that 1≤ k, s≤ n, k �= j, s �= j,

∫

|τ|>an

∣∣∣∣
d

dt
Ψ̃n(u,τ)dτ

∣∣∣∣

≤
n∑

j=1

∫

|τ|>an

∣∣∣∣
d

dt
ψ̃ j(u,τ)

∣∣∣∣
n∏

m=1,m�= j

∣∣ψ̃m(u,τ)
∣∣dτ

≤ 1
σn

n∑

j=1

E
∣∣g̃ j

∣∣

×
[∫

an<|τ|<bn

n∏

m=1,m�= j

∣∣ψ̃m(u,τ)
∣∣dτ+

∫

|τ|>bn

∣∣ψ̃k(u,τ)ψ̃s(u,τ)
∣∣

n∏

m=1,m�= j,k,s

∣∣ψ̃m(u,τ)
∣∣dτ

]
.

(A.28)

Therefore, using second assertion of Lemma A.5 for first integral inside of brackets, and
(A.16) and (A.17) for second integral, and that

∑n
m=1E|g̃m| ≤ σn

√
n, we get

∫

|τ|>an

∣∣∣∣
d

dt
Ψ̃n(u, t)

∣∣∣∣dτ ≤ Cnexp
{− cn2/3}. (A.29)

Analogousy using second assertion of Lemma A.5, (A.16), and (A.17), we get
∫

|τ|>an

∣∣Ψ̃n(u,τ)
∣∣dτ ≤ Cn0.5+εδ exp

{−n2/3}. (A.30)

Thus

∣∣J2
∣∣≤ C exp

{− cn1/3}. (A.31)
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Now, from (A.23), (A.26), and (A.31), it follows that

d

dt
ϕ̃n(u,h)=−texp

{
− t

2

2

}
+exp

{
− t

2

2

}(
1+O

((
x+|t|)2+δ′

n−δ
′/2+εδ)+Cθexp

{−cn1/3}.

(A.32)

Putting in (A.1) F(x)= P(G̃∗n < x), V(x)=Φ(x), f (t)= ϕ̃n(t,h), v(t)= exp{−t2/2}, and
T = nδ′/3(2+δ′), and using (A.22) and (A.32), we complete the proof of Lemma 3.1. �

Proof of Lemma 3.4. Recall that λ and h are the roots of (3.5) and (3.11) correspond-
ingly. Put u = itμ−1(h,λ) + h, ϕn(t,h) = Eexp{itG∗n (h,λ)}, ψm(u,τ) = Km(u,τn−1/2,λ) =
Eexp{ugm(Ym(λ)) + iτ(Ym(λ)− 1)n−1/2}, Ψn(u,τ)=∏n

m=1ψm(u,τ).

Lemma A.6. Under conditions of the Theorem 2.2, there exist C0, C1, C2, such that if |t| ≤
C1n1/2, then for sufficiently large n and j = 0,1,

∣∣∣∣
d j

dt j

(
ϕn(t,h)− exp

{
− t2

2

})∣∣∣∣≤ C2
(
1 + |t|3)n−1/2 exp

{−C0t
2}. (A.33)

Proof. Recalling that ϕn(z)= Eexp{zTn(D)}, we get

ϕn(t,h)= ϕn(u)
ϕn(h)

exp
{
− itA(h,λ)

μ(h,λ)

}
. (A.34)

Alike (A.3), now we have

∫∞

−∞

∣∣∣ψm
(
u,τ
√
n
)∣∣∣

2
dτ ≤ πλ

(
C0

1− 2
(
H1 + ε

)
)1/2

, (A.35)

by (3.13). Hence using Holder’s inequality, we see that

∫∞

−∞

∣∣Ψn(t,τ)
∣∣dτ ≤ 2π

(√
nC0

1− 2
(
H1 + ε

)
)1/2

. (A.36)

Therefore from (1.2),

ϕn(u)= 1
2π
√
npn(n,λ)

∫∞

−∞
Ψn(u,τ)dτ = 1

2π
√
npn(n,λ)

[�1 +�2
]
, (A.37)

where

�1 =
∫

|τ|≤C2
√
n
Ψn(u,τ)dτ, �2 =

∫

|τ|>C2
√
n
Ψn(u,τ)dτ. (A.38)

Let |t| ≤ C1n1/2 and |τ| ≤ C3n1/2, where C1 and C3 do not exceed H2. Then by (3.15),
|ψm(u,τ)| ≥ 1/2. Hence for lnψm(u,τ), Taylor’s expansion formula at point (h,0) can be
used. This expansion together with Lemma 3.2 and representation of A(h,λ), B2(h,λ),
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σ2(h,λ) and ρ(h,λ) as in the first equalities in (3.28), (3.30), (3.31), and (3.32), respec-
tively, and that μ2(h,λ)= σ2(h,λ)− ρ2(h,λ)B−2(h,λ) after simple manipulations give the
following relation:

n∑

m=1

lnψm(u,τ)=
n∑

m=
lnψm(h,0) +

itA(h,λ)
μ(h,λ)

+
iτΛ(h,λ)√

n
− t2σ2(h,λ)

2μ2(h,λ)
− τtρ(h,λ)
μ(h,λ)

√
n

− τ2B2(h,λ)
2n

+O
(
t3 + τ3

√
n

)

=
n∑

m=1

lnψm(h,0) +
itA(h,λ)
μ(h,λ)

− t2

2

− B2(h,λ)
2n

(
τ + t

√
nρ(h,λ)

μ(h,λ)B2(h,λ)

)2

+O
(
t3 + τ3

√
n

)
.

(A.39)

We note that due to condition (2.3), and relations (3.30), (3.32), and (3.33) for
sufficiently large n, we have |√nρ(h,λ)/μ(h,λ)B2(h,λ)| ≤ Ch, B2(h,λ) ≥ n/2. Keeping in
mind this inequalities and using (A.39) and simple manipulations alike to the proof of
relation [15, (24)], we get

∣∣∣∣∣
exp

{− itA(h,λ)/μ(h,λ)
}

Ψn(h,0)
Ψn(u,τ)− exp

{
− t2

2
− B2(h,λ)

2n

(
τ + t

√
nρ(h,λ)

μ(h,λ)B2(h,λ)

)2
}∣∣∣∣∣

≤ C |t|
3 + |τ|3√
n

exp

{
− t2

8
− 1

8

(
τ + t

√
nρ(h,λ)

μ(h,λ)B2(h,λ)

)2
}
.

(A.40)

Hence

∣∣∣∣

√
nexp

{− itA(h,λ)/μ(h,λ)
}

B(h,λ)Ψn(h,0)
�1− exp

{
− t

2

2

}∣∣∣∣≤ C4
|t|3 + 1√

n
exp

{
− t2

16

}
. (A.41)

Let now |t| ≤ C1
√
n and |τ| > C1

√
n. Alike (A.8), we have

∣∣ψmn(u,τ)
∣∣≤

∣∣∣∣Eexp
{
iτYm(λ)√

n

}(
exp

{
iugm

(
Ym(λ)

)}− 1
)

+Eexp
{
iτYm(λ)√

n

}∣∣∣∣

≤ ∣∣ψn(0,τ)
∣∣+ |u|E∣∣gm

(
Ym(λ)

)∣∣

≤ exp
{− (1−∣∣ψm(0,τ)

∣∣)+ |u|E∣∣gm
(
Ym(λ)

)∣∣}

≤ exp
{
− 1

2

(
1−∣∣ψm(0,τ)

∣∣2
) +

( |t|
σn

+h
)
E
∣∣gm

(
Ym(λ))

∣∣
}
.

(A.42)

Because |ψm(0,τ)|2 = λ2/(λ2 + τ2/n) and (3.21), we have for sufficiently large n, 1 −
|ψm(0,τ)|2 ≥ C2

3/(1 + C2
3) ≡ C5. Using this inequality and (3.13) in (A.42), we obtain

|ψm(u,τ)| ≤ exp{−2−1C5 + C1C6} ≤ exp{−C5/4}, with C6 ≤ (e2HC0/H
2
1 (1 − 2(H1

+ ε)))1/2 and C1 < C4/4C5. From (A.35), we see that
∫∞
−∞ |ψs(u,τ)ψk(u,τ)|dτ ≤

2π
√
nC0/(1− 2(ε+H1)), 1≤ s, k ≤ n.
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Thus for sufficiently large n,

∣∣�2
∣∣≤

∫

|τ|>C3/
√
n

∣∣ψs(u,τ)
∣∣∣∣ψk(u,τ)

∣∣
n∏

m=1,m�=k,s

∣∣ψm(u,τ)
∣∣dτ ≤ C8 exp

{−C7n
}
.

(A.43)

For sufficiently large n, we have ψm(h,0)≥ e−C6/2, and λ= 1 +O(h). Therefore, it fol-
lows from (A.43) and (3.30) that for sufficiently large n,

∣∣∣∣∣

√
nexp

{− itA(h,λ)/μ(h,λ)
}

λB(h,λ)Ψn(h,0)
�2

∣∣∣∣∣≤ exp
{−C6n

}
. (A.44)

Taking into account that |t| ≤ C1n1/2 from (A.37), (A.41), and (A.44), we obtain

∣∣∣∣

√
nexp

{− itA(h,λ)/μ(h,λ)
}√

2πnpn(n,λ)
B(h,λ)Ψn(h,0)

ϕn(u)− exp
{
− t

2

2

}∣∣∣∣

≤ C7
|t|3 + 1√

n
exp

{−C8t
2}.

(A.45)

Putting t = 0 in (A.45), taking into account (3.30), and that Ψn(h,0)=∏n
m=1Km(h,0,λ),

we obtain the second assertion of Lemma 3.4. Using (A.45) and second assertion of
Lemma 3.4 in the equality (A.34), we immediately get Lemma A.6 at j = 0. From (A.34)
and (1.2), we have

Dtϕn(t,h)= ϕ−1
n (h)exp

{
− itA(h,λ)

μ(h,λ)

}[
Dtϕn(u)− iA(h,λ)

μ(h,λ)
ϕn(u)

]

= exp
{− itA(h,λ)/μ(h,λ)

}

ϕn(h)
√

2πnpn(n,λ)

×
[∫

|τ|≤C3
√
n
Ψn(u,λ)

( n∑

m=1

Dtψm(u,τ)− iA(h,λ)
μ(h,λ)

)
dτ

+
∫

|τ|>C3
√
n
DtΨn(u,λ)dτ +

∫

|τ|>C3
√
n

iA(h,λ)
μ(h,λ)

Ψn(u,λ)dτ

]
.

(A.46)

Using (3.26), (3.28)–(3.33), it can be proved that

n∑

m=1

Dt lnψm(u,τ)= iA(h,λ)
μ(h,λ)

− t+O
(
τh+

t2 + τ2

√
n

)
. (A.47)

It is obviously that |Dtψm(u,τ)| ≤ |t|μ−1(h,λ)E|gm|exp{h|gm|}, therefore by (3.13),
(3.33), condition (2.3), we obtain alike (A.43) that

∫

|τ|>C3
√
n

∣∣DtΨn(u,τ)
∣∣dτ≤

n∑

l=1

∫

|τ|>C2
√
n

∣∣ψs(u,τ)ψk(u,τ)
∣∣

n∏

m=1
m�=s,k,l

∣∣ψm(u,τ)
∣∣∣∣Dtψl(u,τ)

∣∣dτ

≤ Cnexp
{−C9n

}
.

(A.48)
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Using in (A.46) the relations (A.40), (A.47), (A.48), (3.28), (3.33), and reasoning used at
relation (A.44), we are convinced of validity of Lemma A.6 for j = 1. Proof of Lemma A.6
is complete. �

Now putting in (A.1) F(x) = P{G∗n (h,λ) < x}, V(x) = Φ(x), f (t) = ϕn(t,h), T =
C1n1/2, and v(t)= exp{−t2/2}, and using Lemma A.6, we complete the proof of the first
assertion of Lemma 3.4. Proof of Lemma 3.4 is complete. �
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