STRUCTURE OF RINGS WITH CERTAIN CONDITIONS ON ZERO DIVISORS

HAZAR ABU-KHUZAM AND ADIL YAQUB

Received 4 May 2004; Revised 17 September 2004; Accepted 24 July 2006

Let *R* be a ring such that every zero divisor *x* is expressible as a sum of a nilpotent element and a potent element of R: x = a + b, where *a* is nilpotent, *b* is potent, and ab = ba. We call such a ring a D^* -ring. We give the structure of periodic D^* -ring, weakly periodic D^* -ring, Artinian D^* -ring, semiperfect D^* -ring, and other classes of D^* -ring.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Throughout this paper, *R* is an associative ring; and *N*, *C*, *C*(*R*), and *J* denote, respectively, the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical. An element *x* of *R* is called *potent* if $x^n = x$ for some positive integer n = n(x) > 1. A ring *R* is called *periodic* if for every *x* in *R*, $x^m = x^n$ for some distinct positive integers m = m(x), n = n(x). A ring *R* is called *weakly periodic* if every element of *R* is expressible as a sum of a nilpotent element and a potent element of R : R = N + P, where *P* is the set of potent elements of *R*. A ring *R* such that every zero divisor is nilpotent is called a *D*-ring. The structure of certain classes of *D*-rings was studied in [1]. Following [7], *R* is called *normal* if all of its idempotents are in *C*. A ring *R* is called a D^* -ring, if every zero divisor *x* in *R* can be written as x = a + b, where $a \in N$, $b \in P$, and ab = ba. Clearly every *D*-ring is a D^* -ring. In particular every nil ring is a D^* -ring, and every domain is a D^* -ring. A Boolean ring is a D^* -ring.

2. Main results

We start by stating the following known lemmas: Lemmas 2.1 and 2.2 were proved in [5], Lemmas 2.3 and 2.4 were proved in [4].

LEMMA 2.1. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If, furthermore, $xR \subseteq N$ for all $x \in N$, then N = J and R is periodic.

LEMMA 2.2. If *R* is a weakly periodic division ring, then *R* is a field.

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 67692, Pages 1–6 DOI 10.1155/IJMMS/2006/67692 2 Structure of rings with certain conditions on zero divisors

LEMMA 2.3. Let R be a periodic ring and x any element of R. Then

- (a) some power of x is idempotent;
- (b) there exists an integer n > 1 such that $x x^n \in N$.

LEMMA 2.4. Let *R* be a periodic ring and let $\sigma : R \to S$ be a homomorphism of *R* onto a ring *S*. Then the nilpotents of *S* coincide with $\sigma(N)$, where *N* is the set of nilpotents of *R*.

Definition 2.5. A ring is said to be a *D-ring* if every zero divisor is nilpotent. A ring *R* is called a D^* -ring if every zero divisor *x* in *R* can be written as x = a + b, where $a \in N$, $b \in P$, and ab = ba.

THEOREM 2.6. A ring R is a D^* -ring if and only if every zero divisor of R is periodic.

Proof. Assume *R* is a D^* -ring and let *x* be any zero divisor. Then

$$x = a + b, \quad a \in N, \ b \in P, \ ab = ba. \tag{2.1}$$

So, $(x - a) = b = b^n = (x - a)^n$. This implies, since x commutes with a, that $(x - a) = (x - a)^n = x^n + \text{sum of pairwise commuting nilpotent elements.}$

Hence

$$x - x^n \in N$$
 for every zero divisor x . (2.2)

Since each such x is included in a subring of zero divisors, which is periodic by Chacron's theorem, x is periodic.

Suppose, conversely, that each zero divisor is periodic. Then by the proof of [4, Lemma 1], *R* is a D^* -ring.

THEOREM 2.7. If R is any normal D^* -ring, then either R is periodic or R is a D-ring. Moreover, $aR \subseteq N$ for each $a \in N$.

Proof. If *R* is a normal D^* -ring which is not a *D*-ring, then *R* has a central idempotent zero divisor *e*. Then $R = eR \oplus A(e)$, where eR and A(e) both consist of zero divisors of *R*, hence (in view of Theorem 2.6) are periodic. Therefore *R* is periodic.

Now consider $a \in N$ and $x \in R$. Since ax is a zero divisor, hence a periodic element, $(ax)^j = e$ is a central idempotent for some j. Thus $(ax)^{j+1} = (ax)^j ax = a^2 y$ for some $y \in R$. Repeating this argument, one can show that for each positive integer k, there exists m such that $(ax)^m = a^{2^k} w$ for some $w \in R$. Therefore $aR \subseteq N$.

COROLLARY 2.8. Let R be a D^* -ring which is not a D-ring. If $N \subseteq C$, then R is commutative.

Proof. Since $N \subseteq C$, *R* is normal. Therefore commutativity follows from Theorem 2.7 and a theorem of Herstein.

Now, we prove the following result for D^* -rings.

THEOREM 2.9. Let *R* be a normal D^* -ring.

 (i) If R is weakly periodic, then N is an ideal of R, R is periodic, and R is a subdirect sum of nil rings and/or local rings R_i. Furthermore, if N_i is the set of nilpotents of the local ring R_i, then R_i/N_i is a periodic field. (ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division rings.

Proof. (i) Using Theorem 2.7, we have

$$aR \subseteq N$$
 for every $a \in N$. (2.3)

This implies, using Lemma 2.1, that N = J is an ideal of R, and R is periodic. As is well-known, we have

$$R \cong$$
 a subdirect sum of subdirectly irreducible rings R_i . (2.4)

Let $\sigma : R \to R_i$ be the natural homomorphism of *R* onto R_i . Since *R* is periodic, R_i is periodic and by Lemma 2.4,

$$N_i$$
 = the set of nilpotents of $R_i = \sigma(N)$ is an ideal of R_i . (2.5)

We now distinguish two cases.

Case 1 $1 \notin R_i$. Let $x_i \in R_i$, and let $\sigma : x \to x_i$. Then by Lemma 2.3, x^k is a central idempotent of R, and hence x_i^k is a central idempotent in the subdirectly irreducible ring R_i , for some positive integer k. Hence $x_i^k = 0$ $(1 \notin R_i)$. Thus $R_i = N_i$ is a nil ring.

Case 2 $1 \in R_i$. The above argument in Case 1 shows that x_i^k is a central idempotent in the subdirectly irreducible ring R_i . Hence $x_i^k = 0$ or $x_i^k = 1$ for all $x_i \in R_i$. So, R_i is a local ring and for every $x_i + N_i \in R_i/N_i$,

$$x_i + N_i = N_i$$
 or $(x_i + N_i)^{\kappa} = 1 + N_i.$ (2.6)

So R_i/N_i is a periodic division ring, and hence by Lemma 2.2, R_i/N_i is a periodic field.

(ii) Suppose *R* is Artinian. Using (2.3), *aR* is a nil right ideal for every $a \in N$. So, $N \subseteq J$. But $J \subseteq N$ since *R* is Artinian. Therefore N = J is an ideal of *R* and R/N = R/J is semisimple Artinian. This implies that R/N is isomorphic to a finite direct product $R_1 \times R_2 \times \cdots \times R_n$, where each R_i is a complete $t_i \times t_i$ matrix ring over a division ring D_i . Since *R* is Artinian, the idempotents of R/J lift to idempotents in *R* [2], and hence the idempotent of R/J are central. If $t_j > 1$, then $E_{11} \in R_j$, and $(0, \ldots, 0, E_{11}, 0, \ldots, 0)$ is an idempotent element of R/J which is not central in R/J. This is a contradiction. So $t_i = 1$ for every *i*. Therefore each R_i is a division ring and R/N is isomorphic to a finite direct product of division rings.

The next result deals with a special kind of D^* -rings.

THEOREM 2.10. Let *R* be a ring such that every zero divisor *x* can be written uniquely as x = a + e, where $a \in N$ and *e* is idempotent.

- (i) If *R* is weakly periodic, then *N* is an ideal of *R*, and *R*/*N* is isomorphic to a subdirect sum of fields.
- (ii) If R is Artinian, then N is an ideal and R/N is a finite direct product of division rings.

4 Structure of rings with certain conditions on zero divisors

Proof. Let $e^2 = e \in R$, $x \in R$, and let f = e + ex - exe. Then $f^2 = f$ and hence (ef - e)f = 0. So if f is not a zero divisor, then ef - e = 0. So ef = e, and thus f = e, which implies that ex = exe. The net result is ex - exe = 0 if f is not a zero divisor. Next, suppose f is a zero divisor. Then since

$$f = (ex - exe) + e; \quad ex - exe \in N, e \text{ idempotent};$$

$$f = 0 + f,$$
 (2.7)

it follows from uniqueness that ex - exe = 0, and hence ex = exe in all cases. Similarly xe = exe, and thus

all idempotents of *R* are central, and hence *R* is a normal D^* -ring. (2.8)

(i) Using (2.8), *R* satisfies all the hypotheses of Theorem 2.9(i), and hence *N* is an ideal, and *R* is periodic. Using Lemma 2.2, for each $x \in R$, there exists an integer k > 1, such that $x - x^k \in N$, and hence

$$(x+N)^k = (x+N), \quad k = k(x) > 1.$$
 (2.9)

By a well-known theorem of Jacobson [6], (2.9) implies that R/N is a subdirect sum of fields.

(ii) If *R* is Artinian, then using (2.8), *R* satisfies the hypotheses of Theorem 2.9(ii). Therefore *N* is an ideal and *R*/*N* is a finite direct product of division rings. \Box

THEOREM 2.11. Let R be a semiprime D^* -ring with N commutative. Then R is either a domain or a J-ring.

Proof. As in the proof of [3, Theorem 1] we can show that if $a^k = 0$, then $(ar)^k = 0$ for all $r \in R$. Therefore, by Levitzki's theorem, $N = \{0\}$. Assume R is not a domain, and let a be any nonzero divisor of zero. Then a is potent and aR consists of zero divisors, hence is a J-ring containing a. Therefore [ax, a] = 0 for all $x \in R$, hence $(ax)^n = a^n x^n$ for all $x \in R$, and all $n \ge 2$. For x not a zero divisor, choose n > 1 such that $a^n = a$ and $(ax)^n = ax$. Then $a^nx^n = ax$, so $a(x^n - x) = 0$ and $x^n - x$ is a zero divisor, hence is periodic. It follows by Chacron's theorem that R is a periodic ring; and since $N = \{0\}$, R is a J-ring.

Example 2.12. Let

$$R = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}, \quad 0, 1 \in GF(2).$$
(2.10)

Then *R* is a normal weakly periodic D^* -ring with commuting nilpotents. *R* is not semiprime since the set of nilpotent elements *N* is a nonzero nilpotent ideal. This example shows that we cannot drop the hypothesis "*R* is semiprime" in Theorem 2.11.

In Theorem 2.14 below, we study the structure of a special kind of D^* -rings, the class of rings in which every zero divisor is potent. Recall that a ring is semiperfect [2] if and

only if *R/J* is semisimple (Artinian) and idempotents lift modulo *J*. We need the following lemma.

LEMMA 2.13. Let R be a ring in which every zero divisor is potent. Then $N = \{0\}$ and R is normal. Moreover, If R is not a domain, then $J = \{0\}$.

Proof. If $a \in N$, then *a* is a zero divisor and hence potent by hypothesis. So $a^n = a$ for some positive integer *n*, and since $a \in N$, there exists a positive integer *k* such that $0 = a^{n^k} = a$. So $N = \{0\}$. Let *e* be any idempotent element of *R* and *x* is any element of *R*. Then $ex - exe \in N$, and hence ex - exe = 0. Similarly, xe = exe. So ex = xe and *R* is normal.

Let *x* be a nonzero divisor of zero. Then *xJ* consists of zero divisors, which are potent. Therefore $xJ = \{0\}$. But then *J* consists of zero divisors, hence potent elements, and therefore $J = \{0\}$.

THEOREM 2.14. Let R be a ring such that every zero divisor is potent.

- (i) If R is weakly periodic, then every element of R is potent and R is a subdirect sum of fields.
- (ii) If R is prime, then R is a domain.
- (iii) If R is Artinian, then R is a finite direct product of division rings.
- (iv) If R is semiperfect, then R/J is a finite direct product of division rings.

Proof. (i) Since *R* is weakly periodic, every element $x \in R$ can be written as

$$x = a + b$$
, where $a \in N$, b is potent. (2.11)

But $N = \{0\}$ (Lemma 2.13), so every $x \in R$ is potent and hence *R* is isomorphic to a subdirect sum of fields by a well-known theorem of Jacobson.

(ii) Suppose *R* is a prime, then *R* is a prime ring with $N = \{0\}$, and hence *R* is a domain.

(iii) Let *R* be an Artinian ring such that every zero divisor is potent. Since $N = \{0\}$ (Lemma 2.13) and *R* is Artinian, $J = N = \{0\}$. So *R* is semisimple Artinian and hence it is isomorphic to a finite direct product $R_1 \times R_2 \times \cdots \times R_n$, where each R_i is a complete $t_i \times t_i$ matrix ring over a division ring D_i . If $t_j > 1$, then $E_{11} \in R_j$, and $(0, \dots, 0, E_{11}, 0, \dots, 0)$ is an idempotent element of *R* which is not central in *R* contradicting Lemma 2.13. So $t_i = 1$ for every *i*. Therefore each R_i is a division ring and *R* is isomorphic to a finite direct product of division rings.

(iv) Let *R* be a semiperfect ring such that every zero divisor is potent. Then *R/J* is semisimple Artinian and hence it is isomorphic to a finite direct product $R_1 \times R_2 \times \cdots \times R_n$, where each R_i is a complete $t_i \times t_i$ matrix ring over a division ring D_i . Since *R* is semiperfect, the idempotents of *R/J* lift to idempotents in *R*, and hence the argument of part (iii) above implies that each R_i is a division ring and *R/J* is isomorphic to a finite direct product of division rings.

Acknowledgment

We wish to express our indebtedness and gratitude to the referee for the helpful suggestions and valuable comments. 6 Structure of rings with certain conditions on zero divisors

References

- [1] H. Abu-Khuzam, H. E. Bell, and A. Yaqub, *Structure of rings with a condition on zero divisors*, Scientiae Mathematicae Japonicae **54** (2001), no. 2, 219–224.
- [2] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Graduate Texts in Mathematics, vol. 13, Springer, New York, 1974.
- [3] H. E. Bell, *Some commutativity results for periodic rings*, Acta Mathematica Academiae Scientiarum Hungaricae **28** (1976), no. 3-4, 279–283.
- [4] _____, A commutativity study for periodic rings, Pacific Journal of Mathematics **70** (1977), no. 1, 29–36.
- [5] J. Grosen, H. Tominaga, and A. Yaqub, *On weakly periodic rings, periodic rings and commutativity theorems*, Mathematical Journal of Okayama University **32** (1990), 77–81.
- [6] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Annals of Mathematics 46 (1945), 695–707.
- [7] H. Tominaga and A. Yaqub, *Some commutativity conditions for left s-unital rings satisfying certain polynomial identities*, Results in Mathematics **6** (1983), no. 2, 217–219.

Hazar Abu-Khuzam: Department of Mathematics, American University of Beirut, Beirut 1107 2020, Lebanon *E-mail address*: hazar@aub.edu.lb

Adil Yaqub: Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, USA *E-mail address*: yaqub@math.ucsb.edu