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We consider complex-valued modular forms on finite upper half planes Hq and ob-
tain Fourier expansions of Eisenstein series invariant under the groups Γ= SL(2,Fp) and
GL(2,Fp). The expansions are analogous to those of Maass wave forms on the ordinary
Poincaré upper half plane —theK-Bessel functions being replaced by Kloosterman sums.
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1. Introduction

Before outlining our results, let us give a brief summary of the classical results for which
we have found finite analogs. This work is a part of a continuing project to seek out finite
analogs of Terras [17, Chapter 2].

The usual Poincaré upper half plane H consists of complex numbers z = x + iy with
y > 0. The Poincaré arc length is defined by ds2 = y−2(dx2 + dy2) and the correspond-
ing Laplacian is Δ= y2(∂2/∂x2 + ∂2/∂y2). More information about H , its non-Euclidean
geometry, and modular forms can be found in [17].

Maass wave forms (of weight 0) for Γ = SL(2,Z) are functions f : H → C which are
eigenfunctions of the Poincaré Laplacian Δ = y2(∂2/∂x2 + ∂2/∂y2) such that f (γz) =
f ((az + b)/(cz + d)) = f (z) for all z ∈ H and γ = (a b

c d ) ∈ Γ and with f (z) growing at
most as a polynomial in y as y→∞.

An example of a Maass wave form for SL(2,Z) is provided by the Maass Eisenstein series
on H defined, for z ∈H and s∈ C with Res > 1, by

Es(z)=
∑

γ∈Γ∞\Γ
Im(γz)s. (1.1)

Here Γ∞ is the subgroup of Γ consisting of matrices which fix ∞ (i.e., the lower left ele-
ment is 0).

Define the gamma function for Res > 0 by

Γ(s)=
∫∞

0
yse−y

dy

y
. (1.2)
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2 Fourier expansions of Eisenstein series

Next define the K-Bessel function for Rea > 0 by

Ks(a)= 1
2

∫∞

0
yse−a/2(y+(1/y)) dy

y
. (1.3)

Set

Λ(s)= π−sΓ(s)ζ(2s), (1.4)

where ζ(s) is Riemann’s zeta function. Then the Fourier expansion of Es(z) is

ys +
Λ(1− s)
Λ(s)

y1−s +
2

Λ(s)

∑

n �=0

|n|s−1/2σ1−2s(n)y1/2Ks−1/2
(
2π|n|y)e2πinx. (1.5)

Here the divisor function is

σs(n)=
∑

0<d|n
ds. (1.6)

See [17, pages 208-209] for a sketch of three proofs.
The upper half plane H has a finite analog called the finite “upper” half plane Hq at-

tached to a finite field Fq with q elements. We assume q is an odd number. It is likely that
most of our results go through in characteristic 2, but we leave this for a future paper.
Then we take a fixed nonsquare δ ∈ Fq and define

Hq =
{
z = x+ y

√
δ | x, y ∈ Fq, y �= 0

}
. (1.7)

The finite upper half plane is considered in detail in [18, Chapter 19]. See also [13]. An
application to coding theory is to be found in [19]. References which cover finite upper
half planes in both even and odd characteristics include Angel [1], Angel and Evans [3],
Evans [8], as well as Soto-Andrade and Vargas [15].

Recall that an element of the general linear group

g =
(
a b
c d

)
∈GL

(
2,Fq

)
(1.8)

has entries in Fq and nonzero determinant. Then for z ∈Hq,

gz = az+ b
cz+d

∈Hq. (1.9)

Define the “distance” between z,w ∈Hq by

d(z,w)= N(z−w)
Imz Imw

. (1.10)

It is easily checked that for g ∈GL(2,Fq), d(gw,gw)= d(z,w). For a∈ Fq, define the finite
upper half plane graphs Xq(δ,a) to have vertices the elements ofHq and an edge between z
and w in Hq if and only if d(z,w)= a. For a �= 0, 4δ, the graph Xq(δ,a) is (q+ 1)-regular,
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connected, and Ramanujan. See [18] for more information. Ramanujan graphs are of
interest to computer scientists because they provide efficient communications networks.
Chai and Li [7] have proved some interesting connections of the spectra of the finite
upper half plane graphs and modular forms of function fields.

The GL(2,Fq)-invariant operators on Hq analogous to the non-Euclidean Laplacian
on the Poincaré upper half plane H are the adjacency operators on the finite upper half
plane graphs defined for a∈ Fq by

Aa f (z)=
∑

w∈Hq

d(z,w)=a

f (w). (1.11)

These operators generate a commutative algebra of operators.
One can view Hq as a finite symmetric space G/K as in [18, Chapter 19]. From that

point of view, the adjacency operators Aa correspond to G-invariant differential opera-
tors on a symmetric space. This subject may also be studied from the point of view of
association schemes (Bannai and Ito [4]) or Hecke operators (Krieg [11]).

A (complex-valued) modular form on the finite upper half plane Hq is a function f :
Hq → C having an invariance property for a subgroup Γ of GL(2,Fq). See Definition 2.4.
Here we consider Γ= SL(2,Fp) and GL(2,Fp). Such modular forms which are eigenfunc-
tions of the adjacency operators for the finite upper half plane graphs attached to Hq are
analogs of Maass wave forms on the Poincaré upper half plane.

Now we consider one of our finite upper half plane analogs of the Maass Eisenstein
series in formula (1.1). Let Γ be a subgroup of GL(2,Fq) and let χ be a multiplicative
character on F∗q . Define the Eisenstein “series” for z ∈Hq as

Eχ,Γ(z)=
∑

γ∈Γ
χ
(

Im(γz)
)
. (1.12)

We will see that Eχ,Γ is an eigenfunction of the adjacency operators of finite upper half
plane graphs if it does not vanish identically on Hq. To see when this happens, recall that
F∗q is a cyclic group with generator g. (See [18] and the references given there for more
information about finite fields.) Thus a multiplicative character χ of F∗q has the following
form for integers a, b:

χa
(
gb
)= e2πiab/(q−1), 0≤ a, b ≤ q− 2. (1.13)

We will find that for q = pn, with q > 2 and n > 2, Eχ,GL(2,Fq) is nonzero if and only if χ = χa
when a is a multiple of (p− 1). This last condition is equivalent to saying that χa|F∗p = 1.
When n= 2, we will find that Eλ,GL(2,Fq) is nonzero, for χ = 1 or χ = λ as in formula (1.20).
We will also find experimentally that Eχ,GL(2,Fq) is nonzero for p = 3,5 when a is a multiple
of (p− 1) (see Tables 2.1 and 2.2 near the end of the paper).

As we saw in formula (1.5), Fourier expansions of Maass Eisenstein series onH involve
K-Bessel functions. In the finite case under consideration, the Bessel functions will be
replaced with Kloosterman sums. Thus we need to define these sums as well as Gauss
sums in order to state the Fourier expansion of the Eisenstein series Eχ,GL(2,Fp)(z).
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Let Ψ be an additive character of Fq. Then Ψ=Ψb, where

Ψb(u)= e2πiTr(bu)/p, for b,u∈ Fq. (1.14)

Here the trace in the exponent is (for q = pn, p = prime)

Tr(u)= TrFq/Fp(u)= u+up +up
2

+ ···+up
n−1
. (1.15)

Let Ψ be an additive character and χ a multiplicative character. Define the Gauss sum
by

Γ(χ,Ψ)= Γq(χ,Ψ)=
∑

t∈F∗q
χ(t)Ψ(t). (1.16)

The Gauss sum is analogous to the gamma function of formula (1.2).
See [10] by Ireland and Rosen for more information on Gauss sums. In particular, they

show that if χ and Ψb are not trivial, then

Γ
(
χ,Ψb

)= χ(b−1)Γ
(
χ,Ψ1

)
. (1.17)

Another basic result says that if χ and Ψ are not trivial, then
∣∣Γq(χ,Ψ)

∣∣= √q. (1.18)

The Kloosterman sum for a,b ∈ Fq is defined by

KΨ
(
χ | a,b

)=
∑

t∈F∗q
χ(t)Ψ

(
at+ bt−1). (1.19)

The Kloosterman sum is analogous to theK-Bessel function of formula (1.3). These sums
have great importance in number theory. See [12] by Sarnak who discusses the connec-
tion with modular forms and “Kloostermania.”

Define the quadratic residue character λ on F∗q by

λ(y)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if y is a square in F∗q ,

−1, if y is not a square in F∗q ,

0, y = 0.

(1.20)

One of our main results (see formula (2.34)) is a finite analog of formula (1.5) and
says that the Fourier expansion of the Eisenstein series Eχ,GL(2,Fq)(z) is given by

1
p(p− 1)2

Eχ,GL(2,Fq)(z)= χ(y) +
p

q

Γ
(
λ,Ψ1

)
Γ
(
λχ,Ψ1

)

Γ
(
χ,Ψ1

) χ−1(−δy)λ(−δ)

+
p

q

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψ1

)χ(y)
∑

b∈F∗q
Tr(b)=0

χ(b)
λ(b)

KΨb

(
λχ | −δy2,−1

4

)
Ψb(−x).

(1.21)
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We will also prove the analogous result for Γ= SL(2,Fp) in formula (2.32). Both of these
Fourier expansions result from that of Theorem 2.9 which gives the Fourier expansion of
what we call a G-type Eisenstein series (see Definition 2.2).

The main idea of the proof of (1.21) is to imitate the second proof of formula (1.5)
given by Terras [17]. This proof goes back to Bateman and Grosswald [5] and is extended
by Terras [16]. The main fact needed is the Poisson summation formula for Z as a sub-
group of R. For our finite upper half plane analog we will use Poisson summation for the
additive subgroup Fp of Fq. See Proposition 2.5 or [18, page 199].

One can also consider finite field valued modular forms on finite upper half planes.
These are perhaps more analogous to holomorphic modular forms. See [13] by Shaheen
where an analog of the Selberg trace formula is developed which is more like that of
Selberg (Hejhal [9]) than the version of Terras [18].

2. Lattices, modular forms onHq, and Fourier expansions

Classically Eisenstein series are sums over lattices such as Zw1⊕Zw2 for elements wi in C
which are linearly independent over R. Our finite analog of a lattice is defined as follows.
Here q = pn, with n > 1.

Definition 2.1. An Fp-lattice in Cq = Fq(
√
δ) is a set of the form L= Fpw1⊕Fpw2, where

w1,w2 ∈ Cq are linearly independent over Fq.

Note that if z ∈ Hq, we have an example of an Fp-lattice in Cq = Fq(
√
δ) by setting

Lz = Fpz⊕Fp. Next we define a G-type Eisenstein series.

Definition 2.2. Let χ : Fq(
√
δ)∗ → C be a multiplicative character. Define the G-Eisenstein

series Gχ(z), for z ∈Hq, by

Gχ(z)=
∑

0�=ω
ω∈Lz=Fpz⊕Fp

χ
(

1
ω

)
. (2.1)

Proposition 2.3. If q = pn, γ = (a b
c d )∈GL(2,Fp), and z ∈Hq, then

Gχ(γz)= χ(cz+d)Gχ(z). (2.2)

Proof. Imitate the classical proof found in [14]. �

We now give our most general definition of a complex-valued modular form.

Definition 2.4. Let χ : Fq(
√
δ)∗ → C be a multiplicative character. Define f :Hq → C to be

a complex-valued modular form for χ and a subgroup Γ of GL(2,Fq) if

f (γz)= χ(cz+d) f (z) ∀γ =
(
a b
c d

)
∈ Γ, z ∈Hq. (2.3)

We denote the complex vector space of such forms by Mχ(Γ).

Proposition 2.3 can then be restated to say that, as a function of z, Gχ(z) ∈Mχ(Γ). If
f ∈Mχ(Γ) and g ∈Mψ(Γ), then f g ∈Mχψ(Γ).
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Figure 2.1. A tessellation of H49 from GL(2,F7). Any 7 points of different colors form a fundamental
domain for GL(2,F7)\H49.

Note that Mχ(GL(2,Fp)) �= {0} implies that χ(a)= 1 for all a∈ F∗p . Similarly,

Mχ
(

SL
(
2,Fp

)) �= {0} (2.4)

implies that χ(−1)= 1. This is analogous to the fact that classical holomorphic modular
forms for SL(2,Z) must have even weight.

Fundamental domains for Γ\Hq are discussed by Shaheen [13]. It turns out that the
classical perpendicular bisector method for constructing such fundamental domains (dis-
cussed by Terras [17], e.g.) has a finite analog.

Tessellations of Hq given by letting Γ act on a fundamental domain are as beautiful as
those for the modular group acting on the Poincaré upper half plane. One such tessella-
tion is given in Figure 2.1.

Let χ be a multiplicative character of F∗q and let N =NFq(
√
δ)/Fq be the norm map. The

character χ ◦N−1 seems like a reasonable character to investigate. In fact, it comes up
when we consider the Eisenstein series Eχ,Γ from formula (1.12) of the introduction when
Γ=GL(2,Fp) as we will soon see.

Here we will need the Poisson summation formula for a subgroup B of a finite abelian
groupA proved by Terras [18, page 199]. The formula relates Fourier analysis onA/B and
that on A itself.

Proposition 2.5 (Poisson summation formula for finite abelian groups). Suppose B is a
subgroup of the finite additive abelian group A and f :A→ C. Then

1
|B|

∑

b∈B
f (a+ b)= 1

|A|
∑

Ψ∈B#

f̂ (Ψ)Ψ(a). (2.5)

Write Â to denote the group of additive characters of A. Here the dual group to B in A is

B# = {Ψ∈ Â |Ψ(b)= 1,∀b ∈ B}∼=̂(A/B), (2.6)
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and the Fourier transform of f at Ψ∈ Â is

f̂ (Ψ)=
∑

u∈A
f (u)Ψ(u). (2.7)

Note that the left-hand side of formula (2.5) is a function of the coset a+ B in A/B
while the right-hand side involves Fourier transforms on A.

We want to apply the Poisson summation formula to B = Fp as an additive subgroup
of A = Fq. Therefore, we will need to know the characters in F#

p. As in formula (1.14),

Ψa(u) = e2πiTr(au)/p is an arbitrary element of F̂q. Here the trace is Tr = TrFq/Fp as in for-
mula (1.15). Then, Ψa(u)= e2πiTr(au)/p = 1 for all u∈ Fp if and only if p divides Tr(au)=
uTr(a) for all u ∈ Fp. Therefore, Ψa ∈ F#

p if and only if Tr(a) = 0 in Fp. We have proved
the following lemma.

Lemma 2.6. Using the notation of the preceding proposition, if Fp is considered as a subgroup
of the additive group Fq, the dual group to Fp in Fq is

F#
p =

{
Ψa ∈ F̂q | a∈ Fq, Tr(a)= TrFq/Fp (a)= 0

}
. (2.8)

We will also find that the Kloosterman sum appears in a different guise in our compu-
tations. So let us define the finite k-Bessel function in analogy to that considered on the
Poincaré upper half plane in [17, page 136].

Definition 2.7. For a multiplicative character χ of F∗q and an additive character Ψ of Fq, if
z ∈Hq, define the k-Bessel function by

k
(
z | χ,Ψ

)=
∑

u∈Fq
χ
(

Im
( −1
z+u

))
Ψ(u). (2.9)

It follows from Lemma 2.11 that k(z)= k(z | χ,Ψ) is an eigenfunction of all the adja-
cency operators Aa for the finite upper half plane graphs from formula (1.11).

The following proposition is proved by Celniker et al. [6] (see also [2]). It is a finite
analog of a classical integral formula for K-Bessel functions.

Proposition 2.8 (Relation between k-Bessel function and Kloosterman sum). For a non-
trivial multiplicative character χ of F∗q and a nontrivial additive character Ψa of Fq and
z ∈Hq,

Γ
(
χ,Ψa

)
k
(
z | χ,Ψa

)= gaχ(y)Ψa(−x)KΨa

(
χλ | −δy2,−1

4

)
, (2.10)

where ga =
∑

u∈Fq Ψa(u2) is a Gauss sum, the Kloosterman sum K is defined by formula
(1.19), and the multiplicative character λ is given in formula (1.20).

Why do we say that ga is a Gauss sum? It is easily seen that for a �= 0,

ga =
∑

u∈Fq
Ψa
(
u2)=

∑

u∈Fq

(
1 + λ(u)

)
Ψa(u)= λ(a−1)Γ

(
λ,Ψ1

)
. (2.11)



8 Fourier expansions of Eisenstein series

Theorem 2.9. Let N : Fq(
√
δ)∗ → F∗q be the norm map, χ = χa the multiplicative character

of F∗q given by (1.13), and z ∈Hq. If a= 0, then Gχ0 (z)= p2− 1. If

a∈
{
p− 1

2
,
2(p− 1)

2
,
3(p− 1)

2
,
4(p− 1)

2
, . . . ,

m(p− 1)
2

}
, (2.12)

where m/2= (q− 1)/(p− 1)− 1, then for z = x+ y
√
δ ∈Hq, the G-Eisenstein series has the

following Fourier expansion:

1
p− 1

Gχ◦N−1 (z)= 1 +
p

q

Γ
(
λ,Ψ1

)
Γ
(
λχ,Ψ1

)

Γ
(
χ,Ψ1

) χ−1(− δy2)λ−1(−δ)

+
p

q

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψ1

)
∑

0�=b∈Fq
Tr(b)=0

(
χλ
)
(b) KΨb

(
λχ | −δy2,−1

4

)
ψb(−x).

(2.13)

Here ψb is the additive character of Fq given by (1.14), Γ(χ,Ψ) is the Gauss sum from formula
(1.16), Kψ is the Kloosterman sum from formula (1.19), and λ is the multiplicative character
from formula (1.20). If

a �∈
{

0,
p− 1

2
,
2(p− 1)

2
,
3(p− 1)

2
,
4(p− 1)

2
, . . . ,

m(p− 1)
2

}
, (2.14)

then Gχ◦N−1 = 0.

Proof. First note that a∈ {0,(p− 1)/2,2(p− 1)/2,3(p− 1)/2,4(p− 1)/2, . . . ,m(p− 1)/2}
is equivalent to χ2

a = identity on F∗p . To see this, suppose that F∗q = 〈g〉 and χ = χa as in

formula (1.13). It follows that F∗p = 〈g(q−1)/(p−1)〉. Therefore, χ2 = identity on F∗p if and
only if (p− 1) divides 2a.

Henceforth, we will assume that χ2 = identity on F∗p . The case χ = χ0 is trivial since Gχ

is constant. Thus for the remainder of this proof we also assume that χ �= χ0.
If z ∈Hq, then

Gχ◦N−1 (z)=
∑

(c,d)∈F2
p

(c,d) �=(0,0)

χ
(

1
N(cz+d)

)
=
∑

d∈F∗p
χ
(

1
d2

)
+
∑

c∈F∗p
χ
(

1
c2

) ∑

d∈Fp
χ−1

(
N
(
z+

d

c

))

=
∑

v∈F∗p
χ2(v) +

∑

v∈F∗p
χ2(v)

∑

u∈Fp
χ−1(N(z+u)

)

= (p− 1)

⎧
⎪⎪⎨
⎪⎪⎩

0, if χ2 �= identity on F∗p ,

1 +
∑

u∈Fp
χ−1

(
N(z+u)

)
, if χ2 = identity on F∗p .

(2.15)
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We can now apply Poisson summation (from Proposition 2.5, (2.5)) and Lemma 2.6
to see that

∑

u∈Fp
χ−1(N(z+u)

)= p

q

∑

0�=b∈Fq
Tr(b)=0

∑

u∈Fq
χ−1(N(z+u)

)
Ψb(u). (2.16)

Expanding the inner sum, we have, using Definition 2.7, for b �= 0,

∑

u∈Fq
χ−1(N(z+u)

)
Ψ−b(u)=

∑

u∈Fq
χ
(
y(1/y)
N(z+u)

)
Ψ−b(u)= χ−1(y)k

(
z | χ,Ψ−b

)

= g−b
Γ
(
χ,Ψ−b

)Ψ−b(−x)KΨ−b

(
χλ | −δy2,−1

4

)
.

(2.17)

Here we make use of Proposition 2.8.
It follows from formula (2.11) that

1
p− 1

Gχ◦N−1 (z)= 1 +
p

qχ(y)
k
(
z | χ,Ψ0

)

+
p

q

∑

0�=b∈Fq
Tr(b)=0

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψb

)λ
(
b−1)KΨb

(
χλ | −δy2,−1

4

)
ψb(−x).

(2.18)

Apply formula (1.17) to see that

1
p− 1

Gχ◦N−1 (z)= 1 +
p

qχ(y)
k
(
z | χ,Ψ0

)

+
p

q

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψ1

)
∑

0�=b∈Fq
Tr(b)=0

(χλ)(b)KΨb

(
χλ | −δy2,−1

4

)
ψb(−x).

(2.19)

But, what is k(z | χ,Ψ0)? To answer this, note that

k
(
z | χ,Ψ0

)=
∑

u∈Fq
χ
(

Im
( −1
z+u

))
= 1
χ(y)

∑

v∈Fq
χ−1(v2− δ). (2.20)

Plug in formula (1.17),

χ−1(v2− δ)= Γ
(
χ,Ψv2−δ

)

Γ
(
χ,Ψ1

) , (2.21)
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to obtain

k
(
z | χ,Ψ0

)= 1
χ(y)

∑

v∈Fq

Γ
(
χ,Ψv2−δ

)

Γ
(
χ,Ψ1

) = 1
χ(y)Γ

(
χ,Ψ1

)
∑

v∈Fq

∑

w∈F∗q
χ(w)e2πiTr(w(v2−δ))/p

= 1
χ(y)Γ

(
χ,Ψ1

)
∑

w∈F∗q
χ(w)e2πiTr(−δw)/p

∑

v∈Fq
e2πiTr(wv2)/p.

(2.22)

When w �= 0, the inner sum is the Gauss sum gw = λ(w−1)Γ(λ,Ψ1). Therefore,

k
(
z | χ,Ψ0

)= Γ
(
λ,Ψ1

)

χ(y)Γ
(
χ,Ψ1

)
∑

w∈F∗q
(λχ)(w)e2πiTr(−δw)/p = Γ

(
λ,Ψ1

)
Γ
(
λχ,Ψ1

)

χ(−δy)λ(−δ)Γ
(
χ,Ψ1

) . (2.23)

The theorem follows. �

Furthermore, if q �= p2, then one can show that Gχ◦N−1 (z) is not the zero function by
showing that the constant term of its Fourier expansion is nonzero. When q = p2, our
later computations show that certain Eisenstein series must be nonzero also. But we leave
the general q = p2 question open for the moment.

Corollary 2.10. If q �= p2 and

a∈
{

0,
p− 1

2
,
2(p− 1)

2
,
3(p− 1)

2
,
4(p− 1)

2
, . . . ,

m(p− 1)
2

}
, (2.24)

wherem/2=(q− 1)/(p−1)− 1, thenGχa◦N−1 (z) is not the zero function. If q = p2,Gλ◦N−1 (z)
is not the zero function.

Proof. If a = 0, then the result is clear. If a �= 0, we show that the constant term of the
Fourier expansion of Gχa◦N−1 (z) is nonzero. We have two cases to consider.

If λχa is the identity character, then the constant term of (1/(p− 1))Gχa◦N−1 (z) is

(
1 +

p

q

)
Γ
(
1,Ψ1

)= 1− p

q
�= 0. (2.25)

Suppose that λχa is not the identity character. We take the absolute value of the second
term in the constant term and note that it is not 1 using formula (1.18). Therefore, the
constant term of Gχa◦N−1 (z) is nonzero. �

Next we consider the Fourier expansion of some Eisenstein series which are analogous
to the Maass Eisenstein series (1.1). First, we define the finite analog of the power function
ys on the Poincaré upper half plane.

Let χ : F∗q → C be a multiplicative character. Define the “power function” pχ : Hq → C
to be

pχ(z)= χ(Im(z)
)
. (2.26)
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Lemma 2.11 (The power function is an eigenfunction of all adjacency operators). If Aa
denotes the adjacency operator defined by formula (1.11), then

Aapχ = μ(a,χ)pχ , where μ(a,χ)=
∑

d(w,
√
δ)=a

χ
(

Im(w)
)
. (2.27)

Proof. See [18, page 324] by Terras. �

Now we want to relate the Eisenstein series of E-type from formula (1.12)—an Eisen-
stein series analogous to the Maass Eisenstein series of formula (1.1)—and the G-type
Eisenstein series from Definition 2.2. If Γ is a subgroup of GL(2,Fq), χ is a multiplicative
character on F∗q , and pχ(z) is the power function from formula (2.26), define the finite
upper half plane E-type Eisenstein series Eχ,Γ(z) by formula (1.12). Then we see that

Eχ,Γ(z)=
∑

γ∈Γ
pχ(γz)=

∑

γ=(a b
c d

)∈Γ
χ
(

det(γ)Im(z)
N(cz+d)

)
. (2.28)

Note that Eχ,Γ ∈Mχ1 (Γ), where χ1 denotes the trivial character.

Lemma 2.12. Given c,d ∈ Fp not both zero and u∈ F∗p , there exist p pairs (a,b)∈ F2
p such

that det(a b
c d )= u.

Proof. We need to solve the equation xd− yc = u �= 0 for x, y ∈ Fp. If c �= 0, then we can
pick any x ∈ Fp and solve for y = c−1(xd− u). This gives us p different choices for x. If
c = 0, then y can be any element of Fp and x = ud−1. Again, we have p choices for y. �

We see from the preceding results that for our two favorite subgroups of GL(2,Fq), we
have the following relations between the E- and G-type Eisenstein series:

Eχ,SL(2,Fp)(z)= pχ
(

Im(z)
)
Gχ◦N−1 (z),

Eχ,GL(2,Fp)(z)= p(p− 1)χ
(

Im(z)
)
Gχ◦N−1 (z).

(2.29)

Here the G-type Eisenstein series Gχ is defined by formula (2.1). In both cases of formula
(2.29), when χ2|F∗p �= 1, the Eisenstein series is 0.

It follows from Lemma 2.11 that if Eχ,Γ �≡ 0 on Hq, then Eχ,Γ(z) is an eigenfunction of
the adjacency operator Aa of formula (1.11) with eigenvalue

μ(a,χ)=
∑

w∈Hq

d(w,
√
δ)=a

χ
(

Im(w)
)
. (2.30)

Thus the Eisenstein series, Eχ,Γ, are the analogs of the classical Maass Eisenstein series
Es from formula (1.1) at least when they are not identically zero. Angel et al. [2] con-
sidered Eisenstein series for Γ= K , the subgroup of GL(2,Fq) fixing

√
δ. In this case, the

Eisenstein series are usually called spherical functions. The general case was introduced
in [13] in an attempt to find elements of L2(Γ\Hq) that simultaneously diagonalize the
matrices AΓ

a =Aa|L2(Γ\Hq).
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We can now easily find the Fourier expansions of Eχ,SL(2,Fp) and Eχ,GL(2,Fp) using that of
Gχ◦N−1 (z) in Theorem 2.9.

Let χ = χa be the multiplicative character of F∗q given by (1.13) and z ∈Hq. If a = 0,
then Eχ,SL(2,Fp)(z)= p(p2− 1). If

a∈
{
p− 1

2
,
2(p− 1)

2
,
3(p− 1)

2
,
4(p− 1)

2
, . . . ,

m(p− 1)
2

}
, (2.31)

where m/2= (q− 1)/(p− 1)− 1, then we have the Fourier expansion

1
p(p− 1)

Eχ,SL(2,Fp)(z)= χ(y) +
p

q

Γ
(
λ,Ψ1

)
Γ
(
λχ,Ψ1

)

Γ
(
χ,Ψ1

) χ−1(−δy)λ(−δ)

+
p

q

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψ1

)χ(y)
∑

0�=b∈Fq
Tr(b)=0

(χλ)(b) KΨb

(
λχ | −δy2,−1

4

)
ψb(−x).

(2.32)

If a �∈{0,(p−1)/2,2(p−1)/2,3(p−1)/2,4(p−1)/2, . . . ,m(p−1)/2}, then Eχ,SL(2,Fp)(z)=0.
If q �= p2 and a∈{0,(p−1)/2,2(p− 1)/2,3(p− 1)/2,4(p− 1)/2, . . . ,m(p− 1)/2}, where

m/2= (q− 1)/(p− 1)− 1, then Eχ,SL(2,Fp)(z) is not the zero function.
Similar results hold for Eχ,GL(2,Fp)(z). Let χ = χa be the multiplicative character of F∗q

given by (1.13) and z ∈Hq. If a= 0, then Eχ,GL(2,Fp)(z)= p(p− 1)(p2− 1). If

a∈ {p− 1,2(p− 1), . . . ,m(p− 1)
}

, (2.33)

where m= (q− 1)/(p− 1)− 1, then

1
p(p− 1)2

Eχ,GL(2,Fp)(z)= χ(y) +
p

q

Γ
(
λ,Ψ1

)
Γ
(
λχ,Ψ1

)

Γ
(
χ,Ψ1

) χ−1(−δy)λ(−δ)

+
p

q

Γ
(
λ,Ψ1

)

Γ
(
χ,Ψ1

)χ(y)
∑

0�=b∈Fq
Tr(b)=0

(χλ)(b)KΨb

(
λχ | −δy2,−1

4

)
ψb(−x).

(2.34)

If a �∈ {0, p− 1,2(p− 1), . . . ,m(p− 1)}, then Eχ,GL(2,Fp)(z)= 0.
If q �= p2 and a ∈ {0, p − 1,2(p − 1), . . . ,m(p − 1)}, where m = (q − 1)/(p − 1)− 1,

then Eχ,GL(2,Fp)(z) is not the zero function.
In order to compute some values of these Eisenstein series, we need to think about

fundamental domains. Here we will only consider q = p2 for p = 3,5. The fundamental
domains in Examples 2.13 and 2.14 and the Eisenstein series in Tables 2.1 and 2.2 were
calculated using Mathematica.
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Figure 2.2. The fundamental domain for SL(2,F3\H9) is given by the 6 points which are either circled
or boxed.

Example 2.13 (SL(2,F3)\H9). Write x for a root of x2 + 1= 0 and F9 = {a+ bx | a,b ∈ F}.
Then let δ = 1 + x, and suppose y is a root of the equation y2 = δ. Then, H9 = {a +
by|a,b ∈ F9, b �= 0}. The elements of F9 are given the ordering {1 + 2x,2 + 2x,2x,2,0,1,
x,1 + x,2 + x}. Each SL(2,F3)-orbit in Figure 2.2 has a different shape and level of shad-
ing. The elements of the fundamental domain have been circled (or boxed). Reading from
left to right increases Re(z), and reading from bottom to top increases Im(z). More ex-
plicitly, a fundamental domain for SL(2,F3)\H9 is the set

{
1 + 2x+ (2 + x)y,2 + (2 + x)y,1 + 2x+ (1 + x)y,

2 + (1 + x)y,x+ (1 + x)y,1 + 2x+ xy
}
.

(2.35)

Example 2.14 (SL(2,F5)\H25). Let x be a root of x2 + 2= 0 and F25 = {a+ bx | a,b ∈ F5}.
Suppose δ = 1 + x, and y satisfies y2 = δ. Then we have H25 = {a+ by|a,b ∈ F25,b �= 0}.
It can be shown that a fundamental domain for SL(2,F5)\H25 is given by the 10 points

{
1 + 3x+ (4 + 2x)y,1 + 4x+ (4 + 2x)y,3 + (4 + 2x)y,2x+ (4 + 2x)y,3 + (3 + 2x)y,

1 + 4x+ (2 + 2x)y,x+ (2 + 2x)y,1 + 4x+ (1 + 2x)y,3 + (1 + 2x)y,1 + 4x+ (4 + x)y
}
.

(2.36)

We will write A, B, C, D, E, F, G, H , I , J for these 10 points to save space in Table 2.2.

More general results on fundamental domains can be found in [13].
Finally, we compute values of Eχ,SL(2,Fp)(z) for the preceding examples. One can com-

pute Eχ,GL(2,Fp)(z) for the same values of p and q using formula (2.29).
Table 2.1 gives the values of Eχ,SL(2,F3) on SL(2,F3)\H9 for χ = χa, 0 ≤ a ≤ 7. Table 2.2

gives the values of Eχ,SL(2,F5) on SL(2,F5)\H25 for χ = χa, 0 ≤ a ≤ 23. It follows from our
computations that at least for these special cases the Eisenstein series on Hp2 for SL(2,Fp)
do not vanish.
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Table 2.1. Values of Eχ,SL(2,F3) on SL(2,F3)\H9 for χ = χa, 0≤ a≤ 7.

z Eχ0 ,SL(2,F3) Eχ1 ,SL(2,F3)

1 + 2x+ (2 + x)y 24 −6i+ (3− 9i)
√

2

2 + (2 + x)y 24 (−6 + 12i) + (3− 3i)
√

2

1 + 2x+ (1 + x)y 24 0

2 + (1 + x)y 24 6i− (3− 9i)
√

2

x+ (1 + x)y 24 0

1 + 2x+ xy 24 (6− 12i)− (3− 3i)
√

2

z Eχ2 ,SL(2,F3) Eχ3 ,SL(2,F3)

1 + 2x+ (2 + x)y −6− 6i 6i− (3 + 9i)
√

2

2 + (2 + x)y −6− 6i −6− 12i− (3 + 3i)
√

2

1 + 2x+ (1 + x)y 12 + 12i 0

2 + (1 + x)y −6− 6i −6i+ (3 + 9i)
√

2

x+ (1 + x)y 12 + 12i 0

1 + 2x+ xy −6− 6i 6 + 12i+ (3 + 3i)
√

2

z Eχ4 ,SL(2,F3) Eχ5 ,SL(2,F3)

1 + 2x+ (2 + x)y −12 −6i− (3− 9i)
√

2

2 + (2 + x)y 12 −6 + 12i− (3− 3i)
√

2

1 + 2x+ (1 + x)y 0 0

2 + (1 + x)y −12 6i+ (3− 9i)
√

2

x+ (1 + x)y 0 0

1 + 2x+ xy 12 6− 12i+ (3− 3i)
√

2

z Eχ6 ,SL(2,F3) Eχ7 ,SL(2,F3)

1 + 2x+ (2 + x)y −6 + 6i 6i+ (3 + 9i)
√

2

2 + (2 + x)y −6 + 6i −6− 12i+ (3 + 3i)
√

2

1 + 2x+ (1 + x)y 12− 12i 0

2 + (1 + x)y −6 + 6i −6i− (3 + 9i)
√

2

x+ (1 + x)y 12− 12i 0

1 + 2x+ xy −6 + 6i 6 + 12i− (3 + 3i)
√

2



A. Shaheen and A. Terras 15

Table 2.2. Values of Eχ,Γ on Γ\H25 for χ = χa, 0≤ a≤ 23, Γ= SL(2,F5).

z Eχ0,SL(2,F5)(z) Eχ2,SL(2,F5)(z) Eχ4,SL(2,F5)(z)

A 120 0 20 + 20i
√

3

B 120 −30− 10i− (10− 30i)
√

3 20 + 20i
√

3

C 120 30− 40i+ (20− 10i)
√

3 −30− 30i
√

3

D 120 0 20 + 20i
√

3

E 120 −50i+ (10 + 20i)
√

3 −30− 30i
√

3

F 120 0 20 + 20i
√

3

G 120 0 20 + 20i
√

3

H 120 50i− (10 + 20i)
√

3 −30− 30i
√

3

I 120 30 + 10i+ (10− 30i)
√

3 20 + 20i
√

3

J 120 −30 + 40i− (20− 10i)
√

3 −30− 30i
√

3

z Eχ6,SL(2,F5)(z) Eχ8,SL(2,F5)(z) Eχ10,SL(2,F5)(z)

A 0 −60− 20i
√

3 0

B −60− 20i 0 −30− 10i+ (10− 30i)
√

3

C −60− 20i −30− 10i
√

3 30− 40i− (20− 10i)
√

3

D 0 −60− 20i
√

3 0

E 60 + 20i 30 + 10i
√

3 −50i− (10 + 20i)
√

3

F 0 60 + 20i
√

3 0

G 0 60 + 20i
√

3 0

H −60− 20i 30 + 10i
√

3 50i+ (10 + 20i)
√

3

I 60 + 20i 0 30 + 10i− (10− 30i)
√

3

J 60 + 20i −30− 10i
√

3 −30 + 40i+ (20− 10i)
√

3

z Eχ12,SL(2,F5)(z) Eχ14,SL(2,F5)(z) Eχ16,SL(2,F5)(z)

A −40 0 −60 + 20i
√

3

B 80 −30 + 10i+ (10 + 30i)
√

3 0

C 0 30 + 40i− (20 + 10i)
√

3 −30 + 10i
√

3

D −40 0 −60 + 20i
√

3

E 0 50i− (10− 20i)
√

3 30− 10i
√

3

F −40 0 60− 20i
√

3

G −40 0 60− 20i
√

3

H 0 −50i+ (10− 20i)
√

3 30− 10i
√

3

I 80 30− 10i− (10 + 30i)
√

3 0

J 0 −30− 40i+ (20 + 10i)
√

3 −30 + 10i
√

3
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Table 2.2. Continued.

z Eχ18,SL(2,F5)(z) Eχ20,SL(2,F5)(z) Eχ22,SL(2,F5)(z)

A 0 20− 20i
√

3 0

B −60 + 20i 20− 20i
√

3 −30 + 10i− (10 + 30i)
√

3

C −60 + 20i −30 + 30i
√

3 30 + 40i+ (20 + 10i)
√

3

D 0 20− 20i
√

3 0

E 60− 20i −30 + 30i
√

3 50i+ (10− 20i)
√

3

F 0 20− 20i
√

3 0

G 0 20− 20i
√

3 0

H −60 + 20i −30 + 30i
√

3 −50i− (10− 20i)
√

3

I 60− 20i 20− 20i
√

3 30− 10i− (10 + 30i)
√

3

J 60− 20i −30 + 30i
√

3 −30− 40i− (20 + 10i)
√

3
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