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The aim of this paper is to study weakly induced I-fuzzy topological spaces and weakly
induced modifications of I-fuzzy topologies. We give two kinds of weakly induced I-fuzzy
topologies for each I-fuzzy topology and prove that I-WIFTOP is a reflective and core-
flective full subcategory of I-FTOP. We also discuss some relationships between several
categories.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

Since Chang [2] introduced fuzzy theory into topology, many authors have discussed var-
ious aspects of fuzzy topology. It is well known that weakly induced and induced topo-
logical spaces play an important role in L-topological spaces (see book [8]). According to
their value ranges, L-topological spaces form different categories. Clearly, the investiga-
tion on their relationships is certainly important and necessary. Lowen was the first au-
thor to study the relations between I-topological spaces and classical topological spaces.
He introduced two well-known functors—ω and ι. Later, these functors, named Lowen
functors, were extended by different authors [7, 12] for various kinds of lattices studying
the relations between L-TOP and TOP.

However, in a completely different direction, Höhle [4] created the notion of a topol-
ogy being viewed as an L-subset of a powerset. Then Kubiak [6] and Šostak [11] indepen-
dently extended Höhle’s notion to L-subsets of LX . From a logical point of view, Ying [13]
introduced fuzzifying topological spaces (Ying’s fuzzifying topology is similar to Höhle’s
topology). In order to discuss the relations between fuzzifying topologies and I-fuzzy
topologies, the authors studied Lowen functors in I-fuzzy topological spaces in a Kubiak-
Šostak sense and introduced induced I-fuzzy topological spaces in [15]. Zhang and Liu
[17] studied weakly induced modifications of L-topologies. The aim of this paper is to
study weakly induced I-fuzzy topological spaces and the weakly induced modifications of
I-fuzzy topologies.

This paper is organized as follows. In Section 1, we give some preliminary concepts
and properties. Two kinds of weakly induced modifications are introduced in Section 2.
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2 Weakly induced modifications of I-fuzzy topologies

We prove that I-WIFTOP—the category of weakly induced I-fuzzy topological spaces—
is a reflective and coreflective full subcategory of I-FTOP. Finally, in Section 3, we discuss
the relationship between several important categories.

In this paper, X is a nonempty set and I = [0,1], I0 = [0,1). The family of all fuzzy sets
on X will be denoted by IX . By 0X and 1X , we denote, respectively, the constant fuzzy set
on X taking the values 0 and 1. Let σr(A)= {x |A(x) > r} for r ∈ I and A∈ IX . U ∈ P(X),
1U denotes the characteristic function of U , that is, 1U(x)= 1 when x ∈U and 1U(x)= 0
when x �∈U . For the notions about categories, please refer to [1, 5, 9].

Definition 1.1 [4, 13]. A fuzzifying topology on X is a map ξ : P(X)→ I satisfying the
following axioms:
(FY1) ξ(∅)= ξ(X)= 1;
(FY2) ξ(U ∩V)≥ ξ(U)∧ ξ(V) for all U ,V ∈ P(X);
(FY3) ξ(

⋃
t∈T Ut)≥

∧
t∈T ξ(Ut) for every family {Ut | t ∈ T} ⊆ P(X).

If ξ is a fuzzifying topology on X , the pair (X ,ξ) is called a fuzzifying topological space.
A fuzzifying continuous map between fuzzifying topological spaces (X ,ξ) and (Y ,η) is a
map f : X → Y such that ξ( f ←(U))≥ η(U) for all U ∈ P(Y). The category of fuzzifying
topological spaces and fuzzifying continuous maps is denoted by FYS. Let FYS(X) denote
the set of all fuzzifying topologies on X .

Definition 1.2 [6, 11]. An I-fuzzy topology on a set X is defined to be a map � : IX → I
satisfying:
(FT1) �(1X)=�(0X)= 1;
(FT2) �(A∧B)≥�(A)∧�(B) for all A,B ∈ IX ;
(FT3) �(

∨
t∈T At)≥

∧
t∈T �(At) for every family {At | t ∈ T} ⊆ IX .

If � is an I-fuzzy topology on X , the pair (IX ,�) is called an I-fuzzy topological space.
An I-fuzzy continuous map between I-fuzzy topological spaces (IX ,�) and (IY ,�) is a
map f : X → Y such that �( f ←I (B)) ≥ �(B) for all B ∈ IY , where f ←I (B)(x) = B( f (x))
(following the notation in [10]). The category of I-fuzzy topological spaces and I-fuzzy
continuous maps is denoted by I-FTOP. Let I-FTOP(X) denote the set of all I-fuzzy
topologies on X .

Definition 1.3 [13]. Let ξ be a fuzzifying topology on X , � : P(X)→ I , and �≤�. � is
called a base of ξ if � satisfies the following condition:

∀U ∈ P(X), ξ(U)=
∨

⋃
λ∈∧Vλ=U

∧

λ∈∧
�
(
Vλ
)
, (1.1)

where the expression
∨
⋃

λ∈∧Vλ=U
∧

λ∈∧�(Vλ) will be denoted by �()(U), that is, ξ =
�().

A map φ : P(X)→ I is called a subbase of ξ if φ(�) : P(X)→ I defined by φ(�)(U) =
∨

(�)λ∈JVλ=U
∧

λ∈J φ(Vλ) for all U ∈ P(X) is a base, where (�) stands for “finite intersec-
tion.” φ : P(X)→ I is a subbase of one fuzzifying topology if and only if φ()(X)= 1.

Definition 1.4 [14]. Let {(Xt,ξt)}t∈T be a family of fuzzifying topological spaces and
let Pt :

∏
t∈T Xt → Xt be the projection. Then the fuzzifying topology whose subbase is
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defined by

∀W ∈ P

(
∏

t∈T
Xt

)

, φ(W)=
∨

t∈T

∨

P←t (U)=W
ξt(U) (1.2)

is called the product topology of {ξt | t ∈ T}, denoted by
∏

t∈T ξt. (
∏

t∈T Xt,
∏

t∈T ξt) is
called the product space of {(Xt,ξt)}t∈T .

Fang and Yue [3] extended the above definitions and results to I-fuzzy topological
spaces. For more explicitly, we list them as follows.

(1) Let � be an I-fuzzy topology on X , � : IX → I s.t. � ≤� (in a pointwise sense).
Then � is called a base of � if � satisfies the following condition:

∀A∈ IX , �(A)=
∨

∨
λ∈∧Bλ=A

∧

λ∈∧
�
(
Bλ
)
, (1.3)

where the expression
∨
∨

λ∈∧Bλ=A
∧

λ∈∧�(Bλ) will be denoted by �()(A).
(2) Let φ : IX → I be a map. Then φ is called a subbase of � if φ(�) : IX → I is a base,

where φ(�)(A)=∨(�)λ∈J Bλ=A
∧

λ∈J φ(Bλ) for all A∈ IX with (�) standing for “finite inter-
section.” A map φ : IX → I is a subbase if and only if φ()(1X)= 1.

(3) Let {(IXt ,�t)}t∈T be a family of I-fuzzy topological spaces and let Pt :
∏

t∈T Xt → Xt

be the projection. Then the I-fuzzy topology whose subbase is defined by

∀A∈ I
∏

t∈T Xt , φ(A)=
∨

t∈T

∨

(Pt)←I (B)=A
�t(B) (1.4)

is called the product topology of {�t | t ∈ T}, denoted by
∏

t∈T �t. (I
∏

t∈T Xt ,
∏

t∈T �t) is
called the product space of {(IXt ,�t)}t∈T .

Definition 1.5. Let {(IXt ,�t)}t∈T be a family of I-fuzzy topological spaces, let different
X ′t s be disjoint and X =⋃t∈T Xt, and let � : IX → I be defined as follows:

∀A∈ IX , �(A)=
∧

t∈T
�t
(
A | Xt

)
. (1.5)

Then it is easy to verify that � is an I-fuzzy topology on X , and � is called the sum
topology of {�t}t∈T , denoted by

⊕
t∈T �t.

Definition 1.6. Let (IX ,�) be an I-fuzzy topological space and let f : X → Y be a surjective
map. Define the I-fuzzy quotient topology �/ f →I of � with respect to f by

∀A∈ IY , �/ f →I (A)=�
(
f ←I (A)

)
. (1.6)

It is easy to verify that �/ f →I is an I-fuzzy topology on Y . (IY ,�/ f →I ) is called the I-fuzzy
quotient space of (IX ,�) with respect to f and f →I is called an I-fuzzy quotient map.

Definition 1.7 [9]. Let (IX ,�) be an I-fuzzy topological space and Y ⊆ X . (IY ,� | Y) is
called the subspace of (IX ,�), where � | Y : IY → I is defined by � | Y(B) = ∨{�(A) |
A∈ IX ,A | Y = B} for all B ∈ IY .
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Lemma 1.8 [5]. I-FTOP(X) is a complete lattice.

Using the similar argument in [5], it is easy to show that FYS(X) is also a complete
lattice.

Lemma 1.9 [15]. Let {ξt}t∈T ⊆ FYS(X). Then φ : P(X)→ I defined by φ(U)=∨t∈T ξt(U)
is the subbase of

∨
t∈T ξt, that is,

∨
t∈T ξt = (φ(�))().

2. Weakly induced modifications of
I-fuzzy topologies

The purpose of this section is to study weakly induced I-fuzzy topological spaces and the
weakly induced modifications of I-fuzzy topologies.

Definition 2.1 [15]. Let (IX ,�) be an I-fuzzy topological space on X . If �(A) ≤
∧

r∈I0
�(1σr (A)) for all A∈ IX , then (IX ,�) is called a weakly induced I-fuzzy topological

space. Let I-WIFTOP denote the category of weakly induced I-fuzzy topological spaces.

Example 2.2. Let ξ be a fuzzifying topology on X . Define �ξ : IX → I as follows:

�ξ(A)=
⎧
⎪⎨

⎪⎩

ξ(U) if A is a characteristic function, that is, A= 1U ,

0 otherwise.
(2.1)

It is easy to check that �ξ is an I-fuzzy topology on X and it is weakly induced. Specially,
� is weakly induced, where

�(A)=
⎧
⎪⎨

⎪⎩

1, A= 0X ,1X ,

0, otherwise.
(2.2)

Example 2.3. Let � : IX → I be defined by �(A) = 1 for all A ∈ LX . Then � is a weakly
induced I-fuzzy topology on X .

In the following discussion, we will give the right adjoint functor and left adjoint func-
tor of the inclusion functor i : I-WIFTOP → I-FTOP, and show that I-WIFTOP is a re-
flective and coreflective full subcategory of I-FTOP.

Lemma 2.4. Let (IX ,�) be an I-fuzzy topological space and let �∗ : IX → I be defined by

∀A∈ IX , �∗(A)=
∧

r∈I0

�
(
1σr (A)

)∧�(A). (2.3)

Then �∗ is the biggest weakly induced I-fuzzy topology smaller than �. Hence, if � is weakly
induced, then �=�∗.
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Proof. It is routine to prove that �∗ is an I-fuzzy topology on X . The following compu-
tation can show that �∗ is weakly induced:

∧

r∈I0

�∗
(
1σr (A)

)=
∧

r∈I0

∧

s∈I0

�
(
1σs(1σr (A))

)∧�
(
1σr (A)

)=
∧

r∈I0

�
(
1σr (A)

)

≥
∧

r∈I0

�
(
1σr (A)

)∧�(A)=�∗(A).
(2.4)

Let � be any weakly induced I-fuzzy topology on X satisfying �≤�. We need to prove
that � ≤�∗. Since � is weakly induced, we have �(A) ≤∧r∈I0

�(1σr (A)) for all A ∈ IX .
Hence we get that

�(A)≤�(A)∧
∧

r∈I0

�
(
1σr (A)

)≤�(A)∧
∧

r∈I0

�
(
1σr (A)

)=�∗(A), (2.5)

thus the conclusion. �

Lemma 2.5. Let (IY ,�) be weakly induced and let (IX ,�) be an I-fuzzy topological space.
Then f →I : (IX ,�)→ (IY ,�) is I-fuzzy continuous if and only if f →I : (IX ,�∗)→ (IY ,�∗)=
(IY ,�) is I-fuzzy continuous.

Proof. The sufficiency is obvious and it needs to show the necessity. Let f →I : (IX ,�)→
(IY ,�) be I-fuzzy continuous, that is, �(B)≤�( f ←I (B)) for all B ∈ IY . Since � is weakly
induced, we have �(B)≤∧r∈I0

�(1σr (B)). Hence

�(B)≤�
(
f ←I (B)

)∧
∧

r∈I0

�
(
1σr (B)

)≤�
(
f ←I (B)

)∧
∧

r∈I0

�
(
1 f ←(σr (B))

)=�∗
(
f ←I (B)

)
.

(2.6)

Therefore, f →I : (IX ,�∗)→ (IY ,�) is I-fuzzy continuous. �

Remark 2.6. From Lemma 2.5, we also can get that f →I : (IX ,�∗)→ (IY ,�∗) is I-fuzzy
continuous if f →I : (IX ,�)→ (IY ,�) is I-fuzzy continuous. Hence we know that (·)∗ is a
functor from I-FTOP to I-WIFTOP. Furthermore, we have the following theorem.

Theorem 2.7. (·)∗ is the left adjoint of i.

Lemma 2.8. Let (IX ,�) be an I-fuzzy topological space and let φ : IX → I be defined by

φ�(A)=
⎧
⎪⎨

⎪⎩

∨
r∈I0

∨{
�(B) | σr(B)=U

}
if A is a characteristic function, that is, A= 1U ,

�(A) otherwise.
(2.7)

Then φ� is a subbase of one I-fuzzy topology, and denote this I-fuzzy topology by wi(�).
wi(�) is called the weakly induced modification of �.

Proof. It is trivial to verify that φ� is a subbase of one I-fuzzy topology. �

Theorem 2.9. Let (IX ,�) be an I-fuzzy topological space. Then wi(�) is the smallest weakly
induced I-fuzzy topology bigger than �. Hence, if � is weakly induced, then �=wi(�).
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Proof. We need to prove that wi(�)(A) ≤ ∧r∈I0
wi(�)(1σr (A)), that is, wi(�)(A) ≤

wi(�)(1σr (A)) for all r ∈ I0. In fact, noting that

wi(�)(A)=
∨

∨
λ∈ΛBλ=A

∧

λ∈Λ

∨

(�)β∈ΛλCλβ=Bλ

∧

β∈Λλ

φ�(Cλβ
)
,

wi(�)
(
1σr (A)

)=
∨

∨
λ∈ΛBλ=1σr (A)

∧

λ∈Λ

∨

(�)β∈ΛλCλβ=Bλ

∧

β∈Λλ

φ�(Cλβ
)
,

(2.8)

we have wi(�)(A)≤wi(�)(1σr (A)) according to φ�(Cλβ)≤ φ�(1σr (Cλβ)), as desired.
We now prove that wi(�) is the smallest weakly induced I-fuzzy topology bigger than

�. Let �∗ be any weakly induced I-fuzzy topology on X bigger than �. We need to prove
that wi(�)≤�∗. It suffices to show that φ�(A)≤�∗(A) for all A∈ IX . Then it suffices
to show that φ�(1U)≤�∗(1U) for all U ⊆ X , and this can be obtained by the following
computation:

φ�(1U)=
∨

r∈I0

∨{
�(B) | σr(B)=U

}≤
∨

r∈I0

∨{
�∗(B) | σr(B)=U

}

≤
∨

r∈I0

∨
{
∧

s∈I0

�∗(1σs(B)) | σr(B)=U

}

≤�∗
(
1U
)
,

(2.9)

thus the conclusion. �

Lemma 2.10. Let (IY ,�) be weakly induced and let (IX ,�) be an I-fuzzy topological space.
Then f →I : (IY ,�)→ (IX ,�) is I-fuzzy continuous if and only if f →I : (IY ,�)→ (IX ,wi(�))
is I-fuzzy continuous.

Proof. The sufficiency is obvious. We need to prove the necessity. It suffices to show that
φ�(A)≤�( f ←I (A)) for all A= 1U ∈ IX . Since f →I : (IY ,�)→ (IX ,�) is I-fuzzy continu-
ous, we have

φ�(1U
)=

∨

r∈I0

∨{
�(B) | σr(B)=U

}≤
∨

r∈I0

∨{
�
(
f ←I (B)

) | σr(B)=U
}≤�

(
f ←I
(
1U
))

,

(2.10)

thus the conclusion. �

Remark 2.11. From Lemma 2.10 above, we also can get that f →I : (IX ,wi(�)) → (IY ,
wi(�)) is I-fuzzy continuous if f →I : (IX ,�)→ (IY ,�) is I-fuzzy continuous. Hence wi
is another functor from I-FTOP to I-WIFTOP. Furthermore, we have the following the-
orem.

Theorem 2.12. wi is the right adjoint of i.

From Theorems 2.7 and 2.12, we have the main theorem in this paper as follows.

Theorem 2.13. I-WIFTOP is a reflective and coreflective full subcategory of I-FTOP.

By the properties of right adjoint, we have the following corollaries.
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Corollary 2.14. Let (IX ,�) be an I-fuzzy topological space and Y ⊆ X . Then wi(� | Y)=
wi(�) | Y .

Corollary 2.15. Let {(IXt ,�t)}t∈T be a family of I-fuzzy topological spaces and X =
∏

t∈T Xt. Then wi(
∏

t∈T �t)=
∏

t∈T wi(�t).

Theorem 2.16. Let {(IXt ,�t)}t∈T be a family of I-fuzzy topological spaces and let different
X ′t s be disjoint. Then wi(

⊕
t∈T �t)=

⊕
t∈T wi(�t).

Proof. First, we have
⊕

t∈T
wi
(
�t
)
(A)=

∧

t∈T
wi
(
�t
)(
A | Xt

)≤
∧

t∈T

∧

r∈I0

wi
(
�t
)(

1σr (A|Xt)
)

=
∧

t∈T

∧

r∈I0

wi
(
�t
)(

1σr (A) | Xt
)=

∧

r∈I0

∧

t∈T
wi
(
�t
)(

1σr (A) | Xt
)

=
∧

r∈I0

⊕

t∈T
wi
(
�t
)(

1σr (A)
)
.

(2.11)

Hence,
⊕

t∈T wi(�t) is weakly induced. Therefore, wi(
⊕

t∈T �t)≤
⊕

t∈T wi(�t).
Conversely, let λ <

⊕
t∈T wi(�t)(A), that is,

λ <
⊕

t∈T
wi
(
�t
)
(A)=

∧

t∈T
wi
(
�t
)(
A | Xt

)=
∧

t∈T

∨

∨
λ∈Λt D

t
λ=A|Xt

∧

λ∈Λt

∨

(�)β∈Λtλ
Et
λβ=Dt

λ

∧

β∈Λt
λ

φ�t
(
Et
λβ

)
.

(2.12)

Then, for all t ∈ T , there exists {Dt
λ}λ∈Λt ⊆ IXt such that

(i)
∨

λ∈Λt Dt
λ = A | Xt;

(ii) for each λ∈Λt, there exists {Et
λβ}β∈Λt

λ
⊆ IXt such that (�)β∈Λt

λ
Et
λβ =Dt

λ;

(iii) for each β ∈Λt
λ, we have λ≤ φ�t (Et

λβ).

Let (Dt
λ)∗ ∈ IX and (Et

λβ)∗ ∈ IX be defined as follows:

(
Dt

λ

)∗
(x)=

⎧
⎨

⎩

Dt
λ(x), x ∈ Xt,

0, x �∈ Xt,

(
Et
λβ

)∗
(x)=

⎧
⎨

⎩

Et
λβ(x), x ∈ Xt,

0, x �∈ Xt.

(2.13)

Then we have
∨

t∈T

∨

λ∈Λt

(
Dt

λ

)∗ =A, (�)β∈Λt
λ

(
Et
λβ

)∗ = (Dt
λ

)∗
, φ�t

(
Et
λβ

)= φ⊕t∈t�t

((
Et
λβ

)∗)
.

(2.14)

Therefore, λ≤ φ⊕t∈t�t ((Et
λβ)∗) due to λ≤ φ�t (Et

λβ). Note that

wi

(
⊕

t∈T
�t

)

(A)=
∨

∨
λ∈ΛBλ=A

∧

λ∈Λ

∨

(�)β∈ΛλCλβ=Bλ

∧

β∈Λλ

φ⊕t∈T�t
(
Cλβ

)
. (2.15)
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We have λ≤wi(
⊕

t∈T �t)(A). Then
⊕

t∈T wi(�t)(A)≤wi(
⊕

t∈T �t)(A). This completes
the proof. �

The readers can easily prove the following theorem.

Theorem 2.17. Let (IX ,�) be an I-fuzzy topological space and let (IY ,�/ f →I ) be the I-
fuzzy quotient space of (IX ,�) with respect to f : X → Y . If (IX ,�) is weakly induced, then
(IY ,�/ f →I ) is weakly induced.

3. On the relationships between
several categories

In Section 2, we study weakly induced modifications of I-fuzzy topologies. Since weakly
induced and induced topological spaces play an important role in L-topology, in this
section, we will study induced I-fuzzy topologies and the relationships between the cat-
egories FYS, I-WIFTOP, I-SFTOP, I-IFTOP, and I-FTOP, where I-IFTOP and I-SFTOP
denote the categories of induced I-fuzzy topological spaces and stratified I-fuzzy topolog-
ical spaces, respectively. In the following discussion, we always assume that I-TOP denotes
the category of stratified Chang-Goguen topological spaces. We know that TOP can be
regarded as a full (moreover, simultaneously reflective and coreflective) subcategory of
I-TOP by Lowen functors. Zhang [16] proved that TOP is a reflective and coreflective
full subcategory of FYS and FYS is a reflective and coreflective full subcategory of I-TOP.
From [15], we know that FYS is isomorphic to I-IFTOP. We will prove that I-IFTOP is a
reflective and coreflective full subcategory of I-SFTOP and I-IFTOP is a coreflective full
subcategory of I-WIFTOP.

Let (IX ,�) be an I-fuzzy topological space and let [�] : P(X) → I be defined by
[�](U)=�(1U) for all U ∈ P(X). Then it is easy to verify that [�] is a fuzzifying topol-
ogy on X .

Definition 3.1 [15]. Let (IX ,�) be an I-fuzzy topological space. [�] is called the back-
ground topology of � and (X , [�]) is called the background space of (IX ,�).

From the definition above, we get a functor [·] from I-FTOP to FYS. It is easy to verify
the following two theorems.

Theorem 3.2. If f →I : (IX ,�1)→ (IY ,�2) is I-fuzzy continuous, then f : (X , [�1])→ (Y ,
[�2]) is a fuzzifying continuous.

Theorem 3.3. Let {(IXt ,�t)}t∈T be a family of I-fuzzy topological spaces and let different
X ′t s be disjoint. Then [

⊕
t∈T �t]=

⊕
t∈T[�t].

Definition 3.4 [15]. Let (IX ,�) be an I-fuzzy topological space on X . If �(A) =
∧

r∈I0
�(1σr (A)) for all A∈ IX , then (IX ,�) is called an induced I-fuzzy topological space.

If �(λ̄)= 1 for all λ∈ I , where λ̄ is the constant function from X to I with value λ, then
(X ,�) is called a stratified I-fuzzy topological space.

Lemma 3.5 [15]. Let � be an I-fuzzy topology on X and let φ� : P(X)→ I be defined by
φ�(U) =∨r∈I

∨{�(B) | B ∈ IX ,σr(B) = U} for U ∈ P(X). Then φ� is the subbase of one
fuzzifying topology, and let this fuzzifying topology be denoted by ι(�).
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Definition 3.6 [15]. Let � be an I-fuzzy topology on X . ι(�) is called a generated fuzzi-
fying topology by �.

We get another functor ι from I-FTOP to FYS.

Lemma 3.7 [15]. Let(X ,ξ) be a fuzzifying topological space and define ω(ξ) : IX → I as
follows: ω(ξ)(A)=∧r∈I0

ξ(σr(A)) for all A∈ IX . Then ω(ξ) is an I-fuzzy topology on X .

From Lemma 3.7, we know that ω is a functor from FYS to I-FTOP.

Lemma 3.8 [15]. (1) For every ξ ∈ FYS(X), ι(ω(ξ))= ξ.
(2) For every �∈ L-FTOP(X), ω(ι(�))≥�. If �= ω(ξ), then ω(ι(�))=�.

Corollary 3.9 [15]. Both ω : FYS(X) → ω(FYS(X)) and ι : ω(FYS(X)) → FYS(X) are
complete lattice isomorphisms.

Corollary 3.10. FYS is isomorphic to I-IFTOP.

Now we begin to study the relations between the categories FYS, I-WIFTOP, I-SFTOP,
I-IFTOP, and I-FTOP. Firstly, we give the left adjoint and the right adjoint of the inclusion
functor i from I-IFTOP to I-FTOP.

Lemma 3.11. Let (IX ,�) be a stratified I-fuzzy topological space and let (IY ,�) be an in-
duced I-fuzzy topological space. Then f →I : (IX ,�)→ (IY ,�) is I-fuzzy continuous if and
only if f →I : (IX ,ω([�]))→ (IY ,ω([�]))= (IY ,�) is I-fuzzy continuous.

Proof. Since (IX ,�) is stratified, we have

ω
(
[�]

)
(A)=

∧

r∈I0

�
(
1σr (A)

)=
∧

r∈I0

�(r̄)∧�
(
1σr (A)

)

≤
∧

r∈I0

�
(
r̄1σr (A)

)≤�

(
∨

r∈I0

r̄1σr (A)

)

=�(A).

(3.1)

Hence we get that f →I : (IX ,�)→ (IY ,�) is I-fuzzy continuous if f →I : (IX ,ω([�]))→
(IY ,ω([�]))= (IY ,�) is I-fuzzy continuous. Conversely, let f →I : (IX ,�)→ (IY ,�) be I-
fuzzy continuous, that is, �(B) ≤�( f ←I (B)) for all B ∈ IY . Since � is induced, we have
�(B)=∧r∈I0

�(1σr (B)). Hence

�(B)=
∧

r∈I0

�
(
1σr (B)

)≤
∧

r∈I0

�
(
f ←I
(
1σr (B)

))=
∧

r∈I0

�
(
1σr ( f ←I (B))

)= ω
(
[�]

)(
f ←I (B)

)
.

(3.2)

Therefore f →I : (IX ,ω([�]))→ (IY ,�) is I-fuzzy continuous. �

Lemma 3.12. Let (IX ,�) be an I-fuzzy topological space and let (IY ,�) be an induced I-
fuzzy topological space. Then f →I : (IY ,�)→ (IX ,�) is I-fuzzy continuous if and only if
f →I : (IY ,�)→ (IX ,ω ◦ ι(�)) is I-fuzzy continuous.
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Proof. The sufficiency is obvious. We need to prove the necessity. In fact, we have

ω
(
ι(�)

)
(A)=

∧

r∈I0

∨

⋃
λ∈ΛVλ=σr (A)

∧

λ∈Λ

∨

(�)β∈ΛλWλβ=Vλ

∧

β∈Λλ

∨

μ∈I0

∨{
�(D) | σμ(D)=Wλβ

}

≤
∧

r∈I0

∨

⋃
λ∈ΛVλ=σr (A)

∧

λ∈Λ

∨

(�)β∈ΛλWλβ=Vλ

∧

β∈Λλ

∨

μ∈I0

∨{
�
(
f ←I (D)

) | σμ(D)=Wλβ
}

≤
∧

r∈I0

∨

⋃
λ∈ΛVλ=σr (A)

∧

λ∈Λ

∨

(�)β∈ΛλWλβ=Vλ

∧

β∈Λλ

�
(
1 f ←(Wλβ)

)≤�
(
f ←I (A)

)
,

(3.3)

thus the conclusion. �

From Lemmas 3.11 and 3.12, we have the following theorems.

Theorem 3.13. (1) ω ◦ ι is the right adjoint of the inclusion functor i : I-IFTOP→ I-FTOP.
(2) ω ◦ [·] is the left adjoint of the inclusion functor i : I-IFTOP→ I-SFTOP.

Theorem 3.14. I-IFTOP is a reflective and coreflective full subcategory of I-SFTOP and I-
IFTOP is a coreflective full subcategory of I-WIFTOP. Hence, I-IFTOP is also a coreflective
full subcategory of I-FTOP.

Corollary 3.15. FYS is a reflective and coreflective full subcategory of I-SFTOP. Hence
TOP is a reflective and coreflective full subcategory of I-SFTOP.
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