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We use bounds of exponential sums to derive new lower bounds on the number of distinct
distances between all pairs of points (x,y)∈�×� for two given sets �,�∈ Fnq , where
Fq is a finite field of q elements and n≥ 1 is an integer.
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1. Introduction

For a ring � and two finite sets �,� ⊆�n, we denote by Γ(�n,�,�) the number of
distinct distances between all pairs of points (x,y)∈�×�, that is,

Γ
(
�n,�,�

)= ∣∣{d(x,y) | (x,y)∈�×�
}∣∣, (1.1)

where for x = (x1, . . . ,xn),y = (y1, . . . , yn)∈�n we define

d(x,y)=
n∑

j=1

(
xj − yj

)2
. (1.2)

In the case �=� the problem of estimating Γ(�n,�,�) is well known. In particular,
the Erdös distance conjecture asserts that over the real numbers, that is, for � = R, the
bound

Γ
(
Rn,�,�

)≥ c(ε)|�|2/n−ε (1.3)

holds for an arbitrary ε > 0 and any finite set �∈Rn, where c(ε) > 0 depends only on ε.
Despite that there are some very interesting lower bounds on Γ(Rn,�,�), this conjecture
is still widely open in any dimension including n= 2. For some recent achievements and
generalisations, see [1–6] and references therein.

Iosevich and Rudnev [4] have recently considered this problem for sets over finite
fields (again for �=�) and obtained several very interesting results.
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The case of arbitrary sets �,�∈ Fnq has recently been studied in [8], where the lower
bound

Γ
(
Fnq ,�,�

)
> q− qn+2

|�||�| (1.4)

is given (which in some special case is new even for �=�). In particular, it is nontrivial
for |�||�| > qn+1. The method of [8] rests on a new bound of exponential sums over the
set of distances. Here we use this bound in a slightly different way to derive an improve-
ment of (1.4), which is nontrivial for |�||�| > qn.

In fact, one can easily adjust the method of [4] to the case of distinct sets � and �,
or in fact derive a lower bound on Γ(Fnq ,�,�) from already existing results of [4]. Such
bounds are usually stronger than the bound of this work. However in some extremal cases
our approach leads to a bound of the same order of magnitude which has completely
explicit (and perhaps better than those one can extract from [4]) constants. For example,
one can derive from [4] that if |�||�| > Cqn+1, then Γ(Fnq ,�,�)= q, provided that C is
sufficiently large.

Furthermore, as in [8], given n polynomials f j(X ,Y)∈ Fq[X ,Y], j = 1, . . . ,n, we define
the generalised distance

df (x,y)=
n∑

j=1

f j
(
xj , yj

)
, (1.5)

where f = ( f1, . . . , fn).
Now, for two sets �,�⊆ Fnq , we define

Γf
(
Fnq ,�,�

)= ∣∣{df (x,y) | x ∈�, y ∈�
}∣∣. (1.6)

In the special case of the Euclidean distance function f0 = ( f1,0, . . . , fn,0), where f j,0(X ,Y)=
(X −Y)2, j = 1, . . . ,n, we simply have

Γf0

(
Fnq ,�,�

)= Γ
(
Fnq ,�,�

)
. (1.7)

In particular, under some conditions on f , the bound

Γf
(
Fnq ,�,�

)= q+O

(
q3n/2+2

|�||�|

)

(1.8)

has been given in [8]. Here we show that the power of q in the error term can be lowered
to q3n/2+1.

2. Euclidean distances

We start with the case of Euclidean distances and improve the bound (1.4).

Theorem 2.1. For arbitrary sets �,�⊆ Fnq ,

Γ
(
Fnq ,�,�

)
>

|�||�|q
qn+1 + |�||�| . (2.1)
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Proof. Let χ be a nontrivial additive character of Fq (see [7] for basis properties of additive
characters). In particular, we recall the identity

∑

s∈Fq
χ(st)=

⎧
⎨

⎩
0 if t ∈ F∗q ,

q if t = 0.
(2.2)

As in [8], we consider character sums

S(a,�,�)=
∑

x∈�

∑

y∈�

χ
(
ad(x,y)

)
, a∈ Fq, (2.3)

where as before d(x,y) is given by (1.2).
Our principal tool is the upper bound

∣
∣S(a,�,�)

∣
∣≤

√
|�||�|qn, (2.4)

which is established in [8] for any a∈ F∗q .
For λ∈ Fq, we denote by N(λ) the number of representations λ= d(x,y) with (x,y)∈

�×�.
Then by (2.2) we have

N(λ)= 1
q

∑

x∈�

∑

y∈�

1
q

∑

a∈Fq
χ
(
a
(
d(x,y)− λ

))= 1
q

∑

a∈Fq
χ(−aλ)S(a,�,�). (2.5)

Hence,

∑

λ∈Fq
N(λ)2 = 1

q2

∑

λ∈Fq

∑

a,b∈Fq
χ
(
(b− a)λ

)
S(a,�,�)S(b,�,�)

= 1
q2

∑

a,b∈Fq
S(a,�,�)S(b,�,�)

∑

λ∈Fq
χ
(
(b− a)λ

)

= 1
q

∑

a∈Fq

∣
∣S(a,�,�)

∣
∣2

,

(2.6)

since by (2.2) the sum over λ vanishes unless a= b.
We now use the bound (2.4) for a ∈ F∗q and the trivial bound |S(a,�,�)| ≤ |�||�|

for a= 0, getting

∑

λ∈Fq
N(λ)2 < |�||�|qn + |�|2|�|2q−1. (2.7)

Clearly

∑

λ∈Fq
N(λ)= |�||�|. (2.8)
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Now by the Cauchy inequality we derive

(|�||�|)2 =
(
∑

λ∈Fq
N(λ)

)2

≤ Γ
(
Fnq ,�,�

) ∑

λ∈Fq
N(λ)2

< Γ
(
Fnq ,�,�

)(|�||�|qn + |�|2|�|2,q−1),

(2.9)

which implies the desired result. �

3. Generalised distances

We now use similar arguments to improve the bound (1.8).

Theorem 3.1. Let f = ( f1, . . . , fn), where each of the polynomials f j(X ,Y)∈ Fq[X ,Y], j =
1, . . . ,n, is of degree at most k and is not of the form f j(X ,Y)= gj(X) +hj(Y) with gj(X)∈
Fq[X], hj(Y)∈ Fq[Y]. Then, for arbitrary sets �,�⊆ Fnq ,

Γf
(
Fnq ,�,�

)= q+O

(
q3n/2+1

|�||�|

)

. (3.1)

Proof. Here, instead of the bound (2.4), we use the bound

∣
∣Sf (a,�,�)

∣
∣=O

(√
|�||�|q3n/2

)
, a∈ F∗q , (3.2)

which is established in [8] for the character sums

Sf (a,�,�)=
∑

x∈�

∑

y∈�

χ
(
adf (x,y)

)
, a∈ Fq, (3.3)

where df (x,y) is given by (1.5).
Let Nf (λ) be the number of solutions to the equation

df (x,y)= λ, x ∈�, y ∈�. (3.4)

As in the proof of Theorem 2.1, using (3.2) instead of (2.4), we deduce

∑

λ∈Fq
Nf (λ)2 = 1

q

∑

a∈Fq

∣
∣S(a,�,�)

∣
∣2 = |�|2|�|2q−1 +O

(|�||�|q3n/2). (3.5)

As before, we also have

∑

λ∈Fq
Nf (λ)= |�||�|, (3.6)
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and by the Cauchy inequality we derive

(|�||�|)2 =
(
∑

λ∈Fq
N(λ)

)2

≤ Γ
(
Fnq ,�,�

) ∑

λ∈Fq
N(λ)2

< Γ
(
Fnq ,�,�

)(|�|2|�|2q−1 +O
(|�||�|q3n/2)),

(3.7)

which implies the desired result. �
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