STRUCTURE OF RINGS WITH CERTAIN CONDITIONS ON ZERO DIVISORS

HAZAR ABU-KHUZAM AND ADIL YAQUB

Received 4 May 2004; Revised 17 September 2004; Accepted 24 July 2006

Let R be a ring such that every zero divisor x is expressible as a sum of a nilpotent element and a potent element of $R: x=a+b$, where a is nilpotent, b is potent, and $a b=b a$. We call such a ring a D^{*}-ring. We give the structure of periodic D^{*}-ring, weakly periodic D^{*}-ring, Artinian D^{*}-ring, semiperfect D^{*}-ring, and other classes of D^{*}-ring.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Throughout this paper, R is an associative ring; and $N, C, C(R)$, and J denote, respectively, the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical. An element x of R is called potent if $x^{n}=x$ for some positive integer $n=n(x)>1$. A ring R is called periodic if for every x in $R, x^{m}=x^{n}$ for some distinct positive integers $m=m(x)$, $n=n(x)$. A ring R is called weakly periodic if every element of R is expressible as a sum of a nilpotent element and a potent element of $R: R=N+P$, where P is the set of potent elements of R. A ring R such that every zero divisor is nilpotent is called a D-ring. The structure of certain classes of D-rings was studied in [1]. Following [7], R is called normal if all of its idempotents are in C. A ring R is called a D^{*}-ring, if every zero divisor x in R can be written as $x=a+b$, where $a \in N, b \in P$, and $a b=b a$. Clearly every D-ring is a D^{*}-ring. In particular every nil ring is a D^{*}-ring, and every domain is a D^{*}-ring. A Boolean ring is a D^{*}-ring but not a D-ring. Our objective is to study the structure of certain classes of D^{*}-ring.

2. Main results

We start by stating the following known lemmas: Lemmas 2.1 and 2.2 were proved in [5], Lemmas 2.3 and 2.4 were proved in [4].

Lemma 2.1. Let R be a weakly periodic ring. Then the Jacobson radical J of R is nil. If, furthermore, $x R \subseteq N$ for all $x \in N$, then $N=J$ and R is periodic.

Lemma 2.2. If R is a weakly periodic division ring, then R is a field.

2 Structure of rings with certain conditions on zero divisors
Lemma 2.3. Let R be a periodic ring and x any element of R. Then
(a) some power of x is idempotent;
(b) there exists an integer $n>1$ such that $x-x^{n} \in N$.

Lemma 2.4. Let R be a periodic ring and let $\sigma: R \rightarrow S$ be a homomorphism of R onto a ring S. Then the nilpotents of S coincide with $\sigma(N)$, where N is the set of nilpotents of R.

Definition 2.5. A ring is said to be a D-ring if every zero divisor is nilpotent. A ring R is called a D^{*}-ring if every zero divisor x in R can be written as $x=a+b$, where $a \in N$, $b \in P$, and $a b=b a$.

Theorem 2.6. A ring R is a D^{*}-ring if and only if every zero divisor of R is periodic.
Proof. Assume R is a D^{*}-ring and let x be any zero divisor. Then

$$
\begin{equation*}
x=a+b, \quad a \in N, b \in P, a b=b a . \tag{2.1}
\end{equation*}
$$

So, $(x-a)=b=b^{n}=(x-a)^{n}$. This implies, since x commutes with a, that $(x-a)=$ $(x-a)^{n}=x^{n}+$ sum of pairwise commuting nilpotent elements.

Hence

$$
\begin{equation*}
x-x^{n} \in N \quad \text { for every zero divisor } x \text {. } \tag{2.2}
\end{equation*}
$$

Since each such x is included in a subring of zero divisors, which is periodic by Chacron's theorem, x is periodic.

Suppose, conversely, that each zero divisor is periodic. Then by the proof of [4, Lemma $1], R$ is a D^{*}-ring.

Theorem 2.7. If R is any normal D^{*}-ring, then either R is periodic or R is a D-ring. Moreover, $a R \subseteq N$ for each $a \in N$.

Proof. If R is a normal D^{*}-ring which is not a D-ring, then R has a central idempotent zero divisor e. Then $R=e R \oplus A(e)$, where $e R$ and $A(e)$ both consist of zero divisors of R, hence (in view of Theorem 2.6) are periodic. Therefore R is periodic.

Now consider $a \in N$ and $x \in R$. Since $a x$ is a zero divisor, hence a periodic element, $(a x)^{j}=e$ is a central idempotent for some j. Thus $(a x)^{j+1}=(a x)^{j} a x=a^{2} y$ for some $y \in R$. Repeating this argument, one can show that for each positive integer k, there exists m such that $(a x)^{m}=a^{2^{k}} w$ for some $w \in R$. Therefore $a R \subseteq N$.

Corollary 2.8. Let R be a D^{*}-ring which is not a D-ring. If $N \subseteq C$, then R is commutative.
Proof. Since $N \subseteq C, R$ is normal. Therefore commutativity follows from Theorem 2.7 and a theorem of Herstein.

Now, we prove the following result for D^{*}-rings.
Theorem 2.9. Let R be a normal D^{*}-ring.
(i) If R is weakly periodic, then N is an ideal of R, R is periodic, and R is a subdirect sum of nil rings and/or local rings R_{i}. Furthermore, if N_{i} is the set of nilpotents of the local ring R_{i}, then R_{i} / N_{i} is a periodic field.
(ii) If R is Artinian, then N is an ideal and R / N is a finite direct product of division rings.

Proof. (i) Using Theorem 2.7, we have

$$
\begin{equation*}
a R \subseteq N \quad \text { for every } a \in N . \tag{2.3}
\end{equation*}
$$

This implies, using Lemma 2.1, that $N=J$ is an ideal of R, and R is periodic.
As is well-known, we have

$$
\begin{equation*}
R \cong \text { a subdirect sum of subdirectly irreducible rings } R_{i} \text {. } \tag{2.4}
\end{equation*}
$$

Let $\sigma: R \rightarrow R_{i}$ be the natural homomorphism of R onto R_{i}. Since R is periodic, R_{i} is periodic and by Lemma 2.4,

$$
\begin{equation*}
N_{i}=\text { the set of nilpotents of } R_{i}=\sigma(N) \text { is an ideal of } R_{i} \text {. } \tag{2.5}
\end{equation*}
$$

We now distinguish two cases.
Case $11 \notin R_{i}$. Let $x_{i} \in R_{i}$, and let $\sigma: x \rightarrow x_{i}$. Then by Lemma 2.3, x^{k} is a central idempotent of R, and hence x_{i}^{k} is a central idempotent in the subdirectly irreducible ring R_{i}, for some positive integer k. Hence $x_{i}^{k}=0\left(1 \notin R_{i}\right)$. Thus $R_{i}=N_{i}$ is a nil ring.

Case $21 \in R_{i}$. The above argument in Case 1 shows that x_{i}^{k} is a central idempotent in the subdirectly irreducible ring R_{i}. Hence $x_{i}^{k}=0$ or $x_{i}^{k}=1$ for all $x_{i} \in R_{i}$. So, R_{i} is a local ring and for every $x_{i}+N_{i} \in R_{i} / N_{i}$,

$$
\begin{equation*}
x_{i}+N_{i}=N_{i} \quad \text { or } \quad\left(x_{i}+N_{i}\right)^{k}=1+N_{i} . \tag{2.6}
\end{equation*}
$$

So R_{i} / N_{i} is a periodic division ring, and hence by Lemma 2.2, R_{i} / N_{i} is a periodic field.
(ii) Suppose R is Artinian. Using (2.3), $a R$ is a nil right ideal for every $a \in N$. So, $N \subseteq J$. But $J \subseteq N$ since R is Artinian. Therefore $N=J$ is an ideal of R and $R / N=R / J$ is semisimple Artinian. This implies that R / N is isomorphic to a finite direct product $R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a complete $t_{i} \times t_{i}$ matrix ring over a division ring D_{i}. Since R is Artinian, the idempotents of R / J lift to idempotents in R [2], and hence the idempotents of R / J are central. If $t_{j}>1$, then $E_{11} \in R_{j}$, and $\left(0, \ldots, 0, E_{11}, 0, \ldots, 0\right)$ is an idempotent element of R / J which is not central in R / J. This is a contradiction. So $t_{i}=1$ for every i. Therefore each R_{i} is a division ring and R / N is isomorphic to a finite direct product of division rings.

The next result deals with a special kind of D^{*}-rings.
Theorem 2.10. Let R be a ring such that every zero divisor x can be written uniquely as $x=a+e$, where $a \in N$ and e is idempotent.
(i) If R is weakly periodic, then N is an ideal of R, and R / N is isomorphic to a subdirect sum of fields.
(ii) If R is Artinian, then N is an ideal and R / N is a finite direct product of division rings.

4 Structure of rings with certain conditions on zero divisors
Proof. Let $e^{2}=e \in R, x \in R$, and let $f=e+e x-$ exe. Then $f^{2}=f$ and hence $(e f-e) f=$ 0 . So if f is not a zero divisor, then $e f-e=0$. So $e f=e$, and thus $f=e$, which implies that ex $=$ exe. The net result is $e x-e x e=0$ if f is not a zero divisor. Next, suppose f is a zero divisor. Then since

$$
\begin{gather*}
f=(e x-e x e)+e ; \quad e x-e x e \in N, e \text { idempotent; } \tag{2.7}\\
f=0+f,
\end{gather*}
$$

it follows from uniqueness that $e x-e x e=0$, and hence $e x=e x e$ in all cases. Similarly $x e=e x e$, and thus

$$
\begin{equation*}
\text { all idempotents of } R \text { are central, and hence } R \text { is a normal } D^{*} \text {-ring. } \tag{2.8}
\end{equation*}
$$

(i) Using (2.8), R satisfies all the hypotheses of Theorem 2.9(i), and hence N is an ideal, and R is periodic. Using Lemma 2.2, for each $x \in R$, there exists an integer $k>1$, such that $x-x^{k} \in N$, and hence

$$
\begin{equation*}
(x+N)^{k}=(x+N), \quad k=k(x)>1 . \tag{2.9}
\end{equation*}
$$

By a well-known theorem of Jacobson [6], (2.9) implies that R / N is a subdirect sum of fields.
(ii) If R is Artinian, then using (2.8), R satisfies the hypotheses of Theorem 2.9(ii). Therefore N is an ideal and R / N is a finite direct product of division rings.

Theorem 2.11. Let R be a semiprime D^{*}-ring with N commutative. Then R is either a domain or a J-ring.

Proof. As in the proof of [3, Theorem 1] we can show that if $a^{k}=0$, then $(a r)^{k}=0$ for all $r \in R$. Therefore, by Levitzki's theorem, $N=\{0\}$. Assume R is not a domain, and let a be any nonzero divisor of zero. Then a is potent and $a R$ consists of zero divisors, hence is a J-ring containing a. Therefore $[a x, a]=0$ for all $x \in R$, hence $(a x)^{n}=a^{n} x^{n}$ for all $x \in R$, and all $n \geq 2$. For x not a zero divisor, choose $n>1$ such that $a^{n}=a$ and $(a x)^{n}=a x$. Then $a^{n} x^{n}=a x$, so $a\left(x^{n}-x\right)=0$ and $x^{n}-x$ is a zero divisor, hence is periodic. It follows by Chacron's theorem that R is a periodic ring; and since $N=\{0\}, R$ is a J-ring.

Example 2.12. Let

$$
R=\left\{\left(\begin{array}{ll}
0 & 0 \tag{2.10}\\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\}, \quad 0,1 \in G F(2)
$$

Then R is a normal weakly periodic D^{*}-ring with commuting nilpotents. R is not semiprime since the set of nilpotent elements N is a nonzero nilpotent ideal. This example shows that we cannot drop the hypothesis " R is semiprime" in Theorem 2.11.

In Theorem 2.14 below, we study the structure of a special kind of D^{*}-rings, the class of rings in which every zero divisor is potent. Recall that a ring is semiperfect [2] if and
only if R / J is semisimple (Artinian) and idempotents lift modulo J. We need the following lemma.

Lemma 2.13. Let R be a ring in which every zero divisor is potent. Then $N=\{0\}$ and R is normal. Moreover, If R is not a domain, then $J=\{0\}$.

Proof. If $a \in N$, then a is a zero divisor and hence potent by hypothesis. So $a^{n}=a$ for some positive integer n, and since $a \in N$, there exists a positive integer k such that $0=$ $a^{n^{k}}=a$. So $N=\{0\}$. Let e be any idempotent element of R and x is any element of R. Then $e x-e x e \in N$, and hence $e x-e x e=0$. Similarly, $x e=e x e$. So $e x=x e$ and R is normal.

Let x be a nonzero divisor of zero. Then $x J$ consists of zero divisors, which are potent. Therefore $x J=\{0\}$. But then J consists of zero divisors, hence potent elements, and therefore $J=\{0\}$.

Theorem 2.14. Let R be a ring such that every zero divisor is potent.
(i) If R is weakly periodic, then every element of R is potent and R is a subdirect sum of fields.
(ii) If R is prime, then R is a domain.
(iii) If R is Artinian, then R is a finite direct product of division rings.
(iv) If R is semiperfect, then R / J is a finite direct product of division rings.

Proof. (i) Since R is weakly periodic, every element $x \in R$ can be written as

$$
\begin{equation*}
x=a+b, \quad \text { where } a \in N, b \text { is potent. } \tag{2.11}
\end{equation*}
$$

But $N=\{0\}$ (Lemma 2.13), so every $x \in R$ is potent and hence R is isomorphic to a subdirect sum of fields by a well-known theorem of Jacobson.
(ii) Suppose R is a prime, then R is a prime ring with $N=\{0\}$, and hence R is a domain.
(iii) Let R be an Artinian ring such that every zero divisor is potent. Since $N=\{0\}$ (Lemma 2.13) and R is Artinian, $J=N=\{0\}$. So R is semisimple Artinian and hence it is isomorphic to a finite direct product $R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is a complete $t_{i} \times t_{i}$ matrix ring over a division ring D_{i}. If $t_{j}>1$, then $E_{11} \in R_{j}$, and $\left(0, \ldots, 0, E_{11}, 0, \ldots, 0\right)$ is an idempotent element of R which is not central in R contradicting Lemma 2.13. So $t_{i}=1$ for every i. Therefore each R_{i} is a division ring and R is isomorphic to a finite direct product of division rings.
(iv) Let R be a semiperfect ring such that every zero divisor is potent. Then R / J is semisimple Artinian and hence it is isomorphic to a finite direct product $R_{1} \times R_{2} \times \cdots \times$ R_{n}, where each R_{i} is a complete $t_{i} \times t_{i}$ matrix ring over a division ring D_{i}. Since R is semiperfect, the idempotents of R / J lift to idempotents in R, and hence the argument of part (iii) above implies that each R_{i} is a division ring and R / J is isomorphic to a finite direct product of division rings.

Acknowledgment

We wish to express our indebtedness and gratitude to the referee for the helpful suggestions and valuable comments.

6 Structure of rings with certain conditions on zero divisors

References

[1] H. Abu-Khuzam, H. E. Bell, and A. Yaqub, Structure of rings with a condition on zero divisors, Scientiae Mathematicae Japonicae 54 (2001), no. 2, 219-224.
[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, vol. 13, Springer, New York, 1974.
[3] H. E. Bell, Some commutativity results for periodic rings, Acta Mathematica Academiae Scientiarum Hungaricae 28 (1976), no. 3-4, 279-283.
[4] , A commutativity study for periodic rings, Pacific Journal of Mathematics 70 (1977), no. 1, 29-36.
[5] J. Grosen, H. Tominaga, and A. Yaqub, On weakly periodic rings, periodic rings and commutativity theorems, Mathematical Journal of Okayama University 32 (1990), 77-81.
[6] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Annals of Mathematics 46 (1945), 695-707.
[7] H. Tominaga and A. Yaqub, Some commutativity conditions for left s-unital rings satisfying certain polynomial identities, Results in Mathematics 6 (1983), no. 2, 217-219.

Hazar Abu-Khuzam: Department of Mathematics, American University of Beirut, Beirut 1107 2020, Lebanon
E-mail address: hazar@aub.edu.lb
Adil Yaqub: Department of Mathematics, University of California, Santa Barbara, CA 93106-3080, USA
E-mail address: yaqub@math.ucsb.edu

