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Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Triassociative algebras, introduced by Loday and Ronco [8], are analogues of associative
algebras in which there are three binary operations, satisfying 11 relations. These algebras
are closely related to some very interesting combinatorial objects. In fact, the operad Trias
for triassociative algebras is modeled by the standard simplices. This operad is Koszul, in
the sense of Ginzburg and Kapranov [6]. Its Koszul dual operad TriDend is modeled by
the Stasheff polytopes [11, 12], or equivalently, planar trees. The algebras for the latter
operad are called tridendriform algebras, which have three binary operations whose sum
is an associative operation.

The purpose of this paper is to advance the study of triassociative algebras in the fol-
lowing ways: (1) algebraic foundation: when studying (co)homology, the first task is to
figure out the correct coefficients. We introduce homology and cohomology with non-
trivial coefficients for triassociative algebras. In fact, Loday and Ronco [8] already defined
homology with trivial coefficients for these algebras. We will build upon their construc-
tion. (2) Deformation: once (co)homology is in place, we use it to study algebraic de-
formations of triassociative algebras, following the pattern established by Gerstenhaber
[5].

We should point out that deformations of dialgebras [7], the analogues of triasso-
ciative algebras with only two binary operations, have been studied by Majumdar and
Mukherjee [9]. One difference between triassociative algebras and dialgebras is the co-
boundary operator in cohomology. Specifically, in both cases, the coboundary involves
certain products ◦ψj . The definition of this product is more delicate in the triassociative al-
gebra case than in the dialgebra case. This is due to the fact that planar trees, which model
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triassociative algebra cohomology, are more complicated than planar binary trees, which
model dialgebra cohomology. A more fundamental difference is that the sets of planar
trees form a simplicial set, whereas the sets of binary trees form only an almost simplicial
set [7, Section 3.10]. This is important, since the author intends to adapt the algebraic
works in the present paper to study topological triassociative (co)homology, in analogy
with topological Hochschild (co)homology (see, e.g., [2, 3, 10]). Such objects should be
defined as the geometric realization of a certain simplicial spectrum (or the Tot of a cer-
tain cosimplicial spectrum), modeled after the algebraic (co)simplicial object that defines
(co)homology.

In the classical case of an associative algebra R, the coefficients in Hochschild homol-
ogy and cohomology are the same, namely, the R-representations. In contrast, in the case
of triassociative algebras (and also dialgebras), the coefficients in homology and coho-
mology are not the same. The natural coefficient for triassociative cohomology is a repre-
sentation, which can be defined using the 11 triassociative algebra axioms. This leads to
an expected algebraic deformation theory. To define triassociative homology with coeffi-
cients, we will construct the universal enveloping algebra (UA), which is a unital associa-
tive algebra of a triassociative algebraA. A leftUA-module is exactly anA-representation.
We then define an A-corepresentation to be a right UA-module. These right UA-modules
are the coefficients in triassociative homology. In the classical Hochschild theory, the uni-
versal enveloping algebra is Re = R⊗Rop.

We remark that all of the results in this paper can be reproduced for tridendriform and
tricubical algebras in [8] with minimal modifications.

Organization. The next section is devoted to defining triassociative algebra cohomol-
ogy with nontrivial coefficients, in which we begin with a brief discussion of represen-
tations over a triassociative algebra. The construction of triassociative algebra cohomol-
ogy requires a discussion of planar trees. We observe that the sets of planar trees form
a simplicial set (Proposition 2.1). After that we define the cochain complex C∗Trias(A,M)
for a triassociative algebra A with coefficients in an A-representation M (Theorem 2.2)
and give descriptions of the low-dimensional cohomology modules H∗

Trias for ∗≤ 2. It is
also shown that Hn

Trias(A,−) is trivial for all n ≥ 2 when A is a free triassociative algebra
(Theorem 2.3).

In Section 3, we construct triassociative algebra homology with nontrivial coefficients
by using the universal enveloping algebra (UA) of a triassociative algebra A. The A-repre-
sentations are identified with the left UA-modules (Proposition 3.1). We then compute
the associated graded algebra ofUA under the length filtration (Theorem 3.2). This leads
to a triassociative version of the Poincaré-Birkhoff-Witt theorem (Corollary 3.3). We then
use the right UA-modules as the coefficients for triassociative algebra homology, analo-
gous to the dialgebra case [4]. To show that the purported homology complex is actually a
chain complex, we relate it to the cotangent complex (Proposition 3.4), which can be used
to define both the homology and the cohomology complexes. The cotangent complex is
the analogue of the bar complex in Hochschild homology. When the coefficient module is
taken to be the ground field (i.e., trivial coefficients), our triassociative homology agrees
with the one constructed in Loday and Ronco [8]. That section ends with descriptions of
HTrias

0 and HTrias
1 .
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Section 4 is devoted to studying algebraic deformations of triassociative algebras. We
define algebraic deformations and their infinitesimals for a triassociative algebra A. It is
observed that an infinitesimal is always a 2-cocycle inC2

Trias(A,A) whose cohomology class
is determined by the equivalence class of the deformation (Theorem 4.1). A triassociative
algebra A is called rigid if every deformation of A is equivalent to the trivial deformation.
It is observed that the cohomology module H2

Trias(A,A) can be thought of as the obstruc-
tion to the rigidity of A. Namely, we observe that A is rigid, provided that the module
H2

Trias(A,A) is trivial (Corollary 4.3). As examples, free triassociative algebras are rigid
(Corollary 4.4). Finally, we identify the obstructions to extend 2-cocycles inC2

Trias(A,A) to
deformations. Given a 2-cocycle, there is a sequence of obstruction classes in C3

Trias(A,A),
which are shown to be 3-cocycles (Lemma 4.5). The simultaneous vanishing of their co-
homology classes is equivalent to the existence of a deformation whose infinitesimal is
the given 2-cocycle (Theorem 4.6). In particular, these obstructions always vanish if the
cohomology module H3

Trias(A,A) is trivial (Corollary 4.7). We remark that the work of
Balavoine [1] gives another approach to study deformations of triassociative algebras.

2. Cohomology of triassociative algebras

For the rest of this paper, we work over a fixed ground field K . Tensor products are taken
over K . We begin by recalling some relevant definitions about triassociative algebras and
planar trees from [8].

2.1. Triassociative algebras and representations. A triassociative algebra is a vector space
A that comes equipped with three binary operations, � (left), � (right), and ⊥ (middle),
satisfying the following 11 triassociative axioms for all x, y,z ∈ A:

(x � y)� z = x � (y � z), (2.1a)

(x � y)� z = x � (y � z), (2.1b)

(x � y)� z = x � (y � z), (2.1c)

(x � y)� z = x � (y � z), (2.1d)

(x � y)� z = x � (y � z), (2.1e)

(x � y)� z = x � (y⊥z), (2.1f)

(x⊥y)� z = x⊥(y � z), (2.1g)

(x � y)⊥z = x⊥(y � z), (2.1h)

(x � y)⊥z = x � (y⊥z), (2.1i)

(x⊥y)� z = x � (y � z), (2.1j)

(x⊥y)⊥z = x⊥(y⊥z). (2.1k)

Note that the first 5 axioms state that (A,�,�) is a dialgebra [7], and they do not involve
the middle product ⊥. From now on, A will always denote an arbitrary triassociative
algebra, unless stated otherwise.
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A morphism of triassociative algebras is a vector space map that respects the three
products.

An A-representation is a vector spaceM together with (i) 3 left operations�,�,⊥ : A⊗
M →M, (ii) 3 right operations �,�,⊥ : M ⊗A→M satisfying (2.1a)–(2.1k) whenever
exactly one of x, y, z is from M and the other two are from A. Thus, there are 33 total
axioms. From now on, M will always denote an arbitrary A-representation, unless stated
otherwise.

For example, if ϕ : A→ B is a morphism of triassociative algebras, then B becomes an
A-representation via ϕ, namely, x� b = ϕ(x)� b and b� x = b�ϕ(x) for x ∈ A, b ∈ B,
and�∈ {�,�,⊥}. In particular, A is naturally an A-representation via the identity map.

In order to construct triassociative algebra cohomology, we also need to use planar
trees.

2.2. Planar trees. For integers n≥ 0, let Tn denote the set of planar trees with n+ 1 leaves
and one root in which each internal vertex has valence at least 2. We will call them trees
from now on. The first four sets Tn are listed below:

T0 =
{ }

, T1 =
{ }

, T2 =
{

, ,
}

,

T3 =
{

, , , , , , , , , ,
}
.

(2.2)

Trees in Tn are said to have degree n, denoted by |ψ| = n for ψ ∈ Tn. The n+ 1 leaves of a
tree in Tn are labeled {0,1, . . . ,n} from left to right.

A leaf is said to be left oriented (resp., right oriented) if it is the leftmost (resp., right-
most) leaf of the vertex underneath it. Leaves that are neither left nor right oriented are

called middle leaves. For example, in the tree , leaves 0 and 2 are left oriented, while
leaf 3 is right oriented. Leaf 1 is a middle leaf.

Given trees ψ0, . . . ,ψk, one can form a new tree by the operation of grafting. Namely,
the grafting of these k + 1 trees is the tree ψ0∨···∨ψk obtained by arranging ψ0, . . . ,ψk
from left to right and joining the k+ 1 roots to form a new (lowest) internal vertex, which
is connected to a new root. The degree of ψ0∨···∨ψk is

{(∣∣ψ0
∣∣+ 1

)
+ ···+

(∣∣ψk
∣∣+ 1

)}− 1= k+
k∑

i=0

∣∣ψi
∣∣. (2.3)

Conversely, every tree ψ can be written uniquely as the grafting of k+ 1 trees, ψ0∨···∨
ψk, where the valence of the lowest internal vertex of ψ is k+ 1.

Before defining cohomology, we make the following observation, which is not used in
the rest of the paper but maybe useful in future studies of triassociative cohomology.

For 0≤ i≤ n+ 1, define a function

di : Tn+1 −→ Tn, (2.4)
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which sends a tree ψ ∈ Tn+1 to the tree diψ ∈ Tn obtained from ψ by deleting the ith leaf.
For 0≤ i≤ n, define another function

si : Tn −→ Tn+1 (2.5)

as follows: for ψ ∈ Tn, siψ ∈ Tn+1 is the tree obtained from ψ by adding a new leaf to the
internal vertex connecting to leaf i, and this new leaf is placed immediately to the left of

the original leaf i. For example, if ψ = , then s0(ψ)= and s1(ψ)= s2(ψ)= .

Proposition 2.1. The sets {Tn}n≥0 form a simplicial set with face maps di and degeneracy
maps si.

Proof. Recall that the simplicial relations are

didj = dj−1di if i < j,

dis j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s j−1di if i < j,

Id if i= j, j + 1,

s jdi−1 if i > j + 1,

sis j = s j+1si if i≤ j.

(2.6)

All of them are immediate from the definitions. �

2.3. Cohomology. For integers n ≥ 0, define the module of n-cochains of A with coeffi-
cients in M to be

CnTrias(A,M) :=HomK
(
K
[
Tn
]⊗A⊗n,M

)
. (2.7)

To define the coboundary maps, we need the following operations. For 0 ≤ i ≤ n + 1,
define a function

◦i : Tn+1 −→ {�,�,⊥} (2.8)

according to the following rules. Let ψ be a tree in Tn+1, which is written uniquely as
ψ = ψ0 ∨ ··· ∨ψk in which the valence of the lowest internal vertex of ψ is k + 1. Also,
write ◦ψi for ◦i(ψ). Then ◦ψ0 is given by

◦ψ0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� if
∣∣ψ0

∣∣= 0, k = 1,

� if
∣∣ψ0

∣∣ > 0,

⊥ if
∣∣ψ0

∣∣= 0, k > 1.

(2.9)

For 1≤ i≤ n, ◦ψi is given by

◦ψi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� if the ith leaf of ψ is left oriented,

� if the ith leaf of ψ is right oriented,

⊥ if the ith leaf of ψ is a middle leaf.

(2.10)
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Finally, ◦ψn+1 is given by

◦ψn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� if
∣∣ψk

∣∣ > 0,

� if k = 1,
∣∣ψ1

∣∣= 0,

⊥ if k > 1,
∣∣ψk

∣∣= 0.

(2.11)

For example, for the 11 trees ψ in T3 (from left to right), we have

◦ψ0 =�,�,�,�,�,�,⊥,⊥,�,�,⊥,

◦ψn+1 =�,�,�,�,�,�,�,⊥,⊥,�,⊥.
(2.12)

Now define the map

δn : CnTrias(A,M)−→ Cn+1
Trias(A,M) (2.13)

to be the alternating sum

δn =
n+1∑

i=0

(−1)iδni , (2.14)

where

(
δni f

)(
ψ; a1, . . . ,an+1

)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 ◦ψ0 f
(
d0ψ; a2, . . . ,an+1

)
if i= 0,

f
(
diψ; a1, . . . ,ai ◦ψi ai+1, . . . ,an

)
if 1≤ i≤ n,

f
(
dn+1ψ; a1, . . . ,an

)◦ψn+1 an+1 if i= n+ 1,

(2.15)

for f ∈ CnTrias(A,M), ψ ∈ Tn+1, and a1, . . . ,an+1 ∈A.

Theorem 2.2. The maps δni satisfy the cosimplicial identities,

δn+1
j δni = δn+1

i δnj−1, (2.16)

for 0≤ i < j ≤ n+ 2. In particular, (C∗Trias(A,M),δ) is a cochain complex.

Proof. First, note that for 1≤ i≤ n, the map δni is dual to the map

di : CTrias
n+1 (A)= K[Tn+1

]⊗A⊗n+1 −→ K
[
Tn
]⊗A⊗n = CTrias

n (A) (2.17)

in Loday and Ronco [8], that is, δni =Hom(di,M). It is shown there that these di satisfy the
simplicial identities. Therefore, to prove the cosimplicial identities, it suffices to consider
the following three cases: (i) i = 0, j = n+ 2, (ii) i = 0 < j < n+ 2, and (iii) 0 < i < j =
n+ 2.

Consider case (i). Suppose that ψ ∈ Tn+2, a1, . . . ,an+2 ∈ A, and f ∈ CnTrias(A,M). Let
α be the element (ψ; a1, . . . ,an+2) in K[Tn+2]⊗A⊗n+2. Write ψ as ψ0∨···∨ψk uniquely
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with k+ 1 being the valence of the lowest internal vertex of ψ. We have

(
δn+1
n+2δ

n
0 f
)
(α)= {(δn0 f

)(
dn+2ψ; a1, . . . ,an+1

)}◦ψn+2 an+2

=
{
a1 ◦dn+2ψ

0 f
(
d0dn+2ψ; a2, . . . ,an+1

)}◦ψn+2 an+2

=
(
a1 ◦dn+2ψ

0 y
)
◦ψn+2 an+2,

(2.18)

where y = f (dn+1d0ψ; a2, . . . ,an+1). Here we used the simplicial identity d0dn+2 = dn+1d0.
On the other hand, we have

(
δn+1

0 δnn+1 f
)
(α)= a1 ◦ψ0

{(
δnn+1 f

)(
d0ψ; a2, . . . ,an+2

)}

= a1 ◦ψ0
(
y ◦d0ψ

n+1 an+2

)
.

(2.19)

In order to show that

(
a1 ◦dn+2ψ

0 y
)
◦ψn+2 an+2 = a1 ◦ψ0

(
y ◦d0ψ

n+1 an+2

)
, (2.20)

we need to consider 7 different cases.
(1) If k = 1 and |ψ0| = 0, then ◦ψ0 =�= ◦dn+2ψ

0 . In this case, it follows from the triasso-
ciative algebra axioms (2.1a), (2.1b), and (2.1f) that

(
a1 � y

)∗ an+2 = a1 �
(
y∗′ an+2

)
(2.21)

regardless of what ∗,∗′ ∈ {�,�,⊥} are.

(2) If k = 1 and |ψ1| = 0, then ◦ψn+2 =�= ◦d0ψ
n+1. It then follows from axioms (2.1d),

(2.1e), and (2.1j) that

(
a1∗ y

)� an+2 = a1∗′
(
y � an+2

)
(2.22)

regardless of what ∗,∗′ ∈ {�,�,⊥} are.

(3) For k ≥ 1, if both |ψ0| and |ψk| are positive, then ◦dn+2ψ
0 =�= ◦ψ0 and ◦ψn+2 =�=

◦d0ψ
n+1. Therefore, (2.20) holds by axiom (2.1c).

(4) If k = 2 and |ψ0| = 0 = |ψ2|, then ◦dn+2ψ
0 =�, ◦ψn+2 = ⊥, ◦ψ0 = ⊥, and ◦d0ψ

n+1 =�. It
follows from axiom (2.1h) that (2.20) holds.

(5) If k > 2 and |ψ0| = 0= |ψk|, then ◦dn+2ψ
0 = ◦ψn+2 = ◦ψ0 = ◦d0ψ

n+1 =⊥. Thus, (2.20) fol-
lows from axiom (2.1k).

(6) If k ≥ 2, |ψ0| = 0, and |ψk| > 0, then ◦dn+2ψ
0 = ⊥ = ◦ψ0 and ◦ψn+2 =�= ◦d0ψ

n+1. There-
fore, it follows from axiom (2.1g) that (2.20) holds.

(7) If k ≥ 2, |ψ0| > 0, and |ψk| = 0, then ◦dn+2ψ
0 =�= ◦ψ0 and ◦ψn+2 = ⊥ = ◦d0ψ

n+1. There-
fore, (2.20) follows from axiom (2.1i).

Therefore, the cosimplicial identity holds in the case i= 0, j = n+ 2.
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Next, we consider case (ii), where i= 0, j = 1, . . . ,n+ 1. We have

(
δn+1
j δn0 f

)
(α)= (δn0 f

)(
djψ; a1, . . . ,aj ◦ψj aj+1, . . . ,an+2

)

=
⎧⎨
⎩

(
a1 ◦ψ1 a2

)
◦d1ψ

0 z if j = 1,

a1 ◦djψ0 x if 2≤ j ≤ n+ 1,

(2.23)

where

z = f
(
d0d0ψ; a3, . . . ,an+2

)
,

x = f
(
dj−1d0ψ; a2, . . . ,aj ◦ψj aj+1, . . . ,an+2

)
.

(2.24)

Here we used the simplicial identity d0dj = dj−1d0 for 0 < j. On the other hand, we have

(
δn+1

0 δnj−1 f
)
(α)= a1 ◦ψ0

(
δnj−1 f

)(
d0ψ; a2, . . . ,an+2

)

=
⎧⎨
⎩
a1 ◦ψ0

(
a2 ◦d0ψ

0 z
)

if j = 1,

a1 ◦ψ0 w if 2≤ j ≤ n+ 1,

(2.25)

where

w = f
(
dj−1d0ψ; a2, . . . ,aj ◦d0ψ

j−1 aj+1, . . . ,an+2

)
. (2.26)

In the cases 2 ≤ j ≤ n+ 1, we have that ◦ψj = ◦d0ψ
j−1 and ◦djψ0 = ◦ψ0 , and hence a1 ◦djψ0 x =

a1 ◦ψ0 w. In the case j = 1, we need to show the identity
(
a1 ◦ψ1 a2

)
◦d1ψ

0 z = a1 ◦ψ0
(
a2 ◦d0ψ

0 z
)
. (2.27)

We break it into three cases.
(1) If |ψ0| ≥ 2, then ◦d1ψ

0 =�= ◦d0ψ
0 . Therefore, it follows from axioms (2.1d), (2.1e),

and (2.1j) that

(
a1∗ a2

)� z = a1∗′
(
a2 � z

)
(2.28)

regardless of what ∗,∗′ ∈ {�,�,⊥} are.
(2) If |ψ0| = 1, then ◦ψ1 =�= ◦ψ0 and

◦d0ψ
0 = ◦d1ψ

0 =
⎧⎨
⎩
� if k = 1,

⊥ if k ≥ 2.
(2.29)

Therefore, (2.27) holds by axiom (2.1c) if k = 1 and by axiom (2.1i) if k ≥ 2.
(3) Now suppose that |ψ0| = 0. If k = 1, then ◦ψ0 =�= ◦ψ1 . It follows that (2.27) holds

by axioms (2.1a), (2.1b), and (2.1f). If k ≥ 2, then ◦ψ0 = ⊥. To figure out what the other
three operations are, we need to consider two subcases.

(i) If |ψ1| > 0, then ◦d0ψ
0 =�, ◦ψ1 =�, and ◦d1ψ

0 = ⊥. Thus, (2.27) holds by axiom
(2.1h).
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(ii) If |ψ1| = 0, then ◦ψ1 =⊥ and

◦d1ψ
0 = ◦d0ψ

0 =
⎧⎨
⎩
� if k = 2,

⊥ if k > 2.
(2.30)

It follows that (2.27) holds by axiom (2.1g) when k = 2 and by axiom (2.1k)
when k > 2.

This proves the cosimplicial identities for the δnl when i= 0 and 1≤ j ≤ n+ 1. The proof
for the case 1≤ i≤ n+ 1, j = n+ 2 is similar to the argument that was just given. �

In view of Theorem 2.2, we define the nth cohomology of A with coefficients in the rep-
resentation M to be

Hn
Trias(A,M) :=Hn

(
C∗Trias(A,M),δ

)
(2.31)

for n≥ 0. We describe the first three cohomology modules below.

2.4.H0
Trias andH1

Trias. A linear map ϕ : A→M is called a derivation of A with values in M
if it satisfies the condition

ϕ(a∗ b)= ϕ(a)∗ b+ a∗ϕ(b), (2.32)

for all a,b ∈ A and ∗∈ {�,�,⊥}. Denote by Der(A,M) the submodule of HomK (A,M)
consisting of all the derivations of A with values in M. For an element m∈M, define the
map adm : A→M, where

adm(a) := a�m−m� a (2.33)

for a ∈ A. Such a map is called an inner derivation of A with values in M. It follows
immediately from the triassociative algebra axioms (2.1) that each map adm belongs to
Der(A,M). Let Inn(A,M) denote the submodule of Der(A,M) consisting of all the inner
derivations of A with values in M.

Identify C0
Trias(A,M) with M and C1

Trias(A,M) with HomK (A,M). Under such identifi-
cations, the coboundary map δ0 :M→HomK (A,M) is given by δ0(m)= adm. Therefore,
the cohomology module H0

Trias(A,M), which is the kernel of δ0, is the following submod-
ule of M:

H0
Trias(A,M)∼=MA := {m∈M | a�m=m� a∀a∈ A}. (2.34)

The image of δ0 is the module Inn(A,M). Now if f ∈ C1
Trias(A,M), then

(
δ1 f

)
(ψ; a,b)= a∗ f (b)− f (a∗ b) + f (a)∗ b, (2.35)

where

∗=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� if ψ = ,

� if ψ = ,

⊥ if ψ = .

(2.36)
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In particular, the kernel of δ1 is exactly Der(A,M). Therefore, as in the cases of associative
algebras and dialgebras [4], we have

H1
Trias(A,M)∼= Der(A,M)

Inn(A,M)
. (2.37)

2.5. Hi
Trias(A,−) when A is free. It is shown in [8, Theorem 4.1] that the operad Trias

for triassociative algebras is Koszul. In other words,HTrias
n (A,K)= 0 for n≥ 2 if A is a free

triassociative algebra. Here HTrias
n (A,K) denotes the triassociative homology of A with

trivial coefficients defined by Loday and Ronco [8]. It agrees with our triassociative ho-
mology defined below. The Koszulness of Trias implies that free triassociative algebras
have trivial higher cohomology modules.

Theorem 2.3. Let A be a free triassociative algebra. Then

Hn
Trias(A,M)= 0 (2.38)

for all n≥ 2 and any A-representation M.

Proof. The first line in the proof of Theorem 2.2 implies that for any triassociative algebra
A,

Hn
Trias(A,M)∼=HomK

(
HTrias
n (A,K),M

)
. (2.39)

The theorem now follows from the Koszulness of Trias. �

2.6. Abelian extensions and H2
Trias. Define an abelian triassociative algebra to be a trias-

sociative algebra P in which all three products, �, �, ⊥, are equal to 0. In this case, we
will just say that P is abelian. Any vector space becomes an abelian triassociative algebra

when equipped with the trivial products. Suppose that ξ : 0→ P
i−→ E

π−→ A→ 0 is a short
exact sequence of triassociative algebras in which P is abelian. Then P has an induced
A-representation structure via a∗ p = e∗ i(p) and p∗ a = i(p)∗ e for ∗ ∈ {�,�,⊥},
p ∈ P, a∈ A, and any element e ∈ E such that π(e)= a.

Now consider an A-representation M. By an abelian extension of A by M, we mean a
short exact sequence

ξ : 0−→M
i−−→ E

π−−→ A−→ 0 (2.40)

of triassociative algebras in which M is abelian and such that the induced A-representa-
tion structure on M coincides with the original one. An abelian extension is said to be
trivial if it splits triassociative algebras. Given another abelian extension ξ′ = {0→M →
E′ → A→ 0} of A by M, we say that ξ and ξ′ are equivalent if there exists a map ϕ : E→ E′

of triassociative algebras making the obvious ladder diagram commutative. (Note that
such a map ϕmust be an isomorphism.) Denote by [ξ] the equivalence class of an abelian
extension ξ and denote by Ext(A,M) the set of equivalence classes of abelian extensions
of A by M.

Suppose that ξ is an abelian extension of A by M as in (2.40). By choosing a vector
space splitting σ : A→ E, one can identify the underlying vector space of E with M⊕A.
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As usual, there exists a map

fξ : K
[
T2
]⊗A⊗2 −→M (2.41)

such that the products in E become

(m,a)∗ (n,b)= (m∗ b+ a∗n+ fξ(ψ; a,b),a∗ b) (2.42)

for ∗∈ {�,�,⊥}, m,n∈M, and a,b ∈ A. Here ψ ∈ T2 is given by

ψ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if ∗=�,

if ∗=�,

if ∗=⊥.
(2.43)

Note that this is basically (2.36). We will always identify the 3 trees in T2 with the products
{�,�,⊥} like this. It is easy to check that the 11 triassociative algebra axioms (2.1) in E
are equivalent to fξ ∈ C2

Trias(A,M) being a 2-cocycle. For instance, we have

(
(0,x)� (0, y)

)� (0,z)=
(
fξ
(

; x, y
)

,x � y
)
� (0,z)

=
(
fx
(

; x, y
)
� z+ fξ

(
; x � y,z

)
, (x � y)� z

)
.

(2.44)

On the other hand, a similar calculation yields

(0,x)� ((0, y)⊥(0,z)
)=

(
x � fξ

(
; y,z

)
+ fξ

(
; x, y⊥z

)
,x � (y⊥z)

)
. (2.45)

These two expressions are equal by axiom (2.1f). By equating the first factors, we obtain

(
δ2 fξ

)(
; x, y,z

)
= 0. (2.46)

Similar arguments, using the other 10 triassociative algebra axioms, show that (δ2 fξ)(ψ;
x, y,z)= 0 for the other 10 trees ψ ∈ T3.

Conversely, suppose that g ∈ C2
Trias(A,M) is a 2-cocycle. Then one can define a trias-

sociative algebra structure on the vector space M ⊕A using (2.42) with g in place of fξ .
Again, the triassociative algebra axioms are verified because of the cocycle condition on
g. This yields an abelian extension of A by M,

ζg : 0−→M
i−−→M⊕A π−−→ A−→ 0 (2.47)

in which i and π are, respectively, the inclusion into the first factor and the projection
onto the second factor.

Theorem 2.4. The above constructions induce well-defined maps

Ext(A,M)−→H2
Trias(A,M), [ξ] �−→ [ fξ

]
,

H2
Trias(A,M)−→ Ext(A,M), [g] �−→ [ζg

]
,

(2.48)
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that are inverse to each other. In particular, there is a canonical bijection H2
Trias(A,M) ∼=

Ext(A,M).

The proof is basically identical to that of the classical case for associative algebras (see,
e.g., [13, pages 311-312] or [4, Sections 2.8-2.9]). Therefore, we omit the details. Note
that one only needs to see that the maps are well defined, since they are clearly inverse to
each other.

3. Universal enveloping algebra and triassociative homology

The purpose of this section is to construct triassociative algebra homology with nontrivial
coefficients. In [8], Loday and Ronco already constructed triassociative homology with
trivial coefficients (i.e., K). Our homology agrees with the one in Loday and Ronco [8]
by taking coefficients in K . In order to obtain the nontrivial coefficients, we first need
to discuss the universal enveloping algebra. The dialgebra analogue of the results in this
section is worked out in [4].

3.1. Universal enveloping algebra. Fix a triassociative algebra A. We would like to iden-
tify theA-representations as the left modules of a certain associative algebra. This requires
6 copies of A, since 3 copies are needed for the left actions and another 3 for the right ac-
tions. Therefore, we make the following definition. For a K-vector spaceV , T(V) denotes
the tensor algebra of V , which is the free unital associative K-algebra generated by V .

Define the universal enveloping algebra of A to be the unital associative K-algebra UA
obtained from the tensor algebra T(αlA⊕ αrA⊕ αmA⊕ βlA⊕ βrA⊕ βmA) on 6 copies
of A by imposing the following 33 relations for a,b ∈ A (3 relations for each of the 11
triassociative axioms (2.1)):

βl(b) ·βl(a)
(1)= βl(a� b)

(2)= βl(a⊥b)
(3)= βl(a� b),

βl(b) ·αl(a)
(4)= αl(a) ·βl(b)

(5)= αl(a) ·βm(b)
(6)= αl(a) ·βr(b),

αl(a� b)
(7)= αl(a) ·αl(b)

(8)= αl(a) ·αm(b)
(9)= αl(a) ·αr(b),

βr(a� b)
(10)= βr(b) ·βr(a)

(11)= βr(b) ·βl(a)
(12)= βr(b) ·βm(a),

αr(a) ·βr(b)
(13)= βr(b) ·αr(a)

(14)= βr(b) ·αl(a)
(15)= βr(b) ·αm(a),

αr(a) ·αr(b)
(16)= αr(a� b)

(17)= αr(a� b)
(18)= αr(a⊥b),

βl(b) ·βr(a)
(19)= βr(a� b), βl(b) ·αr(a)

(20)= αr(a) ·βl(b),

αl(a� b)
(21)= αr(a) ·αl(b),

βl(b) ·βm(a)
(22)= βm(a� b), βl(b) ·αm(a)

(23)= αm(a) ·βl(b),
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αl(a⊥b)
(24)= αm(a) ·αl(b),

βm(b) ·βl(a)
(25)= βm(a� b), βm(b) ·αl(a)

(26)= αm(a) ·βr(b),

αm(a� b)
(27)= αm(a) ·αr(b),

βm(b) ·βr(a)
(28)= βr(a⊥b), βm(b) ·αr(a)

(29)= αr(a) ·βm(b),

αm(a� b)
(30)= αr(a) ·αm(b),

βm(b) ·βm(a)
(31)= βm(a⊥b), βm(b) ·αm(a)

(32)= αm(a) ·βm(b),

αm(a⊥b)
(33)= αm(a) ·αm(b).

(3.1)

Proposition 3.1. Let M be a K-vector space. Then an A-representation structure on M is
equivalent to a left UA-module structure on M.

Proof. The correspondence is given by (a∈A, x ∈M)

αl(a) · x = a� x, αr(a) · x = a� x, αm(a) · x = a⊥x,

βl(a) · x = x � a, βr(a) · x = x � a, βm(a) · x = x⊥a.
(3.2)

So α∗ and β∗ correspond to left and right A-actions, respectively, and the subscript indi-
cates where the product points to. In particular, the conditions (1)–(9) above correspond
to axioms (2.1a), (2.1b), and (2.1f). Conditions (10)–(18) correspond to axioms (2.1d),
(2.1e), and (2.1j). The other 5 groups of conditions correspond to the remaining 5 axioms
in (2.1). �

3.2. Filtration on UA. Each homogeneous element in UA has a length: elements in K
have length 0. The elements γ∗(a), where γ = α,β, ∗ = l,r,m, and a ∈ A, have length 1.
Inductively, the homogeneous elements in UA of length at most k + 1 (k ≥ 1) are the K-
linear combinations of the elements γ∗(a) · x and x · γ∗(a), where x has length at most
k.

For k ≥ 0, consider the following submodule of UA:

FkUA= {x ∈UA : x has length ≤ k}. (3.3)

These submodules form an increasing and exhaustive filtration ofUA, so that F0UA= K ,
FkUA ⊆ Fk+1UA, and UA = ∪k≥0FkUA. Moreover, it is multiplicative, in the sense that
(FkUA) · (FlUA) ⊆ Fk+lUA. Therefore, it makes sense to consider the associated graded
algebra Gr∗UA=⊕k≥0GrkUA, where GrkUA= FkUA/Fk−1UA. It is clear that Gr0UA=
K . The following result identifies the other associated quotients.
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Theorem 3.2. In the associated graded algebra Gr∗UA, one always has GrnUA= 0 for all
n≥ 3. Moreover, there are isomorphisms

Gr1UA∼= αlA⊕αrA⊕αmA⊕βlA⊕βrA⊕βmA,

Gr2UA∼=
(
αlβlA

⊗2)⊕ (αrβrA⊗2)⊕ (αrβlA⊗2)

⊕ (αmβlA⊗2)⊕ (αmβrA⊗2)⊕ (αrβmA⊗2)⊕ (αmβmA⊗2).
(3.4)

In particular, if A is of finite-dimension d over K , then Gr∗UA has dimension 1 + 6d + 7d2

over K .

Proof. The first isomorphism is clear, since Gr0UA = F0UA = K and the elements of
length 1 are linearly generated by the α∗(a) and β∗(a). For the second isomorphism,
observe that any other generator of length ≤ 2 is identified with an element of length
1 by one of the 33 conditions, leaving only the 7 displayed generators. For example,
βl(b) · βl(a) ∈ βlβlA⊗2 is identified with βl(a � b) ∈ βlA by condition (1) in the defini-
tion of the universal enveloping algebra (UA).

Finally, to show that GrnUA= 0 for n≥ 3, it suffices to show that F2UA= F3UA. It is
straightforward to check that multiplying any one of the 7 generators of length 2 with a
generator of length 1 always yields an element of length ≤ 2. For example,

αl(a) · (αl(b) ·βl(c)
)= (αl(a) ·αl(b)

) ·βl(c)= αl(a� b) ·βl(c), (3.5)

which lies in αlβlA⊗2, by condition (7) in the definition of UA. �

An immediate consequence of this result is the following.

Corollary 3.3 (Poincaré-Birkhoff-Witt theorem). Let V denote the underlying vector
space of a triassociative algebra A. Equip V with the abelian triassociative algebra structure
(a∗ b = 0 always). Then there exists an isomorphism Gr∗UA ∼= UV of unital associative
algebras.

3.3. Corepresentation. By a corepresentation of A, or an A-corepresentation, we mean
a right UA-module. This definition can be made more explicit as follows. Let N be an
A-corepresentation. Set

a < x := x ·αl(a), a > x := x ·αr(a), a∧ x := x ·αm(a),

x < a := x ·βl(a), x > a := x ·βr(a), x∧ a := x ·βm(a)
(3.6)

for x ∈ N and a ∈ A. This gives rise to three left actions <,>,∧ : A⊗N → N and three
right actions <,>,∧ : N ⊗A→ N . With these notations, the condition that N is an A-
corepresentation is equivalent to the following 33 axioms (for x ∈ N and a,b ∈ A),
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corresponding to the axioms for UA in Section 3.1:

(x < b) < a= x < (a� b)= x < (a⊥b)= x < (a� b),

a < (x < b)= (a < x) < b = (a < x)∧ b= (a < x) > b,

(a� b) < x = b < (a < x)= b∧ (a < x)= b > (a < x),

x > (a� b)= (x > b) > a= (x > b) < a= (x > b)∧ a,

(a > x) > b = a > (x > b)= a < (x > b)= a∧ (x > b),

b > (a > x)= (a� b) > x = (a� b) > x = (a⊥b) > x,

(x < b) > a= x > (a� b), a > (x < b)= (a > x) < b, (a� b) < x = b < (a > x),

(x < b)∧ a= x∧ (a� b), a∧ (x < b)= (a∧ x) < b, (a⊥b) < x = b < (a∧ x),

(x∧ b) < a= x∧ (a� b), a < (x∧ b)= (a∧ x) > b, (a� b)∧ x = b > (a∧ x),

(x∧ b) > a= x > (a⊥b), a > (x∧ b)= (a > x)∧ b, (a� b)∧ x = b∧ (a > x),

(x∧ b)∧ a= x∧ (a⊥b), (a⊥b)∧ x = b∧ (a∧ x), a∧ (x∧ b)= (a∧ x)∧ b.
(3.7)

Here are some examples of corepresentations
(1) UA is an A-corepresentation via the right action of UA on itself.
(2) K is an A-corepresentation, where the α∗(a) and β∗(a) in UA act trivially.
(3) Let M be an A-representation (= left UA-module). It is straightforward to check

that the definitions

x ·βl(a) := a� x, x ·αr(a) := x � a, x ·βm(a) := a⊥x, x ·αm(a) := x⊥a,

x ·βr(a) := 0, x ·αl(a) := 0,
(3.8)

for x ∈M and a∈ A, give the underlying vector space of M a right UA-module
structure, denoted by Mop. We call it the opposite corepresentation of M. In par-
ticular, considering A as an A-representation, we have the opposite corepresen-
tation Aop of A.

Now suppose that N is an A-corepresentation. Define the module of n-chains of A with
coefficients in N to be

CTrias
n (A,N) := K[Tn

]⊗N ⊗A⊗n. (3.9)

Define a map

d =
n∑

i=0

(−1)idi : CTrias
n (A,N)−→ CTrias

n−1 (A,N), (3.10)
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where

di(ψ⊗ x⊗ a)= (diψ
)⊗dψi (x⊗ a) (3.11)

for ψ ∈ Tn, x ∈ N , and a = (a1, . . . ,an) ∈ A⊗n. Here diψ is as in cohomology. The maps
d
ψ
i are defined as follows. Write ψ uniquely as the grafting ψ0∨···∨ψk as before, where

the valence of the lowest internal vertex in ψ is k+ 1. Then set

d
ψ
0 (x⊗ a) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x ·αl

(
a1
))⊗ (a2, . . . ,an

)
if
∣∣ψ0

∣∣= 0, k = 1,
(
x ·αm

(
a1
))⊗ (a2, . . . ,an

)
if
∣∣ψ0

∣∣= 0, k > 1,
(
x ·αr

(
a1
))⊗ (a2, . . . ,an

)
if
∣∣ψ0

∣∣ > 0.

(3.12)

For 1≤ i≤ n− 1, set

d
ψ
i (x⊗ a) := x⊗

(
a1, . . . ,ai ◦ψi ai+1, . . . ,an

)
, (3.13)

where ◦ψi is as in cohomology. In particular, our di coincides with the di in Loday and
Ronco [8] when N = K . Finally, set

d
ψ
n (x⊗ a) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x ·βl

(
an
))⊗ (a1, . . . ,an−1

)
if
∣∣ψk

∣∣ > 0,
(
x ·βm

(
an
))⊗ (a1, . . . ,an−1

)
if k > 1,

∣∣ψk
∣∣= 0,

(
x ·βr

(
an
))⊗ (a1, . . . ,an−1

)
if k = 1,

∣∣ψ1
∣∣= 0.

(3.14)

In order to show that (CTrias∗ (A,N),d) is a chain complex, we make use of the cotangent
complex.

3.4. Cotangent complex. Consider UA as an A-corepresentation. Then the vector space
CTrias
n (A,UA) becomes a left UA-module, where UA acts only on the UA factor. Let M be

any A-representation (= left UA-module). There is an isomorphism

HomK
(
K
[
Tn
]⊗A⊗n,M

)= CnTrias(A,M)
∼=−→HomUA

(
CTrias
n (A,UA),M

)
,

f �−→ ( f : ψ ⊗ x⊗ a �−→ x · f (ψ ⊗ a)
)
.

(3.15)

It is clear that under this isomorphism, the map δni : CnTrias(A,M)→ Cn+1
Trias(A,M) corre-

sponds to HomUA(di,M). Since C∗Trias(A,M) is a cochain complex, we obtain the follow-
ing.

Proposition 3.4. (CTrias∗ (A,UA),d) is a chain complex.

Now observe that for an A-corepresentation N , there is an isomorphism

CTrias
n (A,UA)

N⊗UA(−)−−−−−→∼=
CTrias
n (A,N), (3.16)
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under which the di in CTrias∗ (A,UA) corresponds to the di in CTrias∗ (A,N). Therefore, we
conclude the following.

Corollary 3.5. For any corepresentation N of A, (CTrias∗ (A,N),d) is a chain complex.

3.5. Triassociative homology. For an A-corepresentation N , define the triassociative al-
gebra homology of A with coefficients in N as

HTrias
n (A,N) :=Hn

(
CTrias
∗ (A,N),d

)
. (3.17)

When K is considered as an A-corepresentation, the module CTrias
n (A,K) ∼= K[Tn]⊗

A⊗n is denoted by CTrias
n (A) in Loday and Ronco [8]. Observe that the maps d0 and dn :

CTrias
n (A,K)→ CTrias

n−1 (A,K) are both trivial. In fact, for an element λ∈ K ,

d
ψ
0 (λ⊗ a)= (λ ·α∗

(
a1
))⊗ (a2, . . . ,an

)= 0, (3.18)

and similarly for d
ψ
n . Therefore, in this case, the differential d reduces to d =∑n−1

i=1 di,
which coincides with the differential d : CTrias

n (A)→ CTrias
n−1 (A) constructed in [8]. In other

words, we have

HTrias
n (A,K)=HTrias

n (A), (3.19)

where HTrias
n (A) is the triassociative algebra homology (with trivial coefficients) defined

in [8].

3.6.HTrias
0 . For example, identifying CTrias

1 (A,N) with N ⊗A and CTrias
0 (A,N) with N , we

have that d = d0−d1, where

d0(x⊗ a)= x ·αl(a), d1(x⊗ a)= x ·βr(a). (3.20)

So the image of the differential d : CTrias
1 (A,N)→ CTrias

0 (A,N) is the submodule N · (αl −
βr) of N and therefore, we have

HTrias
0 (A,N)∼= N

N · (αl −βr
) . (3.21)

In particular,
(1) if N = K , then HTrias

0 (A,K)∼= K ,
(2) if N = Mop, the opposite corepresentation of an A-representation M, then

HTrias
0 (A,Mop)∼=Mop.

3.7. HTrias
1 . Similarly, HTrias

1 (A,N) = kerd1/ imd2, where kerd1 is the submodule of
CTrias

1 (A,N)=N ⊗A,

kerd1 =
{∑

i

xi⊗ ai ∈N ⊗A :
∑

i

ai < xi =
∑

i

xi > ai

}
. (3.22)
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The image of d2 : CTrias
2 (A,N)→ CTrias

1 (A,N) = N ⊗A is the span of the following three
types of elements (x ∈N , a,b ∈A):

(a < x)⊗ b− x⊗ (a� b) + (x < b)⊗ a,

(a > x)⊗ b− x⊗ (a� b) + (x > b)⊗ a,

(a∧ x)⊗ b− x⊗ (a⊥b) + (x∧ b)⊗ a.
(3.23)

In particular, when N = K , we have

HTrias
1 (A,K)∼= A

span{a∗ b : a,b ∈A,∗=�,�,⊥} , (3.24)

the abelianization of A.

4. Deformations of triassociative algebras

In this final section, we describe algebraic deformations of a triassociative algebra A =
(A,�,�,⊥), using the cohomology theory constructed in Section 2. The theory of tri-
associative algebra deformations is what one would expect from the existing literature
on deformations. The arguments in this section are rather straightforward and are very
similar to the cases of associative algebras [5] and dialgebras [9], whose arguments are
provided in detail and can be easily adapted to the present case. Also, Balavoine [1] has
another way of doing algebraic deformations that can be applied to triassociative algebras.
Therefore, we will safely omit most of the proofs in this section.

Thinking of A also as an A-representation via the identity self-map, we consider the
cochain complex C∗Trias(A,A). A 2-cochain θ ∈ C2

Trias(A,A) will be identified with the
triple (λ,ρ,μ), where each component is a binary operation on A, via

θ(ψ; x, y)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ(x, y) if ψ = ,

ρ(x, y) if ψ = ,

μ(x, y) if ψ = ,

(4.1)

for x, y ∈ A.

4.1. Deformation and equivalence. By a deformation of A, we mean a power series Θt =∑∞
i=0 θit

i, in which each θi = (λi,ρi,μi) is a 2-cochain inC2
Trias(A,A) and θ0 = (�,�,⊥), sat-

isfying the following 11 conditions (same as (2.1)) for all x, y,z ∈A, where Lt =
∑∞

i=0 λit
i,

Rt =
∑∞

i=0 ρit
i, and Mt =

∑∞
i=0μit

i: (1) Lt(Lt(x, y),z) = Lt(x,Lt(y,z)), (2) Lt(Lt(x, y),z) =
Lt(x,Rt(y,z)), and so forth.

Extending linearly, this gives a triassociative algebra structure on the power series
A[[t]]. We will also denote a deformation Θt by the triple (Lt,Rt,Mt) of power series.
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A formal isomorphism of A is a power series Φt =
∑∞

i=0φit
i, in which each φi ∈

C1
Trias(A,A)∼=HomK (A,A) and φ0 = IdA. Let Θt = (Lt,Rt,Mt) be another deformation of

A. Then Θt and Θt are said to be equivalent if there exists a formal isomorphism Φt such
that Ot(x, y)=ΦtOt(Φ−1

t (x),Φ−1
t (y)) for O = L,R,M, and for all x, y,z ∈ A. In this case,

we write Θt =ΦtΘtΦ
−1
t . Conversely, given a deformation Θt and a formal isomorphism

Φt, one can define a new deformation as Θt :=ΦtΘtΦ
−1
t .

4.2. Infinitesimal. Given a deformation Θt =
∑∞

i=0 θit
i of A, the linear coefficient θ1 is

called the infinitesimal of Θt.

Theorem 4.1. Let Θt =
∑∞

i=0 θit
i be a deformation of A. Then the infinitesimal θ1 is a 2-

cocycle in C2
Trias(A,A), whose cohomology class is well defined by the equivalence class of Θt.

Moreover, if θi = 0 for 1≤ i≤ l, then θl+1 is a 2-cocycle in C2
Trias(A,A).

This theorem allows one to think of an infinitesimal as a cohomology class, instead of
just a cochain.

4.3. Rigidity. By the trivial deformation of A, we mean the deformation Θt = (�,�,⊥)t0.
We say that A is rigid if every deformation of A is equivalent to the trivial deformation.
The following result will lead to a cohomological criterion for rigidity.

Proposition 4.2. Let Θt = θ0 + θltl + θl+1tl+1 + ··· , with θi = (λi,ρi,μi), be a deforma-
tion of A for some l ≥ 1 in which θl is a 2-coboundary in C2

Trias(A,A). Then there ex-
ists a formal isomorphism of the form Φt = IdA+φtl such that the deformation defined by
Θt =

∑∞
i=0 θit

i :=ΦtΘtΦ
−1
t satisfies θi = 0 for 1≤ i≤ l.

Combining Theorem 4.1 and Proposition 4.2, we obtain the following cohomological
criterion for rigidity.

Corollary 4.3. If H2
Trias(A,A) is trivial, then A is rigid.

Using Theorem 2.3 and Corollary 4.3, we obtain a large class of rigid objects.

Corollary 4.4. Free triassociative algebras are rigid.

Next we want to obtain a cohomological criterion for the existence of a deformation
with a prescribed 2-cocycle as its infinitesimal.

4.4. Deformations of finite order. Suppose that N ∈ {1,2, . . .}. By a deformation of order
N of A, we mean a polynomial Θt =

∑N
i=0 θit

i, with each θi = (λi,ρi,μi)∈ C2
Trias(A,A) and

θ0 = (�,�,⊥), satisfying the 11 conditions for a deformation modulo tN+1.
If θ1 ∈ C2

Trias(A,A) is a 2-cocycle, then θ0 + θ1t is a deformation of order 1. Thus, given
a 2-cocycle θ1, in order to determine the existence of a deformation with θ1 as its infin-
itesimal, it suffices to determine the obstruction to extend a deformation of order N to
one of order N + 1 for N ≥ 1.

4.5. Obstructions. Fix a deformation Θt =
∑N

i=0 θit
i, with θi = (λi,ρi,μi), of order N <∞

as above. Define a 3-cochain ObΘ ∈ C3
Trias(A,A) as follows. Let x, y,z be elements of A
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and ψ be a tree in T3. Then ObΘ(ψ; x, y,z) is the element (where Σ= ΣNj=1)

∑(
λj
(
λN+1− j(x, y),z

)− λj
(
x,λN+1− j(y,z)

))
if ψ = ,

∑(
λj
(
λN+1− j(x, y),z

)− λj(x,ρN+1− j(y,z)
))

if ψ = ,
∑(

λj
(
ρN+1− j(x, y),z

)− ρj
(
x,λN+1− j(y,z)

))
if ψ = ,

∑(
ρj
(
λN+1− j(x, y),z

)− ρj
(
x,ρN+1− j(y,z)

))
if ψ = ,

∑(
ρj
(
ρN+1− j(x, y),z

)− ρj
(
x,ρN+1− j(y,z)

))
if ψ = ,

∑(
λj
(
λN+1− j(x, y),z

)− λj
(
x,μN+1− j(y,z)

))
if ψ = ,

∑(
λj
(
μN+1− j(x, y),z

)−μj
(
x,λN+1− j(y,z)

))
if ψ = ,

∑(
μj
(
λN+1− j(x, y),z

)−μj
(
x,ρN+1− j(y,z)

))
if ψ = ,

∑(
μj
(
ρN+1− j(x, y),z

)− ρj
(
x,μN+1− j(y,z)

))
if ψ = ,

∑(
ρj
(
μN+1− j(x, y),z

)− ρj
(
x,ρN+1− j(y,z)

))
if ψ = ,

∑(
μj
(
μN+1− j(x, y),z

)−μj
(
x,μN+1− j(y,z)

))
if ψ = .

(4.2)

Notice that the definition of the 3-cochain ObΘ arises from the coefficients of tN+1 in the
11 conditions for a deformation by subtracting the right-hand side from the left-hand
side and deleting the 4 terms corresponding to j = 0 and j =N + 1.

Lemma 4.5. The element ObΘ ∈ C3
Trias(A,A) is a 3-cocycle.

The proof of the lemma is a long but elementary computation. The following result is
independent of Lemma 4.5.

Theorem 4.6. Let Θt =
∑N

i=0 θit
i, with θi = (λi,ρi,μi), be a deformation of order N <∞ of

A and let θN+1 be an element of C2
Trias(A,A). Define the polynomial Θ̃t := Θt + θN+1tN+1.

Then Θ̃t is a deformation of order N + 1 if and only if ObΘ = δ2θN+1.

Combining Theorem 4.6 with Lemma 4.5, one concludes that the obstruction to ex-
tend a deformation Θt of order N to one of order N + 1 is the cohomology class of ObΘ,
which lies inH3

Trias(A,A). Therefore, all these obstructions vanish if the cohomology mod-
ule H3

Trias(A,A) is trivial.

Corollary 4.7. If H3
Trias(A,A) is trivial, then every 2-cocycle in C2

Trias(A,A) is the infinites-
imal of some deformation of A.
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