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1. Introduction

Predator-prey systems have been studied extensively. See, for instance, [1, 6, 8–10] and
the references cited therein. Most of the previous papers focused on the predator-prey
systems without stocking. Brauer and Soudack [2, 3] studied some predator-prey sys-
tems under constant rate stocking. To our knowledge, few papers have been published on
the existence of positive periodic solutions for delayed predator-prey patch systems with
periodic stocking.

In this paper, we investigate the following predator-prey system with stocking:

x′1(t)= x1(t)
(
a1(t)− b1(t)x1(t)− c(t)y(t)

)
+D1(t)

(
x2
(
t− τ1(t)

)− x1(t)
)

+ S1(t),

x′2(t)= x2(t)
(
a2(t)− b2(t)x2(t)

)
+D2(t)

(
x1
(
t− τ2(t)

)− x2(t)
)

+ S2(t),

y′(t)= y(t)
(
−d(t) + p(t)x1(t)− q(t)y(t)−β(t)

∫ 0

−τ
k(s)y(t+ s)ds

)
+ S3(t),

(1.1)

with the initial conditions

x1(s)= ϕ1(s)≥ 0, s∈ [−σ ,0], ϕ1(0) > 0,

x2(s)= ϕ2(s)≥ 0, s∈ [−σ ,0], ϕ2(0) > 0,

y(s)= ψ(s)≥ 0, s∈ [−σ ,0], ψ(0) > 0,

(1.2)

where x1 and y are the population densities of prey species x and predator species y
in patch 1, and x2 is the density of species x in patch 2. Predator species y is confined to
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patch 1, while the prey species x can diffuse between two patches.Di(t) (i= 1,2) are diffu-
sion coefficients of species x. Si(t) (i= 1,2,3) denote the stocking rates. ϕ1(s), ϕ2(s), and
ψ(s) are continuous on [−σ ,0], σ =max{τ, supt∈R τ1(t), supt∈R τ2(t)}. The delay τ1(τ2)
represents the time that species x migrates from patch 2 to patch 1 (patch 1 to patch 2).

When Si(t)≡ 0 (i= 1,2,3), τi ≡ 0 (i= 1,2), system (1.1) was considered by Zhang and
Wang [15], Song and Chen [11], and Chen et al. [5].

The purpose of this paper is to derive a set of easily verifiable conditions for the exis-
tence of positive periodic solutions of system (1.1). The method in this paper is different
from those of [4, 12–14].

2. Existence of positive periodic solutions

To show the existence of solutions to the considered problems, we will use an abstract
theorem developed [7]. We first state this abstract theorem.

For a fixed σ ≥ 0, let C := C([−σ ,0];Rn). If x ∈ C([γ− σ ,γ + δ];Rn) for some δ > 0
and γ ∈R, then xt ∈ C for t ∈ [γ,γ+ δ] is defined by xt(θ)= x(t+ θ) for θ ∈ [−σ ,0]. The
supremum norm in C is denoted by ‖ · ‖c, that is, ‖φ‖c =maxθ∈[−σ ,0]‖φ(θ)‖ for φ ∈ C,
where ‖ · ‖ denotes the norm in Rn, and ‖u‖ =∑n

i=1 |ui| for u= (u1, . . . ,un)∈Rn.
We consider the following functional differential equation:

dx(t)
dt

= f
(
t,xt

)
, (2.1)

where f :R×C→Rn is completely continuous, and there exists T > 0 such that for every
(t,ϕ)∈R×C, we have f (t+T ,ϕ)= f (t,ϕ).

The following lemma is a simple consequence of [7, Theorem 4.7.1].

Lemma 2.1. Suppose that there exists a constant M > 0 such that
(i) for any λ∈ (0,1) and any T-periodic solution x of the system

dx(t)
dt

= λ f (t,xt
)
, (2.2)

‖x(t)‖ <M for t ∈R;
(ii) g(u) := (1/T)

∫ T
0 f (s, û)ds �= 0 for u ∈ ∂BM(Rn), where BM(Rn) = {u ∈ Rn : ‖u‖ <

M}, and û denotes the constant mapping from [−σ ,0] to Rn with the value u∈Rn;
(iii) Brouwer degree deg(g,BM(Rn)) �= 0.

Then there exists at least one T-periodic solution of the system

dx(t)
dt

= f
(
t,xt

)
(2.3)

that satisfies supt∈R‖x(t)‖ <M.

In the following, we set

ḡ = 1
T

∫ T

0
g(t)dt, gl = min

t∈[0,T]

∣
∣g(t)

∣
∣, gu = max

t∈[0,T]

∣
∣g(t)

∣
∣, (2.4)

where g is a continuous T-periodic function.
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In system (1.1), we always assume the following.
(H1) ai(t), bi(t), Di(t) (i= 1,2), c(t), d(t), p(t), q(t), and β(t) are positive continuous

T-periodic functions. Si(t) (i= 1,2,3), τi(t) (i= 1,2) are nonnegative continuous
T-periodic functions. τ′i (t) < 1 (i= 1,2), t ∈R.

(H2) k(s)≥ 0 on [−τ,0] (0≤ τ < +∞); and k(s) is a piecewise continuous and normal-
ized function such that

∫ 0
−τ k(s)ds= 1.

Set

K = q̄+ β̄
p̄

,

K∗ =
(
a1M0−D1M0 + S1

b1M0

)l
, K∗i =

(
aiM0 + Si
biM0

)l
, i= 1,2,

M0 =max

{(
a1 +

√
a2

1 + 4b1S1

2b1

)u

,

(
a2 +

√
a2

2 + 4b2S2

2b2

)u}

,

m0 =min

{(
a1/c

)l −
√(
S3/q

)u

bu1 /cl + (p/q)u
exp

[− 2T
(
D̄1 + b̄1M0 + c̄M̃0

)]
,

(
a2 +

√
a2

2 + 4b2S2

2b2

)l}

,

M̃0 =
(
pM0 +

√
p2M2

0 + 4qS3

2q

)u

,

m̃0 =min

{
K∗1 − d̄/ p̄
K +

(
c/b1

)u ,
K∗2 − d̄/ p̄

K
,
K∗ − d̄/ p̄
K +

(
c/b1

)u

}

exp
[− 2T

(
d̄+ q̄M̃0 + β̄M̃0

)]
.

(2.5)

Theorem 2.2. In addition to (H1), (H2), assume further that system (1.1) satisfies one of
the following assumptions:

(H3) (a1/c)l >
√

(S3/q)u, K∗i > d̄/ p̄ (i= 1,2);

(H4) (a1/c)l >
√

(S3/q)u, K∗ > d̄/ p̄.

Then system (1.1) has at least one positive T-periodic solution, say (x∗1 (t),x∗2 (t), y∗(t))T

such that

m0 ≤ x∗i (t)≤M0 (i= 1,2), m̃0 ≤ y∗(t)≤ M̃0, t ≥ 0. (2.6)

Proof. Consider the following system:

u′1(t)= a1(t)−D1(t)− b1(t)eu1(t)− c(t)eu3(t) +D1(t)eu2(t−τ1(t))−u1(t) +
S1(t)
eu1(t)

,

u′2(t)= a2(t)−D2(t)− b2(t)eu2(t) +D2(t)eu1(t−τ2(t))−u2(t) +
S2(t)
eu2(t)

,

u′3(t)=−d(t) + p(t)eu1(t)− q(t)eu3(t)−β(t)
∫ 0

−τ
k(s)eu3(t+s)ds+

S3(t)
eu3(t)

,

(2.7)
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where ai(t), bi(t), Di(t) (i = 1,2), Si(t) (i = 1,2,3), c(t), d(t), p(t), q(t), and β(t) are the
same as those in assumption (H1), and τ, τi (i = 1,2) and k(s) are the same as those in
assumption (H2). We first show that system (2.7) has one T-periodic solution.

Let C := C([−σ ,0];R3). We define the following map:

f :R×C−→R3, f (t,ϕ)= ( f1(t,ϕ), f2(t,ϕ), f3(t,ϕ)
)
, ϕ= (ϕ1,ϕ2,ϕ3

)∈ C,

f1(t,ϕ)= a1(t)−D1(t)− b1(t)eϕ1(0)− c(t)eϕ3(0) +D1(t)eϕ2(−τ1(t))−ϕ1(0) +
S1(t)
eϕ1(0) ,

f2(t,ϕ)= a2(t)−D2(t)− b2(t)eϕ2(0) +D2(t)eϕ1(−τ2(t))−ϕ2(0) +
S2(t)
eϕ2(0) ,

f3(t,ϕ)=−d(t) + p(t)eϕ1(0)− q(t)eϕ3(0)−β(t)
∫ 0

−τ
k(s)eϕ3(s)ds+

S3(t)
eϕ3(0) .

(2.8)

Clearly, f :R×C→R3 is completely continuous. Now, the system (2.7) becomes

du(t)
dt

= f
(
t,ut

)
. (2.9)

Corresponding to

du(t)
dt

= λ f (t,ut
)
, λ∈ (0,1), (2.10)

we have

u′1(t)= λ
[
a1(t)−D1(t)− b1(t)eu1(t)− c(t)eu3(t) +D1(t)eu2(t−τ1(t))−u1(t) +

S1(t)
eu1(t)

]
,

u′2(t)= λ
[
a2(t)−D2(t)− b2(t)eu2(t) +D2(t)eu1(t−τ2(t))−u2(t) +

S2(t)
eu2(t)

]
,

u′3(t)= λ
[
−d(t) + p(t)eu1(t)− q(t)eu3(t)−β(t)

∫ 0

−τ
k(s)eu3(t+s)ds+

S3(t)
eu3(t)

]
.

(2.11)

Suppose that (u1(t),u2(t),u3(t))T is a T-periodic solution of system (2.11) for some λ∈
(0,1). Choose tMi , tmi ∈ [0,T], i= 1,2,3, such that

ui
(
tMi
)= max

t∈[0,T]
ui(t), ui

(
tmi
)= min

t∈[0,T]
ui(t), i= 1,2,3. (2.12)

Then, it is clear that

u′i
(
tMi
)= 0, u′i

(
tmi
)= 0, i= 1,2,3. (2.13)
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From this and system (2.11), we obtain that

a1
(
tM1
)−D1

(
tM1
)−b1

(
tM1
)
eu1(tM1 )−c(tM1

)
eu3(tM1 ) +D1

(
tM1
)
eu2(tM1 −τ1(tM1 ))−u1(tM1 ) +

S1
(
tM1
)

eu1(tM1 )
=0,

(2.14)

a2
(
tM2
)−D2

(
tM2
)− b2

(
tM2
)
eu2(tM2 ) +D2

(
tM2
)
eu1(tM2 −τ2(tM2 ))−u2(tM2 ) +

S2
(
tM2
)

eu2(tM2 )
= 0, (2.15)

−d(tM3
)

+ p
(
tM3
)
eu1(tM3 )− q(tM3

)
eu3(tM3 )−β(tM3

)
∫ 0

−τ
k(s)eu3(tM3 +s)ds+

S3
(
tM3
)

eu3(tM3 )
= 0,

(2.16)

a1
(
tm1
)−D1

(
tm1
)−b1

(
tm1
)
eu1(tm1 )−c(tm1

)
eu3(tm1 ) +D1

(
tm1
)
eu2(tm1 −τ1(tm1 ))−u1(tm1 ) +

S1
(
tm1
)

eu1(tm1 )
=0,

(2.17)

a2
(
tm2
)−D2

(
tm2
)− b2

(
tm2
)
eu2(tm2 ) +D2

(
tm2
)
eu1(tm2 −τ2(tm2 ))−u2(tm2 ) +

S2
(
tm2
)

eu2(tm2 )
= 0. (2.18)

Next we make the following claims.
Claim 1. For ui(tMi ) (i= 1,2), one of the following cases holds:

u2
(
tM2
)≤ u1

(
tM1
)≤M∗

1 ≤M1, (2.19)

u1
(
tM1
)
< u2

(
tM2
)≤M∗

2 ≤M1, (2.20)

where M1 :=max{M∗
1 ,M∗

2 }, M∗
j := ln((aj +

√
a2
j + 4bjSj)/2bj)u, j = 1,2.

There are two cases to consider.
Case 1. Assume that u1(tM1 )≥ u2(tM2 ); then u1(tM1 )≥ u2(tM1 − τ1(tM1 )).

From this and (2.14), we have

b1
(
tM1
)
eu1(tM1 ) ≤ a1

(
tM1
)

+
S1
(
tM1
)

eu1(tM1 )
. (2.21)

That is,

b1
(
tM1
)
e2u1(tM1 )− a1

(
tM1
)
eu1(tM1 )− S1

(
tM1
)≤ 0. (2.22)

Therefore,

eu1(tM1 ) ≤ a1
(
tM1
)

+
√
a2

1

(
tM1
)

+ 4b1
(
tM1
)
S1
(
tM1
)

2b1
(
tM1
) ≤

(
a1 +

√
a2

1 + 4b1S1

2b1

)u

. (2.23)

Hence,

u2
(
tM2
)≤ u1

(
tM1
)≤ ln

(
a1 +

√
a2

1 + 4b1S1

2b1

)u

. (2.24)
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Case 2. Assume that u1(tM1 ) < u2(tM2 ); then u1(tM2 − τ2(tM2 )) < u2(tM2 ).
From this and (2.15), we have

b2
(
tM2
)
eu2(tM2 ) ≤ a2

(
tM2
)

+
S2
(
tM2
)

eu2(tM2 )
. (2.25)

By a similar argument to Case 1, we have

u1
(
tM1
)
< u2

(
tM2
)≤ ln

(
a2 +

√
a2

2 + 4b2S2

2b2

)u

. (2.26)

It follows from (2.24) and (2.26) that Claim 1 holds.

Claim 2.

u3
(
tM3
)≤ ln

(
pM0 +

√
p2M2

0 + 4qS3

2q

)u

:=M2, (2.27)

where M0 = eM1 .
By (2.16), we have

q
(
tM3
)
eu3(tM3 ) ≤ p

(
tM3
)
eu1(tM3 ) +

S3
(
tM3
)

eu3(tM3 )
≤ p

(
tM3
)
eu1(tM1 ) +

S3
(
tM3
)

eu3(tM3 )
. (2.28)

That is,

q
(
tM3
)
e2u3(tM3 )− p

(
tM3
)
eu1(tM1 )eu3(tM3 )− S3

(
tM3
)≤ 0. (2.29)

Therefore,

eu3(tM3 ) ≤ p
(
tM3
)
eu1(tM1 ) +

√
p2
(
tM3
)
e2u1(tM1 ) + 4q

(
tM3
)
S3
(
tM3
)

2q
(
tM3
) , (2.30)

which implies that Claim 2 holds.
Claim 3. For ui(tmi )(i= 1,2), one of the following cases holds:

m1 ≤m∗
1 − 2T

(
D̄1 + b̄1M0 + c̄M̃0

)≤ u1
(
tm1
)≤ u2

(
tm2
)
,

m1 ≤m∗
2 ≤ u2

(
tm2
)
< u1

(
tm1
)
,

(2.31)

where

m1 :=min
{
m∗

1 − 2T
(
D̄1 + b̄1M0 + c̄M̃0

)
,m∗

2

}
,

m∗
1 := ln

(
a1/c

)l −
√(
S3/q

)u

bu1 /cl + (p/q)u
,

m∗
2 := ln

(
a2 +

√
a2

2 + 4b2S2

2b2

)l

.

(2.32)

There are two cases to consider.
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Case 1. Assume that u1(tm1 )≤ u2(tm2 ); then u1(tm1 )≤ u2(tm1 − τ1(tm1 )).
From this and (2.17), we have

a1
(
tm1
)≤ b1

(
tm1
)
eu1(tm1 ) + c

(
tm1
)
eu3(tm1 ) ≤ b1

(
tm1
)
eu1(tM1 ) + c

(
tm1
)
eu3(tM3 ). (2.33)

From (2.30), by using the inequality

(a+ b)1/2 < a1/2 + b1/2, a > 0, b > 0, (2.34)

we have

eu3(tM3 ) <
p
(
tM3
)
eu1(tM1 ) +

√
q
(
tM3
)
S3
(
tM3
)

q
(
tM3
) . (2.35)

From this and (2.33), we have

a1
(
tm1
)≤

[

b1
(
tm1
)

+
c
(
tm1
)
p
(
tM3
)

q
(
tM3
)

]

eu1(tM1 ) + c
(
tm1
)
√
√
√
√S3

(
tM3
)

q
(
tM3
) , (2.36)

which implies

(
a1

c

)l
≤
[
bu1
cl

+
(
p

q

)u]
eu1(tM1 ) +

√
√
√
(
S3

q

)u
. (2.37)

That is,

u1
(
tM1
)≥ ln

(
a1/c

)l −
√(
S3/q

)u

bu1 /cl + (p/q)u
:=m∗

1 . (2.38)

From the first equation of system (2.11), we obtain that

∫ T

0
a1(t)dt+

∫ T

0
D1(t)eu2(t−τ1(t))−u1(t)dt+

∫ T

0

S1(t)
eu1(t)

dt

=
∫ T

0
D1(t)dt+

∫ T

0
b1(t)eu1(t)dt+

∫ T

0
c(t)eu3(t)dt,

∫ T

0

∣
∣u′1(t)

∣
∣dt <

∫ T

0
a1(t)dt+

∫ T

0
D1(t)eu2(t−τ1(t))−u1(t)dt+

∫ T

0

S1(t)
eu1(t)

dt

+
∫ T

0
D1(t)dt+

∫ T

0
b1(t)eu1(t)dt+

∫ T

0
c(t)eu3(t)dt.

(2.39)
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It follows that
∫ T

0

∣
∣u′1(t)

∣
∣dt < 2

[∫ T

0
D1(t)dt+

∫ T

0
b1(t)eu1(t)dt+

∫ T

0
c(t)eu3(t)dt

]

≤ 2
[∫ T

0
D1(t)dt+ eM1

∫ T

0
b1(t)dt+ eM2

∫ T

0
c(t)dt

]

= 2T
(
D̄1 + b̄1M0 + c̄M̃0

)
.

(2.40)

From (2.38) and (2.40), we have

u1
(
tm1
)≥ u1

(
tM1
)−

∫ T

0

∣
∣u′1(t)

∣
∣dt ≥m∗

1 − 2T
(
D̄1 + b̄1M0 + c̄M̃0

)
. (2.41)

Case 2. Assume that u1(tm1 ) > u2(tm2 ); then u1(tm2 − τ2(tm2 )) > u2(tm2 ).
From this and (2.18), we have

b2
(
tm2
)
eu2(tm2 ) ≥ a2

(
tm2
)

+
S2(tm2 )
eu2(tm2 )

, (2.42)

which implies

eu2(tm2 ) ≥ a2
(
tm2
)

+
√
a2

2

(
tm2
)

+ 4b2
(
tm2
)
S2
(
tm2
)

2b2
(
tm2
) . (2.43)

That is,

u2(tm2 )≥ ln

(
a2 +

√
a2

2 + 4b2S2

2b2

)l

:=m∗
2 . (2.44)

It follows from (2.41) and (2.44) that Claim 3 holds.
Claim 4.

u3
(
tm3
)≥min

{
m∗

3 ,m∗
4 ,m∗

5

}− 2T
(
d̄+ q̄M̃0 + β̄M̃0

)
:=m2, (2.45)

where

m∗
3 = ln

K∗1 − d̄/ p̄
K +

(
c/b1

)u , m∗
4 = ln

K∗2 − d̄/ p̄
K

, m∗
5 = ln

K∗ − d̄/ p̄
K +

(
c/b1

)u . (2.46)

From the third equation of (2.11), we obtain

∫ T

0
p(t)eu1(t)dt+

∫ T

0

S3(t)
eu3(t)

dt =
∫ T

0
d(t)dt+

∫ T

0
q(t)eu3(t)dt+

∫ T

0
β(t)

∫ 0

−τ
k(s)eu3(t+s)dsdt,

∫ T

0

∣
∣u′3(t)

∣
∣dt <

∫ T

0
p(t)eu1(t)dt+

∫ T

0

S3(t)
eu3(t)

dt+
∫ T

0
d(t)dt

+
∫ T

0
q(t)eu3(t)dt+

∫ T

0
β(t)

∫ 0

−τ
k(s)eu3(t+s)dsdt.

(2.47)
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It follows that
∫ T

0

∣
∣u′3(t)

∣
∣dt < 2

[∫ T

0
d(t)dt+

∫ T

0
q(t)eu3(t)dt+

∫ T

0
β(t)

∫ 0

−τ
k(s)eu3(t+s)dsdt

]

≤ 2
[∫ T

0
d(t)dt+ eM2

∫ T

0
q(t)dt+ eM2

∫ T

0
β(t)dt

]

= 2T
(
d̄+ q̄M̃0 + β̄M̃0

)
,

(2.48)

[
q̄+ β̄

]
eu3(tM3 ) ≥ p̄eu1

(
tm1
)
− d̄. (2.49)

There are two cases to consider.
Case 1. Assume that the assumption (H3) holds.

If u1(tm1 )≤ u2(tm2 ), by (2.17), we have

eu1(tm1 ) ≥ a1
(
tm1
)− c(tm1

)
eu3(tm1 )

b1
(
tm1
) +

S1
(
tm1
)

b1
(
tm1
)
eu1(tm1 )

≥ a1
(
tm1
)− c(tm1

)
eu3(tM3 )

b1
(
tm1
) +

S1
(
tm1
)

b1
(
tm1
)
eM1

.

(2.50)

Substituting this into (2.49) gives

[q̄+ β̄]eu3(tM3 ) ≥ p̄a1
(
tm1
)

b1
(
tm1
) − p̄c

(
tm1
)
eu3(tM3 )

b1
(
tm1
) +

p̄S1
(
tm1
)

b1
(
tm1
)
eM1

− d̄, (2.51)

which implies
[
q̄

p̄
+
β̄

p̄
+
c
(
tm1
)

b1
(
tm1
)

]

eu3(tM3 ) ≥ a1
(
tm1
)

b1
(
tm1
) +

S1
(
tm1
)

b1
(
tm1
)
eM1

− d̄

p̄
. (2.52)

Therefore,
[

K +
(
c

b1

)u]

eu3(tM3 ) ≥ K∗1 −
d̄

p̄
. (2.53)

That is,

u3
(
tM3
)≥ ln

K∗1 − d̄/ p̄
K +

(
c/b1

)u :=m∗
3 . (2.54)

It follows from (2.48) and (2.54)that

u3
(
tm3
)≥ u3

(
tM3
)−

∫ T

0

∣
∣u′3(t)

∣
∣dt ≥m∗

3 − 2T
(
d̄+ q̄M̃0 + β̄M̃0

)
. (2.55)

If u1(tm1 ) > u2(tm2 ), by (2.42), (2.49), and (2.19), we have

[q̄+ β̄]eu3(tM3 ) ≥ p̄eu2(tm2 )− d̄ ≥ p̄
[
a2
(
tm2
)

+ S2
(
tm2
)
e−M1

]

b2
(
tm2
) − d̄, (2.56)
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which implies
[
q̄

p̄
+
β̄

p̄

]

eu3(tM3 ) ≥ a2
(
tm2
)

+ S2
(
tm2
)
e−M1

b2
(
tm2
) − d̄

p̄
. (2.57)

Therefore,

Keu3

(
tM3
)
≥ K∗2 −

d̄

p̄
. (2.58)

That is,

u3
(
tM3
)≥ ln

K∗2 − d̄/ p̄
K

:=m∗
4 . (2.59)

From (2.48) and (2.59), we have

u3
(
tm3
)≥ u3

(
tM3
)−

∫ T

0

∣
∣u′3(t)

∣
∣dt ≥m∗

4 − 2T
(
d̄+ q̄M̃0 + β̄M̃0

)
. (2.60)

Case 2. Assume that the assumption (H4) holds.
From (2.17), we have

b1
(
tm1
)
eu1(tm1 ) ≥ a1

(
tm1
)−D1

(
tm1
)− c(tm1

)
eu3(tm1 ) +

S1
(
tm1
)

eu1(tm1 )

≥ a1
(
tm1
)−D1

(
tm1
)− c(tm1

)
eu3

(
tM3
)

+
S1
(
tm1
)

eM1
.

(2.61)

Therefore,

eu1(tm1 ) ≥ a1
(
tm1
)−D1

(
tm1
)− c(tm1

)
eu3(tM3 ) + S1

(
tm1
)
e−M1

b1
(
tm1
) . (2.62)

Substituting this into (2.49) gives

[q̄+ β̄]eu3(tM3 ) ≥ p̄
[
a1
(
tm1
)−D1

(
tm1
)]

b1
(
tm1
) − p̄c

(
tm1
)
eu3

(
tM3
)

b1
(
tm1
) +

p̄S1
(
tm1
)

b1
(
tm1
)
eM1

− d̄, (2.63)

which implies
[
q̄

p̄
+
β̄

p̄
+
c
(
tm1
)

b1
(
tm1
)

]

eu3(tM3 ) ≥ a1
(
tm1
)−D1

(
tm1
)

+ S1
(
tm1
)
e−M1

b1
(
tm1
) − d̄

p̄
. (2.64)

Therefore,
[

K +
(
c

b1

)u]

eu3(tM3 ) ≥ K∗ − d̄

p̄
. (2.65)

That is,

u3
(
tM3
)≥ ln

K∗ − d̄/ p̄
K +

(
c/b1

)u :=m∗
5 . (2.66)
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It follows from(2.48) and (2.66)that

u3
(
tm3
)≥ u3

(
tM3
)−

∫ T

0

∣
∣u′3(t)

∣
∣dt ≥m∗

5 − 2T
(
d̄+ q̄M̃0 + β̄M̃0

)
. (2.67)

It follows from (2.55), (2.60), and (2.67) that Claim 4 holds.
Clearly, one of the following inequalities holds:

(i) M∗
1 >m∗

2 ,
(ii) M∗

1 ≤m∗
2 .

Sincem∗
1 <M

∗
1 andm∗

2 ≤M∗
2 , (ii) impliesM∗

2 >m∗
1 . Thus, according to Claims 1–3, one

of the following four cases must hold:
(P1)m1≤m∗

1 −2T(D̄1 +b̄1M0 + c̄M̃0)≤ u1(tm1 )≤ u2(tm2 ), u2(tM2 )≤ u1(tM1 )≤M∗
1 ≤M1;

(P2) m1 ≤m∗
2 ≤ u2(tm2 ) < u1(tm1 ), u2(tM2 )≤ u1(tM1 )≤M∗

1 ≤M1;
(P3) m1 ≤ m∗

1 − 2T(D̄1 + b̄1M0 + c̄M̃0) ≤ u1(tm1 ) ≤ u2(tm2 ), u1(tM1 ) < u2(tM2 ) ≤M∗
2 ≤

M1;
(P4) m1 ≤m∗

2 ≤ u2(tm2 ) < u1(tm1 ), u1(tM1 ) < u2(tM2 )≤M∗
2 ≤M1.

From this and Claims 3 and 4, we have

max
t∈[0,T]

∣
∣ui(t)

∣
∣≤max

{∣∣M1
∣
∣,
∣
∣M2

∣
∣,
∣
∣m1

∣
∣,
∣
∣m2

∣
∣} :=M∗, i= 1,2,3. (2.68)

Obviously, M∗ is independent of λ.
Set

B∗i := āi +
√(
āi
)2

+ 4b̄iS̄i, i= 1,2. (2.69)

Take sufficiently large M such that

M > 3max
{
M∗,

∣
∣m∗

1

∣
∣,
∣
∣m∗

2

∣
∣,
∣
∣m∗

3

∣
∣,
∣
∣m∗

4

∣
∣,
∣
∣m∗

5

∣
∣},

M >
∣
∣v∗1

∣
∣+ |v∗2

∣
∣+

∣
∣v∗3

∣
∣,

(2.70)

where

v∗1 = ln
B∗1
2b̄1

, v∗2 = ln
B∗2
2b̄2

,

v∗3 = ln
p̄B∗1 +

√
[ p̄B∗1 ]2 + 16

(
b̄1
)2[

q̄+ β̄
]
S̄3

4b̄1
[
q̄+ β̄

] .

(2.71)

Clearly, the condition (i) in Lemma 2.1 is satisfied by system (2.7).
Define H(u1,u2,u3,μ) :R3× [0,1]→R3 by

H
(
u1,u2,u3,μ

)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ā1− b̄1eu1 +
S̄1

eu1

ā2− b̄2eu2 +
S̄2

eu2

p̄eu1 − [q̄+ β̄]eu3 +
S̄3

eu3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+μ

⎛

⎜
⎝

D̄1eu2−u1 − c̄eu3 − D̄1

D̄2eu1−u2 − D̄2

−d̄

⎞

⎟
⎠ . (2.72)
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We show that

H
(
u1,u2,u3,μ

) �= 0 for any u= (u1,u2,u3
)∈ ∂BM

(
R3), μ∈ [0,1]. (2.73)

Indeed, assume to the contrary, that

H
(
u∗1 ,u∗2 ,u∗3 ,μ∗

)= 0 for some u∗ = (u∗1 ,u∗2 ,u∗3
)∈ ∂BM

(
R3), μ∗ ∈ [0,1]. (2.74)

Then, there exist ti ∈ [0,T], i= 1,2, such that

a1
(
t1
)− b1

(
t1
)
eu

∗
1 +

S1
(
t1
)

eu
∗
1

+μ∗D1
(
t1
)
eu

∗
2 −u∗1 −μ∗c(t1

)
eu

∗
3 −μ∗D1

(
t1
)= 0,

a2
(
t2
)− b2

(
t2
)
eu

∗
2 +

S2
(
t2
)

eu
∗
2

+μ∗D2
(
t2
)
eu

∗
1 −u∗2 −μ∗D2

(
t2
)= 0,

−μ∗d̄+ p̄eu
∗
1 − [q̄+ β̄

]
eu

∗
3 +

S̄3

eu
∗
3
= 0.

(2.75)

By using the arguments of (2.19), (2.20), (2.27), (2.38), (2.44), (2.54), (2.59), (2.66), one
can prove that

∣
∣u∗i

∣
∣≤max

∣
∣M1

∣
∣,
∣
∣M2

∣
∣,
∣
∣m∗

1

∣
∣,
∣
∣m∗

2

∣
∣,
∣
∣m∗

3

∣
∣,
∣
∣m∗

4

∣
∣,
∣
∣m∗

5 |, i= 1,2,3, (2.76)

which implies that ‖u∗‖ = |u∗1 | + |u∗2 | + |u∗3 | ≤ 3max{M∗,|m∗
1 |,|m∗

2 |,|m∗
3 |,|m∗

4 |,
|m∗

5 |} < M. This contradicts the fact that u∗ ∈ ∂BM(R3). Therefore, H(u1,u2,u3,μ) is
a homotopy.

Since

g(u)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ā1− D̄1− b̄1eu1 − c̄eu3 + D̄1eu2−u1 +
S̄1

eu1

ā2− D̄2− b̄2eu2 + D̄2eu1−u2 +
S̄2

eu2

−d̄+ p̄eu1 − [q̄+ β̄]eu3 +
S̄3

eu3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=H(u1,u2,u3,1
)
, (2.77)

g(u) �= 0 for any (u1,u2,u3) ∈ ∂BM(R3). Thus, the condition (ii) in Lemma 2.1 is satis-
fied. Next we show that condition (iii) also holds. It is easy to see that H(u1,u2,u3,0)= 0
has a unique solution v∗ = (v∗1 ,v∗2 ,v∗3 ), where v∗1 ,v∗2 ,v∗3 are the same as those in (2.71).
Clearly, ‖v∗‖ = |v∗1 |+ |v∗2 |+ |v∗3 | <M, that is, v∗ ∈ BM(R3). According to the invariance
of homotopy, we obtain

deg
(
g,BM

(
R3))= deg

(
H(·,1),BM

(
R3))= deg

(
H(·,0),BM

(
R3))=−1. (2.78)

Therefore, all of the conditions required in Lemma 2.1 hold. According to Lemma 2.1,
system (2.7) has oneT-periodic solution (u∗1 (t),u∗2 (t),u∗3 (t))T . It is easy to see that (x∗1 (t),
x∗2 (t), y∗(t))T = (exp[(u∗1 (t)],exp[u∗2 (t)],exp[u∗3 (t)])T is a positive T-periodic solution
of system (1.1). By the arguments similar to Claims 1–4, one can show

m1 ≤ u∗i (t)≤M1 (i= 1,2), m2 ≤ u∗3 (t)≤M2, t ≥ 0, (2.79)
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which implies

m0 ≤ x∗i (t)≤M0 (i= 1,2), m̃0 ≤ y∗(t)≤ M̃0, t ≥ 0. (2.80)

The proof is complete. �

Consider the special case of system (1.1) that Si(t) ≡ 0, i = 1,2,3. In this case, by
Theorem 2.2, we have the following.

Corollary 2.3. In addition to (H1) and (H2), assume further that system (1.1) satisfies
one of the following conditions:

(H3)′ (ai/bi)l > d̄/ p̄, i= 1,2;
(H4)′ ((a1−D1)/b1)l > d̄/ p̄.

Then system (1.1) has at least one positive T-periodic solution.

Remark 2.4. Corollary 2.3 greatly improves [15, Theorem 2.1] and [5, Theorem 1.1].
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