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A partial algebra �= (A; ( f Ai )i∈I) consists of a set A and an indexed set ( f Ai )i∈I of partial
operations f Ai : Ani �→ A. Partial operations occur in the algebraic description of partial
recursive functions and Turing machines. A pair of terms p ≈ q over the partial algebra �
is said to be a strong identity in � if the right-hand side is defined whenever the left-hand
side is defined and vice versa, and both are equal. A strong identity p ≈ q is called a strong
hyperidentity if when the operation symbols occurring in p and q are replaced by terms
of the same arity, the identity which arises is satisfied as a strong identity. If every strong
identity in a strong variety of partial algebras is satisfied as a strong hyperidentity, the
strong variety is called solid. In this paper, we consider the other extreme, the case when
the set of all strong identities of a strong variety of partial algebras is invariant only under
the identical replacement of operation symbols by terms. This leads to the concepts of
unsolid and fluid varieties and some generalizations.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let Pn(A) := { f : An �→ A} be the set of all n-ary partial operations defined on the set
A and let P(A) :=⋃∞n=1P

n(A) be the set of all partial operations on A. A partial algebra
� = (A; ( f Ai )i∈I) of type τ = (ni)i∈I is a pair consisting of a set A and an indexed set
( f Ai )i∈I of partial operations where f Ai is ni-ary. Let PAlg(τ) be the class of all partial
algebras of type τ. Let Xn := {x1, . . . ,xn} be a finite alphabet and let X := {x1, . . . ,xn, . . .}
be a countable infinite alphabet. Let Wτ(Xn) be the set of all n-ary terms of type τ and let
Wτ(Xn)� be the set of all n-ary induced term operations on the partial algebra � (see,
e.g., [3]). Since in general the setWτ(Xn)� is different from the set of all partial operations
generated by { f �

i | i∈ I}we need a new definition of terms over partial algebras of type τ.
Let { fi | i ∈ I} be a set of operation symbols of type τ, where each fi has an arity ni

and X ∩{ fi | i∈ I} =∅. We need additional symbols εkj �∈ X , for every k ∈N+ :=N \ {0}
and 1≤ j ≤ k. The set of n-ary C-terms of type τ over Xn, for short we will speak of n-ary
terms, is defined inductively as follows (see [1]).
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2 Unsolid and fluid strong varieties of partial algebras

(i) Every xi ∈ Xn is an n-ary term of type τ.
(ii) If w1, . . . ,wk are n-ary terms of type τ, then εkj (w1, . . . ,wk) is an n-ary term of type

τ for all 1≤ j ≤ k and all k ∈N+.
(iii) If w1, . . . ,wn are n-ary terms of type τ and if fi is an ni-ary operation symbol, then

fi(w1, . . . ,wni) is an n-ary term of type τ.
Let WC

τ (Xn) be the set of all n-ary terms of type τ defined in this way. Then WC
τ (X) :=

⋃∞
n=1W

C
τ (Xn) denotes the set of all terms of this type. Note that here the use of the super-

script C will distinguish these sets from the analogous ones in the total case. The letter C
was used since Craig [4, 5] suggested the addition of the extra constant term εkj . The main
reason to introduce C-terms is connected with induced term operations which we want
to define now.

Every n-ary term w ∈WC
τ (Xn) induces an n-ary term operation w� on any partial

algebra �= (A; ( f �
i )i∈I) of type τ. For a1, . . . ,an ∈ A, the value w�(a1, . . . ,an) is defined

in the following inductive way (see [1]).
(i) If w = xi, then w� = x�

i = en,A
i , where en,A

i is as usual the n-ary total projection
on the ith component.

(ii) If w = εkj (w1, . . . ,wk) and we assume that w�
1 , . . . ,w�

k are the term operations in-

duced by the terms w1, . . . ,wk and that the w�
i (a1, . . . ,an) are defined for 1≤ i≤ k,

then w�(a1, . . . ,an) is defined and w�(a1, . . . ,an)=w�
j (a1, . . . ,an).

(iii) Now assume that w = fi(w1, . . . ,wni) where fi is an ni-ary operation symbol, and
assume that the w�

j (a1, . . . ,an) are defined, with values w�
j (a1, . . . ,an)= bj for 1≤

j ≤ ni. If f Ai (b1, . . . ,bni) is defined, then w�(a1, . . . ,an) is defined and w�(a1, . . . ,
an)= f Ai (w�

1 (a1, . . . ,an), . . . ,w�
ni (a1, . . . ,an)).

On the sets WC
τ (Xn) we may introduce the following superposition operations. Let

w1, . . . ,wm be n-ary terms and let t be an m-ary term. Then we define an n-ary term
S
m
n (t,w1, . . . ,wm) inductively by the following steps.

(i) For t = xj , 1≤ j ≤m (m-ary variable), we define

S
m
n

(
xj ,w1, . . . ,wm

)=wj. (1.1)

(ii) For t = εkj (s1, . . . ,sk) we set

S
m
n

(
t,w1, . . . ,wm

)= εkj
(
S
m
n

(
s1,w1, . . . ,wm

)
, . . . ,S

m
n

(
sk,w1, . . . ,wm

))
, (1.2)

where s1, . . . ,sk are m-ary terms, for all k ∈N+ and 1≤ j ≤ k.
(iii) For t = fi(s1, . . . ,sni) we set

S
m
n

(
t,w1, . . . ,wm

)= fi
(
S
m
n

(
s1,w1, . . . ,wm

)
, . . . ,S

m
n

(
sni ,w1, . . . ,wm

))
, (1.3)

where s1, . . . ,sni are m-ary terms.
This defines an operation

S
m
n : WC

τ

(
Xm
)× (WC

τ

(
Xn
))m −→WC

τ

(
Xn
)
, (1.4)

which describes the superposition of terms.
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The term clone of type τ is the heterogeneous algebra

clone τC :=
(
WC

τ

(
Xn
)
;S

m
n ,ekj

)

n,m,k∈N+,1≤ j≤k, (1.5)

where ekj := xj ∈ Xk, 1≤ j ≤ k.
(Since in this paper we will only use C-terms, we will speak of the term clone of type τ

instead of the C-term clone of type τ.)
Superposition can be defined for partial operations on A, as it was done in [8, Section

4.5] for total operations. We define operations Smn : Pm(A)× (Pn(A))m→ Pn(A) by

Smn
(
f A,gA1 , . . . ,gAm

)(
a1, . . . ,an

)
:= f A

(
gA1
(
a1, . . . ,an

)
, . . . ,gAm

(
a1, . . . ,an

))
, (1.6)

for all (a1, . . . ,an) for which gA1 , . . . ,gAm are defined and for which the values b1 = gA1 (a1, . . . ,
an), . . . ,bm = gAm(a1, . . . ,an) form an m-tuple (b1, . . . ,bm) belonging to the domain of f A.

Any subalgebra of the heterogeneous algebra

(
Pn(A);Smn ,en,A

i

)

n,m∈N+,1≤i≤n (1.7)

is called a partial clone on A.
We note that only the use of C-terms guarantees that the set of all term operations

over the partial algebra �= (A; ( f Ai )i∈I) is equal to the partial clone generated by the set
{ f Ai |i∈ I} of fundamental operations of �.

2. Regular hypersubstitutions and M-solid strong varieties

In this section we recall some basis facts about regular hypersubstitutions, strong hyperi-
dentities and solid varieties of partial algebras. For more details see [3, 6, 7].

Definition 2.1 (see [11]). Let { fi | i ∈ I} be a set of operation symbols of type τ and let
WC

τ (X) be the set of all terms of this type. A mapping σ : { fi | i ∈ I} →WC
τ (X) which

maps each ni-ary fundamental operation fi to a term of arity ni is called a hypersubstitu-
tion of type τ. (Again one speaks of hypersubstitution of type τ instead of C-hypersubsti-
tution of type τ.)

Any hypersubstitution σ of type τ can be extended to a map σ̂ : WC
τ (X) →WC

τ (X)
defined for all terms, in the following way:

(i) σ̂[xi]= xi for every xi ∈ Xn,

(ii) σ̂[εkj (s1, . . . ,sk)]= S
k
n(εkj (x1, . . . ,xk), σ̂[s1], . . . , σ̂[sk]), where s1, . . . ,sk ∈WC

τ (Xn),

(iii) σ̂[ fi(t1, . . . , tni)]= S
ni
n (σ( fi), σ̂[t1], . . . , σ̂[tni]), where t1, . . . , tni ∈WC

τ (Xn).
As Welke proved in [11], a necessary condition for σ̂[s]≈ σ̂[t] to be a strong identity in a
partial algebra � whenever s≈ t is a strong identity in � is that σ is regular.

So to define strong hyperidentities we will consider only regular hypersubstitutions.
Let Var(t) be the set of all variables occurring in the term t.

Definition 2.2 (see [9]). The hypersubstitution σ is called regular if Var(σ( fi))= {x1, . . . ,
xni}, for all i∈ I .
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Let HypC
R(τ) be the set of all regular hypersubstitutions of type τ.

Lemma 2.3 (see [11]). Let σ1,σ2 ∈HypC
R(τ). Then (σ̂2 ◦ σ1)̂ = σ̂2 ◦ σ̂1, where ◦ is the usual

composition of functions.

Now we define a product of hypersubstitutions in the usual way by σ1 ◦h σ2 := σ̂1 ◦ σ2

and obtain the following.

Theorem 2.4 (see [11]). The algebra (HypC
R(τ);◦h,σid) with σid( fi) = fi(x1, . . . ,xni) is

a monoid.

Let �= (A; ( f �
i )i∈I) be a partial algebra of type τ = (ni)i∈I , and let σ ∈HypC

R(τ). We
want to consider the derived algebra σ(�) = (A; (σ( fi)�)i∈I), where σ( fi)� is the term
operation induced by the term σ( fi) on the algebra �.

Lemma 2.5 (see [11]). Let σ be a regular hypersubstitution of type τ and let σ(�) =
(A; (σ( fi)�)i∈I). For a term t ∈WC

τ (X), denote by tσ(�) the term operation induced by t
in the algebra σ(�), and by σ̂[t]� the term operation induced by σ̂[t] in the algebra �.
Then for every term t ∈WC

τ (X),

σ̂[t]� = tσ(�). (2.1)

Lemma 2.6. Let σ1,σ2 ∈HypC
R(τ) and �∈ PAlg(τ). Then σ1(σ2(�))= (σ2 ◦h σ1)(�).

Proof. We have

σ1
(
σ2(�)

)=
(
A;
(
f σ1(σ2(�))
i

)

i∈I

)

=
(
A;
(
σ1
(
fi
)σ2(�)

)

i∈I

)
by Lemma 2.5

=
(
A;
(
σ̂2
[
σ1
(
fi
)]�

)

i∈I

)
by Lemma 2.5

=
(
A;
((
σ2 ◦h σ1

)(
fi
)�
)

i∈I

)

= (σ2 ◦h σ1
)(

�
)
.

(2.2)

�

(Remark that for the fundamental operations of the derived algebra σ(�) we have

f σ(�)
i =σ( fi)�. For σ1(σ2(�)) this gives f σ1(σ2(�))

i =σ1( fi)σ2(�)= σ̂2[σ1( fi)]� by Lemma 2.5.)

Definition 2.7 (see [10]). A pair t1 ≈ t2 ∈WC
τ (X)2 is called a strong identity in a partial

algebra � (in symbols � |=s t1 ≈ t2) if and only if t�1 is defined whenever t�2 is defined
and conversely and t�1 = t�2 on the common domain, that is, the induced partial term
operations t�1 and t�2 are equal.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ⊆WC
τ (X)2. Consider the

connection between PAlg(τ) and WC
τ (X)2 given by the following two operators:

Ids : �
(
PAlg(τ)

)−→�
(
WC

τ (X)2), Mods : �
(
WC

τ (X)2)−→�
(
PAlg(τ)

)
(2.3)
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with

Ids K :=
{

s≈ t ∈WC
τ (X)2 | ∀�∈ K

(

� |=
s
s≈ t

)}

,

ModsΣ :=
{

�∈ PAlg(τ) | ∀s≈ t ∈ Σ
(

� |=
s
s≈ t

)}

.

(2.4)

Clearly, the pair (Mods, Ids) is a Galois connection between PAlg(τ) and WC
τ (X)2. We

have two closure operators Mods Ids and Ids Mods and their sets of fixed points.

Definition 2.8. Let V ⊆ PAlg(τ) be a class of partial algebras of type τ. The class V is
called a strong variety of partial algebras if V =Mods Ids V .

Definition 2.9. Let � be a partial algebra of type τ and let M be a submonoid of the
monoid HypC

R(τ). Then, define

χAM : �
(
PAlg(τ)

)−→�
(
PAlg(τ)

)
, χEM : �

(
WC

τ (X)2)−→�
(
WC

τ (X)2) (2.5)

by

χAM(�) := {σ(�) | σ ∈M
}

,

χEM[s≈ t] := {σ̂[s]≈ σ̂[t] | σ ∈M
}
.

(2.6)

For K ⊆ PAlg(τ) a class of partial algebras of type τ and for Σ ⊆WC
τ (X)2 we define

χAM(K) :=⋃�∈K χAM(�) and χEM[Σ] :=⋃s≈t∈Σ χEM[s≈ t].

Proposition 2.10. Let �∈ PAlg(τ) and s≈ t ∈WC
τ (X)2. Then

χAM(�)|=
s
s≈ t iff � |=

s
χEM[s≈ t]. (2.7)

Proof. We have

χAM(�)|=
s
s≈ t⇐⇒∀σ ∈M

(
σ(�)|=

s
s≈ t

)

⇐⇒∀σ ∈M
(
sσ(�) = tσ(�))

⇐⇒∀σ ∈M
(
σ̂[s]� = σ̂[t]�)

⇐⇒∀σ ∈M
(

� |=
s
σ̂[s]≈ σ̂[t]

)

⇐⇒� |=
s
χEM[s≈ t].

(2.8)

�

Definition 2.11. Let V be a strong variety of partial algebras of type τ. Then V is said to
be M-solid if χAM(V)=V .

If M =HypC
R(τ), then V is called solid.
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3. V -proper hypersubstitutions

Now we consider regular hypersubstitutions which preserve all strong identities of a
strong variety of partial algebras.

Definition 3.1. Let V be a strong variety of partial algebras of type τ. A regular hypersub-
stitution σ ∈HypC

R(τ) is called a V-proper hypersubstitution if for every s≈ t ∈ Ids V one
gets σ̂[s]≈ σ̂[t]∈ Ids V .

We use P(V) for the set of all V-proper hypersubstitutions of type τ.

Proposition 3.2. The algebra (P(V);◦h,σid) is a submonoid of (HypC
R(τ);◦h,σid).

Proof. Clearly, σid ∈ P(V). If σ1,σ2 ∈ P(V), then for every s ≈ t ∈ Ids V we have σ̂2[s] ≈
σ̂2[t] ∈ Ids V and σ̂1[σ̂2[s]] ≈ σ̂1[σ̂2[t]] ∈ Ids V . This means that (σ̂1 ◦ σ̂2)[s] ≈
(σ̂1 ◦ σ̂2)[t] ∈ Ids V and we get that (σ1 ◦h σ2)̂ [s] ≈ (σ1 ◦h σ2)̂ [t] ∈ Ids V . Therefore σ1 ◦h
σ2 ∈ P(V), and we have that P(V) is a submonoid of �ypcR(τ). �

Definition 3.3. Let V be a strong variety of partial algebras of type τ. Two regular hyper-
substitutions σ1,σ2 ∈HypC

R(τ) are called V-equivalent if and only if σ1( fi)≈ σ2( fi)∈ Ids V
for all i∈ I . In this case we write σ1 ∼V σ2.

Theorem 3.4. Let V be a strong variety of partial algebras of type τ, and let σ1,σ2 ∈
HypC

R(τ). Then the following are equivalent:
(i) σ1 ∼V σ2;

(ii) for all t ∈WC
τ (X) the equation σ̂1[t]≈ σ̂2[t] is an identity from Ids V ;

(iii) for all �∈V , σ1(�)= σ2(�).

Proof. (i)⇒(ii). We will give a proof by induction on the complexity of the term t.
(1) If t = xi ∈ X , then σ̂1[xi]= xi ≈ xi = σ̂2[xi]∈ Ids V .
(2) If t = εkj (t1, . . . , tk) and if we assume that σ̂1[ti]≈ σ̂2[ti]∈ Ids V for all 1≤ i≤ k (i.e.,

σ̂1[ti]�|D = σ̂2[ti]�|D for all �∈ V where D is the intersection of all domains of σ̂1[ti]�

and σ̂2[ti]�; 1≤ i≤ k), then

σ̂1

[
εkj
(
t1, . . . , tk

)]�∣∣
∣
D
= S

k
n

(
εkj
(
x1, . . . ,xk

)
, σ̂1
[
t1
]
, . . . , σ̂1

[
tk
])�∣∣

∣
D

= εkj
(
S
k
n

(
x1, σ̂1

[
t1
]
, . . . , σ̂1

[
tk
])

, . . . ,S
k
n

(
xk, σ̂1

[
t1
]
, . . . , σ̂1

[
tk
]))�∣∣

∣
D

= εkj
(
σ̂1
[
t1
]
, . . . , σ̂1

[
tk
])�

∣
∣
∣
D
= σ̂1

[
t j
]�∣∣

D

= σ̂2
[
t j
]�∣∣

D = εkj
(
σ̂2
[
t1
]
, . . . , σ̂2

[
tk
])�∣∣

D

= εkj
(
S
k
n

(
x1, σ̂2

[
t1
]
, . . . , σ̂2

[
tk
])

, . . . ,S
k
n

(
xk, σ̂2

[
t1
]
, . . . , σ̂2

[
tk
]))�∣∣

∣
D

= S
k
n

(
εkj
(
x1, . . . ,xk

)
, σ̂2
[
t1
]
, . . . , σ̂2

[
tk
])�∣∣

∣
D
= σ̂2

[
εkj
(
t1, . . . , tk

)]�∣∣
∣
D
.

(3.1)

(3) If t = fi(t1, . . . , tni) and if we assume that σ̂1[t j] ≈ σ̂2[t j] ∈ Ids V for all 1 ≤ j ≤ ni
(i.e., σ̂1[t j]�|D = σ̂2[t j]�|D for all � ∈ V where D is the intersection of all domains of
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σ̂1[t j]� and σ̂2[t j]�; 1≤ j ≤ ni), then

σ̂1
[
fi
(
t1, . . . , tni

)]�∣∣
D = Sni,�n

(
σ1
(
fi
)�

, σ̂1
[
t1
]�

, . . . , σ̂1
[
tni
]�
)∣
∣
∣
D

= Sni,�n

(
σ1
(
fi
)�

, σ̂1
[
t1
]�∣∣

D, . . . , σ̂1
[
tni
]�∣∣

D

)

= Sni,�n

(
σ1
(
fi
)�

, σ̂2
[
t1
]�∣∣

D, . . . , σ̂2
[
tni
]�∣∣

D

)

= Sni,�n

(
σ2
(
fi
)�

, σ̂2
[
t1
]�∣∣

D, . . . , σ̂2
[
tni
]�∣∣

D

)

= Sni,�n

(
σ2
(
fi
)�

, σ̂2
[
t1
]�

, . . . , σ̂2
[
tni
]�
)∣
∣
D = σ̂2

[
fi
(
t1, . . . , tni

)]�∣∣
D.

(3.2)

If σ̂1[t j]�|D is not in the domain of σ1( fi)�, then both sides are not defined.
(ii)⇒(iii). We consider the term t = fi(x1, . . . ,xni) for i ∈ I . Then σ̂1[ fi(x1, . . . ,xni)] ≈

σ̂2[ fi(x1, . . . ,xni)]∈ Ids� for all �∈V by (ii) and we get σ̂1[ fi(x1, . . . ,xni)]� = σ̂2[ fi(x1, . . . ,
xni)]� for all i∈ I and all �∈V . Thus σ1(�)= σ2(�).

(iii)⇒(i). Here we have σ̂1[ fi(x1, . . . ,xni)]� = σ̂2[ fi(x1, . . . ,xni)]� for all i∈ I and all �∈
V . Therefore σ1( fi)≈ σ2( fi)∈ Ids� for all �∈V . So, σ1 ∼V σ2. �

Proposition 3.5. Let V be a strong variety of partial algebras of type τ. Then the relation
∼V is a right congruence on HypC

R(τ).

Proof. Let σ1 ∼V σ2 and σ ∈HypC
R(τ). By Theorem 3.4(ii) we have

(
σ1 ◦h σ

)(
fi
)= σ̂1

[
σ
(
fi
)]≈ σ̂2

[
σ
(
fi
)]= (σ2 ◦h σ

)(
fi
)∈ Ids V. (3.3)

So, σ1 ◦h σ ∼V σ2 ◦h σ . This shows that ∼V is a right congruence. �

In general, ∼V is not a left congruence. But if V is solid, then it is a congruence.

Proposition 3.6. Let V be a strong variety of partial algebras of type τ. If σ1 ∼V σ2 and
σ̂1[s]≈ σ̂1[t]∈ Ids V , then σ̂2[s]≈ σ̂2[t]∈ Ids V when σ1,σ2 ∈HypC

R(τ) and s, t ∈WC
τ (X).

Proof. Assume that σ1 ∼V σ2 and σ̂1[s]≈ σ̂1[t]∈ Ids V . By Theorem 3.4, we have σ̂1[s]≈
σ̂2[s]∈ Ids V and σ̂1[t]≈ σ̂2[t]∈ Ids V . Thus σ̂2[s]≈ σ̂2[t]∈ Ids V . �

As a corollary we get the following.

Corollary 3.7. The set P(V) is a union of equivalence classes with respect to ∼V .

Now we consider the equivalence class of the identity hypersubstitution.

Definition 3.8. A regular hypersubstitution σ ∈HypC
R(τ) is called an inner hypersubstitu-

tion of a strong variety V of partial algebras of type τ if for every i∈ I ,

σ̂
[
fi
(
x1, . . . ,xni

)]≈ fi
(
x1, . . . ,xni

)∈ Ids V. (3.4)

Let P0(V) be the set of all inner hypersubstitutions of V .
By definition, P0(V) is the equivalence class [σid]

∼V .
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Proposition 3.9. If σ ∈ P0(V), then σ̂[t]≈ t ∈ Ids V for t ∈WC
τ (X).

Proof. We will give a proof by induction on the complexity of the term t.
(i) If t = xi ∈ X , then σ̂[t]= xi ≈ xi = t ∈ Ids V .
(ii) If t = εkj (t1, . . . , tk) and if we assume that σ̂[ti] ≈ ti ∈ Ids V for all 1 ≤ i ≤ k (i.e.,

σ̂[ti]�|D = t�i |D for all �∈V where D is the intersection of all domains of σ̂[ti]� and t�i ;
1≤ i≤ k), then

σ̂
[
εkj
(
t1, . . . , tk

)]�∣∣
∣
D
= S

k
n

(
εkj
(
x1, . . . ,xk

)
, σ̂
[
t1
]
, . . . , σ̂

[
tk
])�∣∣

∣
D

= εkj
(
S
k
n

(
x1, σ̂

[
t1
]
, . . . , σ̂

[
tk
])

, . . . ,S
k
n

(
xk, σ̂

[
t1
]
, . . . , σ̂

[
tk
]))�∣∣

∣
D

= εkj
(
σ̂
[
t1
]
, . . . , σ̂

[
tk
])�∣∣

D = σ̂
[
t j
]�∣∣

D = t�j |D

= εkj
(
t1, . . . , tk

)�∣∣
D = t�|D.

(3.5)

(iii) If t = fi(t1, . . . , tni) and if we assume that σ̂[t j] ≈ t j ∈ Ids V for all 1 ≤ j ≤ ni (i.e.,
σ̂[t j]�|D = t�j |D for all � ∈ V where D is the intersection of all domains of σ̂[t j]� and

t�j ; 1≤ j ≤ ni), then

σ̂
[
fi
(
t1, . . . , tni

)]�∣∣
D = Sni,�n

(
σ
(
fi
)�

, σ̂
[
t1
]�

, . . . , σ̂
[
tni
]�
)∣
∣
∣
D

= Sni,�n

(
σ
(
fi
)�

, σ̂
[
t1
]�∣∣

D, . . . , σ̂
[
tni
]�∣∣

D

)

= Sni,�n

(
σ
(
fi
)�

, t�1
∣
∣
D, . . . , t�ni

∣
∣
D

)

= Sni,�n

(
f Ai , t�1

∣
∣
D, . . . , t�ni

∣
∣
D

)
by σ ∈ P0(V)

= Sni,�n

(
f Ai , t�1 , . . . , t�ni

)∣
∣
D = fi

(
t1, . . . , tni

)�∣∣
D.

(3.6)

If σ̂[t j]�|D is not in the domain of σ( fi)�, then both sides are not defined. �

Proposition 3.10. The algebra (P0(V);◦h,σid) is a submonoid of (P(V);◦h,σid).

Proof. Clearly, σid ∈ P0(V). Assume that σ1,σ2 ∈ P0(V). Then

(
σ1 ◦h σ2

)
̂
[
fi
(
x1, . . . ,xni

)]= σ̂1
[
σ̂2
[
fi
(
x1, . . . ,xni

)]]

≈ σ̂1
[
fi
(
x1, . . . ,xni

)]
by Proposition 3.9

≈ fi
(
x1, . . . ,xni

)
by Proposition 3.9

∈ Ids V.

(3.7)
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Therefore σ1 ◦h σ2 ∈ P0(V). Thus P0(V) is a monoid. By Proposition 3.9, we have
P0(V)⊆ P(V). So, the algebra (P0(V);◦h,σid) is a submonoid of (P(V);◦h,σid). �

Now we show that the compatibility condition from the definition of a closed homo-
morphism for partial algebras (see [2]) transfers from fundamental operations to arbi-
trary term operations.

Lemma 3.11. Let �∈ PAlg(τ) and let t� be the n-ary term operation on A induced by the
n-ary term t ∈WC

τ (X). If � ∈ PAlg(τ) and if ϕ : �→� is a surjective closed homomor-
phism, then for all a1, . . . ,an ∈ A,

ϕ
(
t�
(
a1, . . . ,an

))= t�
(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))
. (3.8)

Proof. We will give a proof by induction on the complexity of the term t.
(i) If t = xi ∈ Xn, then t� = x�

i = en,A
i and t� = x�

i = en,B
i . We get dom t� = An and

dom t� = Bn. Since ϕ is a surjective, we have

(
a1, . . . ,an

)∈ dom t� ⇐⇒ (ϕ(a1
)
, . . . ,ϕ

(
an
))∈ dom t�,

ϕ
(
t�
(
a1, . . . ,an

))= ϕ
(
en,A
i

(
a1, . . . ,an

))= ϕ
(
ai
)

= en,B
i

(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))

= t�
(
ϕ
(
a1), . . . ,ϕ

(
an
))
.

(3.9)

(ii) If t = εkj (t1, . . . , tk) and if we assume that

(
a1, . . . ,an

)∈ dom t�i ⇐⇒
(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))∈ dom t�i (3.10)

and ϕ(t�i (a1, . . . ,an))= t�i (ϕ(a1), . . . , (an)) for all 1≤ i≤ k, then

(
a1, . . . ,an

)∈ dom t� ⇐⇒ (a1, . . . ,an
)∈ domεkj

(
t1, . . . , tk

)�

⇐⇒ (a1, . . . ,an
)∈ dom t�j

⇐⇒ (ϕ(a1
)
, . . . ,ϕ

(
an
))∈ dom t�j

⇐⇒ (ϕ(a1
)
, . . . ,ϕ

(
an
))∈ domεkj

(
t1, . . . , tk

)�

⇐⇒ (ϕ(a1
)
, . . . ,ϕ

(
an
))∈ dom t�,

ϕ
(
t�
(
a1, . . . ,an

))= ϕ
(
εkj
(
t1, . . . , tk

)�(
a1, . . . ,an

))

= ϕ
(
t�j
(
a1, . . . ,an

))= t�j
(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))

= εkj
(
t1, . . . , tk

)�(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))= t�

(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))
.

(3.11)
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(iii) If t = fi(t1, . . . , tni) and if we assume that (a1, . . . ,an) ∈ dom t�j if and only if

(ϕ(a1), . . . ,ϕ(an)) ∈ dom t�j and ϕ(t�j (a1, . . . ,an)) = t�j (ϕ(a1), . . . , (an)) for all 1 ≤ j ≤ ni,
then

(
a1, . . . ,an

)∈ dom t� ⇐⇒ (a1, . . . ,an
)∈

ni⋂

i=1

dom t�i ,

t�i
(
a1, . . . ,an

)= bi
(
i= 1, . . . ,ni

)
,

(
b1, . . . ,bni

)∈ dom f Ai

(3.12)

and we get t�(a1, . . . ,an)= f Ai (b1, . . . ,bni).
By assumption, (a1, . . . ,an)∈⋂ni

i=1 dom t�i if and only if (ϕ(a1), . . . ,ϕ(an))∈⋂ni
i=1 dom t�i

and ϕ(t�i (a1, . . . ,an))= ϕ(bi)= t�i (ϕ(a1), . . . ,ϕ(an)); i= 1, . . . ,ni.
Since ϕ is a closed homomorphism, we get

(
b1, . . . ,bni

)∈ dom f Ai ⇐⇒
(
ϕ
(
b1
)
, . . . ,ϕ

(
bni
))∈ dom f Bi . (3.13)

From (ϕ(a1), . . . ,ϕ(an))∈⋂ni
i=1 dom t�i and t�i (ϕ(a1), . . . ,ϕ(an))= ϕ(bi) (i= 1, . . . ,ni) and

(ϕ(b1), . . . ,ϕ(bni))∈ dom f Bi we get (ϕ(a1), . . . ,ϕ(an))∈ dom fi(t1, . . . , tni)
�.

Therefore,

(
a1, . . . ,an

)∈ dom t� ⇐⇒ (ϕ(a1), . . . ,ϕ
(
an
))∈ dom t�,

ϕ
(
t�
(
a1, . . . ,an

))= ϕ
(
f Ai
(
b1, . . . ,bni

))

= f Bi
(
ϕ
(
b1
)
, . . . ,ϕ

(
bni
))

= t�
(
ϕ
(
a1
)
, . . . ,ϕ

(
an
))
.

(3.14)

�

Lemma 3.12. Let �,� ∈ PAlg(τ) and σ ∈ HypC
R(τ). If h : � →� is a surjective closed

homomorphism, then h : σ(�)→ σ(�) is a closed homomorphism.

Proof. From Lemma 3.11, for the term σ( fi) we have h( f σ(�)
i (a1, . . . ,an))= h(σ( fi)�(a1,

. . . ,an)) = σ( fi)�(h(a1), . . . ,h(an)) = f σ(�)
i (h(a1), . . . ,h(an)). This shows that h : σ(�)→

σ(�) is a closed homomorphism. �

Lemma 3.13. Let �,�∈ PAlg(τ) and σ ∈HypC
R(τ). If f : �→� is an isomorphism, then

f is also an isomorphism from σ(�) to σ(�).

Proof. Since f : �→� is bijective, the mapping f : σ(�)→ σ(�) is also bijective because
partial algebras and their derived algebras have the same universes and by Lemma 3.12,
we have σ(�)∼= σ(�). �
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Definition 3.14. LetV be a strong variety of partial algebras of type τ and σ1,σ2∈HypC
R(τ).

Then, define

σ1 ∼V−iso σ2 iff σ1(�)∼= σ2(�)∀�∈V. (3.15)

Clearly, ∼V⊆∼V−iso. If V = PAlg(τ), then, use ∼iso instead of ∼PAlg(τ)−iso.

Proposition 3.15. Let V be a strong variety of partial algebras of type τ. Then
(i) the relation ∼V−iso is a right congruence on HypC

R(τ);
(ii) if V is a solid variety, then ∼V−iso is a congruence on HypC

R(τ).

Proof. (i) Let σ1 ∼V−iso σ2 and σ ∈ HypC
R(τ). Then σ1(�) ∼= σ2(�) and σ(σ1(�)) ∼=

σ(σ2(�)) for all �∈V by Lemma 3.13. We have

(
σ1 ◦h σ

)
(�)= σ

(
σ1(�)

)∼= σ
(
σ2(�)

)= (σ2 ◦h σ
)
(�). (3.16)

So, σ1 ◦h σ ∼V−iso σ2 ◦h σ. This shows that ∼V−iso is a right congruence.
(ii) Assume that V is solid. Then σ(�)∈ V for all σ ∈HypC

R(τ) for �∈ V . σ1 ∼V−iso

σ2 implies that σ1(σ(�))∼= σ2(σ(�)) for all �∈V . We have

(
σ ◦h σ1

)
(�)= σ1

(
σ(�)

)∼= σ2
(
σ(�)

)= (σ ◦h σ2
)
(�). (3.17)

So, σ ◦h σ1 ∼V−iso σ ◦h σ2. This shows that ∼V−iso is a left congruence and (i) shows that it
is a congruence. �

Proposition 3.16. If V = PAlg(τ), then ∼iso is a congruence on HypC
R(τ).

Proof. Since V = PAlg(τ) is a solid variety, the claim follows from Proposition 3.15(ii).
�

Proposition 3.17. The equivalence class PV−iso
0 (V) = [σid]

∼V−iso is the submonoid of
(HypC

R(τ);◦h,σid).

Proof. Clearly, σid ∈ PV−iso
0 (V). Next, we will show that PV−iso

0 (V) is closed under the
operation ◦h. Let σ1,σ2 ∈ PV−iso

0 (V). Then σ1 ∼V−iso σid and σ2 ∼V−iso σid implies that
σ1(�)∼=� and σ2(�)∼=� for all �∈V .

We have
(
σ1 ◦h σ2

)
(�)= σ2

(
σ1(�)

)
by Lemma 2.6

∼= σ2(�) by σ1 ∈ PV−iso
0 (V)

∼=� by σ2 ∈ PV−iso
0 (V).

(3.18)

Then (σ1 ◦h σ2) ∼V−iso σid. Therefore σ1 ◦h σ2 ∈ PV−iso
0 (V). So, PV−iso

0 (V) is a submonoid
of �ypCR(τ). �

Proposition 3.18. Let V be a strong variety of partial algebras of type τ, s ≈ t ∈ Ids V
for s, t ∈WC

τ (Xn) and let σ1,σ2 ∈HypC
R(τ). If σ1 ∼V−iso σ2 and σ̂1[s]≈ σ̂1[t]∈ Ids V , then

σ̂2[s]≈ σ̂2[t]∈ Ids V .
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Proof. Assume that σ1 ∼V−iso σ2 and σ̂1[s] ≈ σ̂1[t] ∈ Ids V . Then σ1(�) ∼= σ2(�) for all
� ∈ V . We get that there is an isomorphism ϕ from σ1(�) to σ2(�). Let b1, . . . ,bn ∈ A.
Then there are elements a1, . . . ,an ∈ A such that ϕ(a1)= b1, . . . ,ϕ(an)= bn.

We have

dom(σ̂2[s]�)= {(b1, . . . ,bn
) | σ̂2[s]�(b1, . . . ,bn

)∃}

= {(b1, . . . ,bn
) | σ̂2[s]�(ϕ

(
a1
)
, . . . ,ϕ

(
an
))∃}

= {(b1, . . . ,bn
) | ϕ(σ̂1[s]�(a1, . . . ,an

))∃}

since ϕ is an isomorphism from σ1(�) to σ2(�)

= {(b1, . . . ,bn
) | ϕ(σ̂1[t]�(a1, . . . ,an

))∃}

since σ̂1[s]≈ σ̂1[t]∈ Ids� ∀�∈V

= {(b1, . . . ,bn
) | σ̂2[t]�(ϕ

(
a1
)
, . . . ,ϕ

(
an
))∃}

= {(b1, . . . ,bn
) | σ̂2[t]�(b1, . . . ,bn

)∃}= dom
(
σ̂2[t]�),

σ̂2[s]�(b1, . . . ,bn
)= σ̂2[s]�(ϕ

(
a1
)
, . . . ,ϕ

(
an
))= ϕ

(
σ̂1[s]�(a1, . . . ,an

))

= ϕ
(
σ̂1[t]�(a1, . . . ,an

))= σ̂2[t]�(ϕ
(
a1
)
, . . . ,ϕ

(
an
))

= σ̂2[t]�(b1, . . . ,bn
)
.

(3.19)

Then σ̂2[s]≈ σ̂2[t]∈ Ids� for all �∈V . So, σ̂2[s]≈ σ̂2[t]∈ Ids V . �

As a corollary we get the following.

Corollary 3.19. The set P(V) is a union of equivalence classes with respect to ∼V−iso.

Remark 3.20. P0(V)⊆ PV−iso
0 (V)⊆ P(V).

4. Unsolid and fluid strong varieties

For a solid strong variety every strong identity is closed under all hypersubstitutions. At
the other extreme is the case where the strong identities are closed only under the identity
hypersubstitution.

Definition 4.1. A strong variety V of partial algebras of type τ is said to be unsolid if
P(V)= P0(V) and V is said to be completely unsolid if P(V)= P0(V)= {σid}.
Definition 4.2. A strong variety V of partial algebras of type τ is said to be iso-unsolid if
P(V)= PV−iso

0 (V) and V is said to be completely iso-unsolid if P(V)= PV−iso
0 (V)= {σid}.

Proposition 4.3. Let V be a strong variety of partial algebras of type τ. Then
(i) if V is unsolid, then V is iso-unsolid;

(ii) V is completely unsolid if and only if V is completely iso-unsolid.
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Proof. (i) The claim follows from the definitions and Remark 3.20.
(ii) If V is completely unsolid, then V is completely iso-unsolid by Remark 3.20. Con-

versely, assume that V is completely iso-unsolid. Then P(V) = PV−iso
0 (V) = {σid}. Since

P0(V)⊆ P(V) and P(V) �= ∅, we get P0(V)= {σid}. So, V is completely unsolid. �

Definition 4.4. A strong varietyV of partial algebras of type τ is said to be fluid if, for every
partial algebra �∈V and every regular hypersubstitution σ ∈HypC

R(τ), there holds

σ(�)∈V =⇒ σ(�)∼=�. (4.1)

We denote by σ(V) the class of all algebras σ(�) with �∈V . As an easy consequence
of the definition we have the following result.

Proposition 4.5. If a strong variety V of partial algebras of type τ is fluid, then for every
regular hypersubstitution σ ∈HypC

R(τ), there holds

σ(V)⊆V =⇒∀�∈V
(
σ(�)∼=�

)
. (4.2)

Proposition 4.6. Let V be a strong variety of partial algebras of type τ. Then for all σ ∈
HypC

R(τ), σ(V)⊆V if and only if σ ∈ P(V).

Proof. Assume that σ(V) ⊆ V . Let s ≈ t ∈ Ids V . Then Ids V ⊆ Ids σ(V) and we have s ≈
t ∈ Ids σ(V). So, σ̂[s]≈ σ̂[t]∈ Ids V by Proposition 2.10. Therefore σ ∈ P(V). Conversely,
we assume that σ ∈ P(V). Let � ∈ σ(V) and s ≈ t ∈ Ids V . Then σ̂[s] ≈ σ̂[t] ∈ Ids V by
σ ∈ P(V) and s≈ t ∈ Ids σ(V) by Proposition 2.10. Since �∈ σ(V) we have s≈ t ∈ Ids�
and �∈V . So, σ(V)⊆V . �

This shows that if a strong variety V of partial algebras of type τ is fluid, then for every
regular hypersubstitution σ ∈HypC

R(τ), there holds

σ ∈ P(V)=⇒∀�∈V
(
σ(�)∼=�

)
. (4.3)

Proposition 4.7. Let V be a fluid strong variety of partial algebras of type τ. Then P(V)=
[σid]

∼V−iso .

Proof. Let σ ∈ P(V). Then σ̂[s] ≈ σ̂[t] ∈ Ids V for all s ≈ t ∈ Ids V implies that σ̂[s] ≈
σ̂[t] ∈ Ids� for all � ∈ V . By Proposition 2.10, we have s≈ t ∈ Ids σ(�). So, σ(�) ∈ V
for all �∈V and for all σ ∈HypC

R(τ). SinceV is fluid, we have σ(�)∼=� and this implies
that σ ∼V−iso σid. Therefore σ ∈ [σid]

∼V−iso . Thus P(V)⊆ [σid]
∼V−iso but [σid]

∼V−iso ⊆ P(V).
So, P(V)= [σid]

∼V−iso . �

Proposition 4.8. Let V be solid variety of partial algebras of type τ. Then V is fluid if and
only if P(V)= [σid]

∼V−iso .

Proof. By Proposition 4.7, we have that if V is fluid, then P(V)= [σid]
∼V−iso . Conversely,

we assume that P(V) = [σid]
∼V−iso . Let σ ∈HypC

R(τ). Since V is solid, we get σ(�) ∈ V
for all � ∈ V . Next, we will show that σ ∈ P(V). Suppose that σ �∈ P(V). Then there is
an identity s ≈ t ∈ Ids V such that σ̂[s] ≈ σ̂[t] �∈ Ids V and this implies that there exists
� ∈ V such that σ̂[s] ≈ σ̂[t] �∈ Ids�. By Proposition 2.10, we get s ≈ t �∈ Ids σ(�) and
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σ(�) �∈V which is a contradiction. So, σ ∈ P(V)= [σid]
∼V−iso and σ ∼V−iso σid. Therefore

σ(�)∼=� for all �∈V . Then V is fluid. �

LetV be a fluid strong variety of partial algebras of type τ and assumeW is a subvariety
of V . Clearly, W is also fluid since, for all �∈W ⊆V and σ ∈HypC

R(τ), we have

σ(�)∈W =⇒ σ(�)∼=�. (4.4)

Therefore, we have the following.

Proposition 4.9. Every subvariety of a fluid strong variety of partial algebras of type τ is
fluid.

Definition 4.10. A strong variety V of partial algebras of type τ is strongly fluid if, for
every partial algebra �∈V and every hypersubstitution σ ∈HypC

R(τ), there holds

σ(�)∈V =⇒ σ(�)=�. (4.5)

Remark 4.11. If V is strongly fluid, then V is fluid.

Proposition 4.12. Let V be a strong variety of partial algebras of type τ.
(i) If V is strongly fluid, then for all �∈V , and for all σ ∈ P(V), σ(�)=�.

(ii) If V is strongly fluid, then V is unsolid.

Proof. (i) Assume that V is strongly fluid. Let �∈ V and σ ∈ P(V). By Proposition 4.6,
we get σ(�)∈ σ(V)⊆V . Since V is strongly fluid, we get σ(�)=�.

(ii) Assume that V is strongly fluid. By (i), for all �∈V and for all σ ∈ P(V) we have
σ(�) =� = σid(�) (i.e., σ ∼V σid and σ( fi) ≈ fi(x1, . . . ,xni) ∈ Ids V for all i ∈ I). This
shows that P(V) ⊆ P0(V). But P0(V) ⊆ P(V) and then P(V) = P0(V). So, V is unsolid.

�

Proposition 4.13. If V is a fluid strong variety of partial algebras of type τ and [σid]
∼V =

[σid]
∼V−iso , then V is unsolid.

Proof. Assume that V is fluid and [σid]
∼V = [σid]

∼V−iso . Let σ ∈ P(V). Since V is fluid,
we get σ(�) ∼=� for all � ∈ V (i.e., σ ∼V−iso σid). Therefore σ ∈ [σid]

∼V−iso = [σid]
∼V

(i.e., σ ∼V σid) and we have σ ∈ P0(V). So P(V)⊆ P0(V), but since P0(V)⊆ P(V), then
P(V)= P0(V). Therefore V is unsolid. �

Proposition 4.14. Let V be a strong variety of partial algebras of type τ. Then ∼V |P(V) is
a congruence relation on the algebra (P(V);◦h,σid).

Proof. Let σ1,σ2 ∈ P(V) such that σ1 ∼V |P(V)σ2 and let σ ∈ P(V). Then σ(�)∈V for all
�∈V .

We show that ∼V |P(V) is a right congruence.
σ1 ∼V |P(V)σ2 implies that σ1(�) = σ2(�) for all � ∈ V and we get that σ(σ1(�)) =

σ(σ2(�)) since σ is a function. So, σ1 ◦h σ ∼V σ2 ◦h σ but σ1 ◦h σ ,σ2 ◦h σ ∈ P(V) because
P(V) is a monoid. Therefore σ1 ◦h σ ∼V |P(V)σ2 ◦h σ .

We show that ∼V |P(V) is a left congruence.
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σ(�) ∈ V and σ1 ∼V |P(V)σ2 imply that σ1(σ(�)) = σ2(σ(�)). So, σ ◦h σ1 ∼V σ ◦h σ2

but σ ◦h σ1,σ ◦h σ2 ∈ P(V) because P(V) is a monoid. Therefore σ ◦h σ1 ∼V |P(V)σ ◦h σ2.
So, ∼V |P(V) is a congruence relation. �

Proposition 4.15. Let V be a strong variety of partial algebras of type τ. Then ∼V−iso |P(V)

is a congruence relation on the algebra (P(V);◦h,σid).

Proof. Let σ1,σ2 ∈ P(V) such that σ1 ∼V−iso |P(V)σ2 and let σ ∈ P(V). Then σ(�)∈V for
all �∈V .

We show that ∼V−iso |P(V) is a right congruence.
σ1 ∼V−iso |P(V)σ2 implies that σ1(�)∼= σ2(�) for all �∈V and by Lemma 3.13, we get

that σ(σ1(�)) ∼= σ(σ2(�)). So, σ1 ◦h σ ∼V−iso σ2 ◦h σ but σ1 ◦h σ ,σ2 ◦h σ ∈ P(V) because
P(V) is a monoid. Therefore σ1 ◦h σ ∼V−iso |P(V)σ2 ◦h σ .

We show that ∼V−iso |P(V) is a left congruence.
Since σ(�)∼= σ(�) and σ(�)∈V , then σ1(σ(�))∼= σ2(σ(�)). So, σ ◦h σ1 ∼V−iso σ ◦h

σ2 but σ ◦h σ1,σ ◦h σ2∈ P(V) because P(V) is a monoid. Therefore σ ◦h σ1 ∼V−iso |P(V)σ ◦h
σ2.

So, ∼V−iso |P(V) is a congruence relation. �

5. n-fluid and n-unsolid strong varieties

The concepts of fluid and unsolid strong varieties of partial algebras can be generalized
in the following way.

Definition 5.1. Let 1 ≤ n ∈ N. A strong variety V of partial algebras of type τ is called
n-fluid, if there are σ1, . . . ,σn ∈ P(V) with σi �∼V−iso σj for 1 ≤ i �= j ≤ n such that for all
�∈V and for all σ ∈HypC

R(τ) the following implication holds:
(∗) if σ(�)∈V , then there is a k ∈ {1, . . . ,n} with σ(�)∼= σk(�).

Proposition 5.2. Let V be an n-fluid strong variety of partial algebras of type τ. Then
|P(V)/

∼V−iso|P(V)| ≥ n.

Proof. Since V is n-fluid, there are σ1, . . . ,σn ∈ P(V) with σi �∼V−iso σj for all 1≤ i �= j ≤ n
such that condition (∗) is satisfied. Since [σi]∼V−iso|P(V) ⊆ P(V) for all i∈ {1, . . . ,n}we have
[σ1]

∼V−iso|P(V) ∪···∪ [σn]
∼V−iso|P(V) ⊆ P(V) and |P(V)/

∼V−iso|P(V)| ≥ n. �

Definition 5.3. A strong variety V of partial algebras of type τ is called n-unsolid if and
only if |P(V)/

∼V |P(V)| = n.

By this definition, we have that if V is n-unsolid, then P(V) = [σ1]
∼V |P(V) ∪ ··· ∪

∼V |P(V) . Where σi �∼V σj for all 1 ≤ i �= j ≤ n. But [σi]∼V |P(V) ⊆ [σi]∼V−iso|P(V) ⊆ P(V) for
all i ∈ {1, . . . ,n}. So P(V) = [σ1]

∼V−iso|P(V) ∪ ··· ∪ [σn]
∼V−iso|P(V) . We have that if V is n-

unsolid, then P(V)= [σ1]
∼V |P(V) ∪···∪ [σn]

∼V |P(V) = [σ1]
∼V−iso|P(V) ∪···∪ [σn]

∼V−iso|P(V) .
The following concept generalizes that of an n-fluid variety.

Proposition 5.4. Let 1≤ n∈N and let V be a strong variety of partial algebras of type τ
with ∼V |P(V) =∼V−iso |P(V). If V is n-fluid, then V is k-unsolid for k ≥ n.
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Proof. Assume that V is n-fluid. Then we have |P(V)/
∼V−iso|P(V)| ≥ n. Since ∼V |P(V) =

∼V−iso |P(V) we get |P(V)/
∼V−iso|P(V)| = |P(V)/

∼V |P(V)| = k, that is, V is k-unsolid. �

6. Examples

Let B be the strong regular variety

B =Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x2

1 ≈ x1
}

, (6.1)

that is, the class of all partial algebras of type (2) which satisfy the associative and the
idempotent law as strong identities. Both equations are regular (i.e., the both sides of the
equation have the same variables occurring). We denote by σt ∈HypC

R(2) the regular hy-
persubstitution which maps the binary operation symbol f to the term t ∈WC

(2)({x1,x2}).

Instead of f (x1,x2) we write simply x1x2. The set HypC
R(2)/

∼B consists precisely of the fol-
lowing classes of hypersubstitutions: [σε2

1(x1,x2)]∼B , [σε2
2(x1,x2)]∼B , [σx1x2 ]

∼B , [σx2x1 ]
∼B ,

∼B , [σx2x1x2 ]
∼B . We will be particularly interested in the following strong regular subva-

rieties of the strong regular variety B:

TR=Mods {ε2
1

(
x1,x2

)≈ ε2
2

(
x1,x2

)}
,

LZ=Mods {x1x2 ≈ ε2
1

(
x1,x2

)}
,

RZ=Mods {x1x2 ≈ ε2
2

(
x1,x2

)}
,

SL=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2 ≈ x2x1
}

,

RB=Mods {x1
(
x2x3

)≈ (x1x2
)
x3 ≈ ε2

1

(
x1,x2

)
x3,x1

2 ≈ x1
}

,

NB=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x3x4 ≈ x1x3x2x4
}

,

RegB=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x1x3x1 ≈ x1x2x3x1
}

,

LN=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x3 ≈ x1x3x2
}

,

RN=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x3 ≈ x2x1x3
}

,

LReg=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2 ≈ x1x2x1
}

,

RReg=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2 ≈ x2x1x2
}

,

LQN=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x3 ≈ x1x2x1x3
}

,

RQN=Mods {x1
(
x2x3

)≈ (x1x2
)
x3,x1

2 ≈ x1,x1x2x3 ≈ x1x3x2x3
}
.

(6.2)

All these varieties are strong regular varieties of partial algebras.
These varieties are given in Figure 6.1.
This is not the lattice of all strong subvarieties of B since we consider strong regular

ones.
A strong variety V of partial algebras of type (2) is called dual solid if from s≈ t ∈ Ids V

there follows σ̂x2x1 [s]≈ σ̂x2x1 [t]∈ Ids V . Then we have the following results.
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RegB

LQN RQN

LReg NB RReg

LN
RB RN

LZ
SL RZ

TR

Figure 6.1

Theorem 6.1. (1) TR, LZ, RZ, SL are unsolid.
(2) LN, RN, LReg, RReg are 2-unsolid.
(3) B, RB, LQN, RQN are 4-unsolid.
(4) NB and RegB are 6-unsolid.
(5) All dual solid varieties different from TR, SL, NB, and RegB are 4-unsolid.
(6) Any variety other than LZ, RZ, LN, RN, LReg, RReg, LQN, RQN which is not dual-

solid is 3-unsolid.

Proof. (1) It is easy to see that TR, LZ, RZ are unsolid. Further, HypC
R(2)= [σε2

1(x1,x2)]∼SL ∪
[σε2

2(x1,x2)]∼SL ∪ [σx1x2 ]
∼SL , where σx1x2 ∈ P(SL). The application of σε2

1(x1,x2) to x1x2 ≈ x2x1∈
Ids SL provides x1 ≈ x2 �∈ Ids SL and the application of σε2

2(x1,x2) to x1x2 ≈ x2x1 provides
x2 ≈ x1 �∈ Ids SL. This shows that σε2

1(x1,x2),σε2
2(x1,x2) �∈ P(SL). Consequently, |P(SL)| =

|[σx1x2 ]
∼SL| = 1, that is, SL is unsolid.

(2) It is easy to see that HypC
R(2) = [σε2

1(x1,x2)]∼LN ∪ [σε2
2(x1,x2)]∼LN ∪ [σx1x2 ]

∼LN ∪
∼LN , where σε2

1(x1,x2),σx1x2 ∈ P(LN). If we apply σ̂ε2
2(x1,x2) to x1x2x3 ≈ x1x3x2, we obtain x3 ≈

x2 which is not satisfied in LN and applying σ̂x2x1 to x1x2x3 ≈ x1x3x2 gives x3x2x1 ≈ x2x3x1

which is also not satisfied. Therefore P(LN)/
∼LN|P(LN) = {[σε2

1(x1,x2)]∼LN , [σx1x2 ]
∼LN}, that is,

LN is 2-unsolid. Similarly we can show that RN is 2-unsolid. For LReg and RReg we show
in a similar way that these strong varieties are 2-unsolid.

(3) It is easy to check that HypC
R(2)=[σε2

1(x1,x2)]∼B∪[σε2
2(x1,x2)]∼B∪[σx1x2 ]

∼B∪[σx2x1 ]
∼B∪

[σx1x2x1 ]
∼B ∪ [σx2x1x2 ]

∼B , where σε2
1(x1,x2),σε2

2(x1,x2),σx1x2 ,σx2x1 ∈ P(B). The application of
σx1x2x1 to the associative law provides x1x2x1x3x1x2x1 ≈ x1x2x3x2x1 �∈ Ids B and the appli-
cation of σx2x1x2 to the associative law provides x3x2x1x2x3 ≈ x3x2x3x1x3x2x3 �∈ Ids B. This
shows that σx1x2x1 ,σx2x1x2 �∈P(B). Consequently, |P(B)/

∼B|P(B)|=|{[σε2
1(x1,x2)]∼B , [σε2

2(x1,x2)]∼B ,

∼B , [σx2x1 ]
∼B}| = 4, that is, B is 4-unsolid. Further we have HypC

R(2) = [σε2
1(x1,x2)]∼RB ∪

[σε2
2(x1,x2)]∼RB ∪ [σx1x2 ]

∼RB ∪ [σx2x1 ]
∼RB , where σε2

1(x1,x2),σε2
2(x1,x2),σx1x2 ,σx2x1 ∈ P(RB) and
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|P(RB)/
∼B|P(RB)| = |{[σε2

1(x1,x2)]∼RB , [σε2
2(x1,x2)]∼RB , [σx1x2 ]

∼RB , [σx2x1 ]
∼RB}| = 4, that is, RB is

4-unsolid. In a similar way one proves that LQN as well as RQN are 4-unsolid.
(4) It is easy to check that HypC

R(2) = [σε2
1(x1,x2)]∼NB ∪ [σε2

2(x1,x2)]∼NB ∪ [σx1x2 ]
∼NB ∪

∼NB ∪ [σx1x2x1 ]
∼NB ∪ [σx2x1x2 ]

∼NB . All these hypersubstitutions are NB-proper, that is, NB
is solid. This gives |P(NB)/

∼NB| = 6, that is, NB is 6-unsolid. In a similar way one proves
that RegB is 6-unsolid.

(5) Let nowV be a dual solid variety different from TR, SL, RB, NB, and RegB. Then we
have HypC

R(2) = [σε2
1(x1,x2)]∼V ∪ [σε2

2(x1,x2)]∼V ∪ [σx1x2 ]
∼V ∪ [σx2x1 ]

∼V ∪ [σx1x2x1 ]
∼V ∪

∼V . Since V is dual solid, the hypersubstitutions σx1x2 and σx2x1 are V-proper. As a con-
sequence of V �= TR,SL and since V is dual solid we have σε2

1(x1,x2),σε2
2(x1,x2) ∈ P(V). The

application of σx1x2x1 to the associative law provides x1x2x3x2x1 ≈ x1x2x1x3x1x2x1. From
this equation we derive x1x2x3x1 ≈ x1x2x1x3x1 in the following way:

x1x2x3x1 ≈ x1x2x3x3x2x3x1

≈ x1x2x3x1x3x1x2x3x1

≈ x1x2x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x2x1x3x1

≈ x1x2x1x3x1x1x2x1x3x1

≈ x1x2x1x3x1.

(6.3)

This shows V ⊆ RegB. But TR, SL, RB, NB, and RegB are the only dual solid sub-
varieties of RegB. Since V is different from these varieties, we have σx1x2x1 �∈ P(V). The
same argument shows σx2x1x2 �∈ P(V). Since RB ⊆ V , the set Ids V of all strong identi-
ties satisfied in V consists only of outermost identities and this shows |P(V)/

∼V |P(V)| =
|{[σε2

1(x1,x2)]∼V , [σε2
2(x1,x2)]∼V , [σx1x2 ]

∼V , [σx2x1 ]
∼V }| = 4, that is, V is 4-unsolid.

(6) Finally if V is not a dual solid variety different from LZ, RZ, LN, RN, LReg,
RReg, LQN, RQN, then HypC

R(2)= [σε2
1(x1,x2)]∼V ∪ [σε2

2(x1,x2)]∼V ∪ [σx1x2 ]
∼V ∪ [σx2x1 ]

∼V ∪
[σx1x2x1 ]

∼V ∪ [σx2x1x2 ]
∼V . We can prove that σx2x1 ,σx1x2x1 ,σx2x1x2 �∈ P(V). Then |P(V)/

∼V |P(V)| = |{[σε2
1(x1,x2)]∼V , [σε2

2(x1,x2)]∼V , [σx1x2 ]
∼V }| = 3, that is, V is 3-unsolid. �
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