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If (R,M) and (S,N) are quasilocal (commutative integral) domains and f : R→ S is a
(unital) ring homomorphism, then f is said to be a strong local homomorphism (resp.,
radical local homomorphism) if f (M) = N (resp., f (M) ⊆ N and for each x ∈ N , there
exists a positive integer t such that xt ∈ f (M)). It is known that if f : R→ S is a strong
local homomorphism where R is a pseudovaluation domain that is not a field and S is
a valuation domain that is not a field, then f factors via a unique strong local homo-
morphism through the inclusion map iR from R to its canonically associated valuation
overring (M : M). Analogues of this result are obtained which delete the conditions that
R and S are not fields, thus obtaining new characterizations of when iR is integral or radi-
cial. Further analogues are obtained in which the “pseudovaluation domain that is not
a field” condition is replaced by the APVDs of Badawi-Houston and the “strong local
homomorphism” conditions are replaced by “radical local homomorphism.”

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Pseudovaluation domains (for short, PVDs) were introduced by Hedstrom and Houston
[21]. PVDs and their generalizations to the context of rings with nontrivial zero-divisors
have been studied extensively (see, e.g., [1, 2, 4–11, 14–17, 19, 21–23, 25, 26]), but none
of these studies featured categorical aspects. Recently, in [3], we presented a categorical
study, emphasizing reflective subcategories, of some classes of quasilocal (commutative
integral) domains that are “close” to PVDs. These included the domains that we called
�-domains, and pseudo-�-domains (whose definitions are recalled later in this section).
In [3], we obtained two results showing that certain naturally occurring inclusions of
categories admit left adjoint functors. For convenience, equivalent formulations of those
results are stated in Theorems 2.1 and 2.2 in terms of universal mapping properties. The
morphisms that figure in these statements are the special type of (unital) local ring ho-
momorphism f : (R,M)→ (S,N) such that f (M)=N ; we called such an f a “strong local
homomorphism” (or an sl-homomorphism) in [3]. Unfortunately, the techniques in [3]
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require that the domains considered in Theorems 2.1 and 2.2 not be fields. The main goal
of the present paper is to investigate the effect on results like these theorems if one allows
the relevant PVDs, valuation domains, �-domains ,and pseudo-�-domains to be fields.

Example 2.3 shows that additional hypotheses are needed if one is to obtain posi-
tive results while dealing with fields. Our main positive results are given in Theorems
2.5 and 2.8. Loosely stated, these theorems can be summarized by saying that under
certain conditions, universal mapping properties characterize when the inclusion map
iR : (R,M) → (M : M) is radicial (in the sense of [20]), while (not necessarily univer-
sal) mapping properties characterize when iR is integral. Although Theorem 2.5 con-
tinues the study from [3] of ring homomorphisms R→ S whose domains R are PVDs,
the codomains S of those homomorphisms are generalized from being valuation do-
mains (as they were in Theorem 2.1) to being �-domains. In addition, by replacing the
sl-homomorphisms with a more general type of local map that we call a “radical local
homomorphism,” we obtain in Theorem 2.8 an analogue of Theorem 2.5 in which the
PVDs are replaced by the more general almost pseudovaluation domains (or APVDs)
that were recently introduced by Badawi and Houston [11].

We close this introduction by giving two paragraphs of background. Following [3],
we adopt the following notation and terminology, given a quasilocal domain (R,M) with
quotient field K . Let �(R) := (M : M) = {x ∈ K | xM ⊆M}, and let iR : R↩�(R) be
the inclusion map. Of course, �(R) is an overring of R, that is, a ring contained be-
tween R and K . Recall from [2, Proposition 2.5] that R is a PVD if and only if �(R) is
a valuation domain with maximal ideal M; furthermore, in this case, we have Spec(R)=
Spec(�(R)) (where, as usual, Spec(A) denotes the set of all prime ideals of a commuta-
tive ring A). In particular, if R is a PVD, then iR is an sl-homomorphism. We say that (the
ambient quasilocal domain) R is a �-domain if �(R) = R; and a pseudo-�-domain if
Spec(�(R))= Spec(R) (as sets). As recorded in [3, Remarks 3.1], it is clear that every val-
uation domain is a �-domain, every PVD is a pseudo-�-domain, and every �-domain
is a pseudo-�-domain. However, [3, Examples 3.2 and 3.3] show that a �-domain need
not be a valuation domain and a pseudo-�-domain need not be a PVD.

Finally, to complete the summary of background, we recall two results for motivational
purposes. It was observed in [3, Corollary 3.7] that (the ambient quasilocal domain) R
is a pseudo-�-domain if and only if there exists a one-to-one sl-homomorphism u from
R to a �-domain T . Moreover (by [3, Proposition 3.9]), if u : R→ T is a one-to-one sl-
homomorphism from a pseudo-�-domain R to a �-domain T such that neither R nor
T is a field, then the following universal mapping property holds: for each �-domain
S which is not a field and each sl-homomorphism f : R→ S, there exists a unique sl-

homomorphism ˜f : T → S such that ˜f u= f .

2. Results

We begin by stating a result from [3] that is the culmination of an “orthogonality” study
of pseudovaluation domains. Let PVD denote the category whose objects are the pseu-
dovaluation domains that are not fields with sl-homomorphisms as morphisms, and let
VD be the full subcategory of PVD whose objects are all the valuation domains that are
not fields. It was shown in [3, Corollary 2.9] that VD is a reflective subcategory of PVD;
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that is, that the inclusion functor VD → PVD has a left adjoint functor (and that the
reflection functor PVD→ VD assigns to a pseudovaluation domain (R,M) that is not a
field its canonically associated valuation domain �(R)). Theorem 2.1 gives an equivalent
formulation of [3, Corollary 2.9] in terms of a universal mapping property. Note that this
formulation is in the same spirit as the final result [3, Proposition 3.9] that was recalled
in the introduction.

Theorem 2.1 [3, Corollary 2.9]. Let iR : R↩�(R) be the inclusion map from a pseudoval-
uation domain R to its canonically associated valuation domain �(R). Suppose also that R
is not a field (in which case �(R) is also not a field). Then the following universal mapping
property holds: for each valuation domain S which is not a field and each sl-homomorphism

f : R→ S, there exists a unique sl-homomorphism ˜f : T → S such that ˜f iR = f .

By pursuing the categorical (especially, “orthogonal”) work that had led to [3, Corol-
lary 2.9], we obtained in [3, Corollary 3.5] the following analogue: the full subcategory
consisting of �-domains that are not fields is reflective in the category of pseudo-�-
domains that are not fields (with morphisms, the strong local homomorphisms). In the
spirit of Theorem 2.1, we next state an equivalent formulation of [3, Corollary 3.5] in
terms of a universal mapping property.

Theorem 2.2 [3, Corollary 3.5]. Let R be a pseudo-�-domain and iR : R↩�(R) the
canonical inclusion map. Suppose also that R is not a field (in which case �(R) is also not
a field). Then the following universal mapping property holds: for each �-domain S which
is not a field and each sl-homomorphism f : R→ S, there exists a unique sl-homomorphism
˜f : T → S such that ˜f iR = f .

Notice that Theorem 2.2 can be considered an analogue of Theorem 2.1 in that we
changed the types of rings being considered, by replacing pseudovaluation domains and
valuation domains with �-domains and pseudo-�-domains, respectively. The purpose
of this paper is to develop additional analogues, this time by enlarging the categories
in which the (possibly universal) mapping properties reside. We begin by showing that if
one weakens “sl-homomorphism” to “local homomorphism” and permits the codomains
of morphisms to be pseudovaluation domains (that are not fields) rather than valuation
domains (or, at least, �-domains), then a (universal) mapping property of the kind es-
tablished in Theorems 2.1 and 2.2 is no longer available.

Example 2.3. There exist a PVD, (R,M), with associated valuation domain V :=�(R) :=
(M : M) and inclusion map iR : R→ V , and a local homomorphism f from R to some
PVD, (H ,P), such that there does not exist a ring homomorphism g : V →H such that
giR = f .

Let X , Y be analytically independent indeterminates over C. Consider the valuation
domain V := C[[X]]= C+M, with maximal ideal M = XV . Then R :=R+M is a PVD
with canonically associated valuation domain V . Put H := R + XC(Y)[[X]]. Observe
that H is a PVD with associated valuation domain C(Y)[[X]] and maximal ideal P :=
XC(Y)[[X]]. Take f to be the inclusion map R↩H . Observe that f is a local homomor-
phism (but not an sl-homomorphism) since M ⊂ P. It remains only to show that there
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does not exist a ring homomorphism g : V → H such that giR = f . In fact, there does
not exist a (unital) ring homomorphism g : V →H , for any such g would have to satisfy
g(i)2 =−1 and a simple order argument confirms that H does not contain any element h
such that h2 =−1.

Thanks to a referee, we can also provide the following second example. This example
has the virtue of featuring a field in the role of H , and thus explains the need for addi-
tional hypotheses (such as H/P being algebraically closed) in Theorems 2.5 and 2.8. Let
R and V be as above, but in this new example, take H := R, identified with R/M, and
take f : R→H to be the canonical surjection. Then one sees as above that there is no ring
homomorphism g : V →H , to complete the proof.

In view of the preceding example, we focus again on sl-(rather than on local) homo-
morphisms. By doing so, we show in Theorem 2.5(b) that some PVDs have a universal
mapping property relative to morphisms with rather general codomains. To prepare for
that result, we first develop some field-theoretic material.

As in [24], if K and L are fields and σ : K → L is a (unital) ring homomorphism (i.e., a
unital K-algebra homomorphism), we call σ an embedding (of K in L). Embeddings are
necessarily one-to-one. Certain field-theoretic embeddings, such as inclusion maps into
splitting fields or in particular algebraic closures, have important mapping properties (cf.
[24, Theorem 2.8, page 233]). The next lemma collects two such properties which will
be used in proving the two (new) theorems in this section. Although Lemma 2.4 may be
known, we include a proof for the sake of completeness.

Lemma 2.4. Let σ : K → L be an embedding of a field K in a field L. (e.g., K could be a
subfield of a field L, with σ the inclusion map from K to L.) Then

(a) the following two conditions are equivalent:
(1) for each embedding τ : K → F of K in an algebraically closed field F, there exists

at least one embedding ρ : L→ F such that ρσ = τ;
(2) L is an algebraic field extension of K ;

(b) the following two conditions are equivalent:
(i) for each embedding τ : K → F of K in an algebraically closed field F, there exists

a unique embedding ρ : L→ F such that ρσ = τ;
(ii) L is a purely inseparable (algebraic) field extension of K .

Proof. For simplicity of notation, we view σ and τ as inclusion maps.

(a) For (2)⇒(1), apply the above-mentioned mapping property [24, Theorem 2.8,
page 233]. If the converse fails, choose an element Y ∈ L that is transcendental
over K . Take F to be an algebraic closure of K , with τ : K → F as the inclusion
map. By (1), there exists an embedding ρ : L→ F such that ρσ = τ. In particular,
ρ(Y) is algebraic over K . Hence, there exists a monic polynomial h(X)=∑aiXi ∈
K[X] such that 0 = h(ρ(Y)) =∑aiρ(Y)i = ρ(

∑

aiY i). Being an embedding, ρ is
necessarily one-to-one, whence

∑

aiY i = 0, contradicting the transcendence of
Y , thus completing the proof that (1)⇒(2).

(b) For (ii)⇒(i), argue that at least one suitable ρ exists as in the proof of (2)⇒(1). To
establish the uniqueness of ρ, note (by the “purely inseparable” hypothesis) that
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each element α∈ L has a minimum polynomial over K , say h(X), with a unique
root in F and ρ must send α to this root. (Indeed, if h(X)=∑aiXi ∈ K[X], then
h(ρ(α))=∑aiρ(α)i = ρ(

∑

aiαi)= ρ(0)= 0.)
(i)⇒(ii). Assume (i). In particular, (1) holds. As we have shown that (1)⇒(2),

L is algebraic over K . Take F to be an algebraic closure of K , with τ : K → F as
the inclusion map. If the assertion fails, some element α ∈ L has a minimum
polynomial over K , say h(X), with at least two distinct roots, say α �= β, in F.
Then a standard fact about splitting fields (cf. [24, Theorem 2.8, page 233]) yields
embeddings ρ1,ρ2 : L→ F that extend τ and satisfy ρ1(α) = α and ρ2(α) = β. As
α �= β, we have ρ1 �= ρ2, contradicting the uniqueness in (i), to complete the proof.

�

The next result removes the restrictions to nonfields that appeared in Theorem 2.1
(and Theorem 2.2). Notice, in particular, that the hypotheses of Theorem 2.5 allow the
possibility that the PVD, R, is a field. For background on radicial homomorphisms, see
[20, pages 246–249].

Theorem 2.5. Let (R,M) be a PVD with associated valuation domainV =�(R)= (M : M)
and, as usual, let iR : R→V denote the inclusion map. Then

(a) the following seven conditions are equivalent:

(1) for each sl-homomorphism f : R→ (H ,P) such that H is a �-domain and H/P
is an algebraically closed field, there exists an sl-homomorphism g : V →H such
that giR = f ;

(2) for each sl-homomorphism f : R→ (H ,P) such that H is a valuation domain
and H/P is an algebraically closed field, there exists an sl-homomorphism g :
V →H such that giR = f ;

(3) for each sl-homomorphism f : R→H such that H is an algebraically closed field,
there exists an sl-homomorphism g : V →H such that giR = f ;

(4) R/M↩V/M is an algebraic field extension;
(5) V is integral over R;
(6) V is the integral closure of R (in the quotient field of R);
(7) each overring of R is a PVD;

(b) the following five conditions are equivalent:

(i) for each sl-homomorphism f : R→ (H ,P) such that H is a �-domain and H/P
is an algebraically closed field, there exists a unique sl-homomorphism g : V →H
such that giR = f ;

(ii) for each sl-homomorphism f : R→ (H ,P) such that H is a valuation domain
and H/P is an algebraically closed field, there exists a unique sl-homomorphism
g : V →H such that giR = f ;

(iii) for each sl-homomorphism f : R→H such that H is an algebraically closed field,
there exists a unique sl-homomorphism g : V →H such that giR = f ;

(iv) R/M↩V/M is a purely inseparable (algebraic) field extension;
(v) V is radicial over R (i.e., iR is a radicial homomorphism).
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Proof. (a) (7)⇔(6). See [22, Proposition 2.7], [16, Proposition 4.2].
(6)⇔(5). This is valid, more generally, for any valuation overring V of a domain R.
(5)⇔(4). This can be shown by a direct calculation or, alternatively, by applying a

basic result about pullbacks (see [18, Corollary 1.5(5)], [12, Lemme 2]) to the pullback
description of R as V ×V/M (R/M).

(4)⇒(1). Assume (4), and let f : R→ (H ,P) be a strong local homomorphism such
that H is a �-domain and H/P is an algebraically closed field. We must find an sl-
homomorphism g : V → H such that giR = f . If H is not a field, the assertion follows
(and, in fact, gives a unique such g) from [3, Theorem 2.4] (which applies since �(H)=
H by hypothesis). Thus, without loss of generality, we may assume that H is an alge-
braically closed field. The “strong local” condition ensures that f (M) = P = 0, and so
by the universal mapping property of factor rings (cf. [24, page 89]), f factors through
R/M. In other words, if π1 denotes the canonical projection R → R/M, then there is
an embedding j : R/M → H such that jπ1 = f . For convenience of notation, we view
j as an inclusion map. Let k : R/M → V/M denote the canonical embedding; for con-
venience of notation, we view k as an inclusion map as well. Since V/M is algebraic
over R/M by (4) and H is algebraically closed, an application of Lemma 2.4(a) pro-
duces an embedding ρ such that ρk = j. Furthermore, it is clear that if π2 denotes the
canonical projection V → V/M, then π2iR = kπ1. Therefore, the ring homomorphism
g := ρπ2 satisfies giR = ρπ2iR = ρkπ1 = jπ1 = f . Moreover, g is an sl-homomorphism,
since g(M)= ρπ2(M)= ρ(0)= 0= P, as desired.

(1)⇒(2)⇒(3). Trivial.
(3)⇒(4). As above, view V/M as an extension field of R/M via the canonical embed-

ding k : R/M↩V/M. Now, suppose the assertion fails. Choose X to be an element of
some transcendence basis of V/M over R/M. Choose an algebraic closure F of R/M; let
τ : R/M↩ F be an embedding, viewed for convenience as an inclusion map. As above,
let π1 : R→ R/M and π2 : V → V/M denote the canonical projection maps. Observe that
the ring homomorphism f := τπ1 from (R,M) to (F,0) is a strong local homomorphism,
since f (M) = τπ1(M) = τ(0) = 0. Therefore, by (3), there exists an sl-homomorphism
g : V → F such that giR = f . As g is an sl-homomorphism, g(M) = 0, and so g factors
through V/M. Thus, there exists an embedding ρ : V/M → F such that ρπ2 = g. Since
Y := ρ(X) ∈ F, it must be that Y is algebraic over R/M. Therefore, we can write Yn +
∑n−1

i=0 αiY i = 0 for some finite sequence of elements αi ∈ R/M. Then, since ρ is a ring ho-
momorphism which fixes each element of R/M, we have

0= ρ(X)n +
n−1
∑

i=0

αiρ(X)i = ρ

(

Xn +
n−1
∑

i=0

αiX
i

)

. (2.1)

Since ρ is an injection, it now follows that 0= Xn +
∑n−1

i=0 αiXi. This contradicts the tran-
scendence of X over R/M and completes the proof of (a).

(b) (v)⇔(iv). V is radicial over R if and only if the following two conditions hold: the
canonical map Spec(V) → Spec(R) is a bijection; and if Q ∈ Spec(V) and P := Q∩ R,
then the canonical field extension qf(R/P)↩ qf(V/Q) is purely inseparable (algebraic)
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(cf. [20, Proposition 3.7.1, page 246]). Now, the first of these conditions holds since
Spec(R) = Spec(V). Moreover, if Q is a nonmaximal prime ideal of V and P := Q∩R,
then q f (R/P) = qf(V/Q) since RP = VQ [21, Proposition 2.6]. Thus, the second condi-
tion is, in the present situation, equivalent to (iv).

(iv)⇒(i). Modify the above proof of (4)⇒(1) in part (a) as follows. The earlier proof
establishes the existence of at least one sl-homomorphism g with the desired properties.
To prove uniqueness, suppose that H is an algebraically closed field (without loss of gen-
erality) and h is an(other) sl-homomorphism h : V →H such that hiR = f . Let π1, π2, and
k be as in the earlier proof. As in that proof, the “strong local” nature of f ensures the exis-
tence of a unique ring homomorphism j : R/M→H such that jπ1 = f . (For convenience
of notation, view k and j as inclusion maps.) Similarly, since h(M)= P = 0, the “strong
local” nature of h ensures the existence of a unique ring homomorphism ρ : V/M → H
such that ρπ2 = h. Now, if r ∈ R, then

ρk(r +M)= ρkπ1(r)= ρπ2iR(r)= ρπ2(r)

= h(r)= hiR(r)= f (r)= jπ1(r)= j(r +M).
(2.2)

Hence, ρk = j. As we are assuming in (iv) that V/M is purely inseparable over R/M, it
follows from Lemma 2.4(b) that the embedding ρ is uniquely determined. Therefore, so
is ρπ2 = h, as desired.

(i)⇒(ii)⇒(iii). Trivial.
(iii)⇒(iv). Assume (iii). Then (3) also holds, and so by part (a), V/M is algebraic over

R/M. Let π1, π2, and k be as above. By Lemma 2.4(b), it suffices to prove that if τ : R/M→
F is an embedding of R/M in an algebraically closed field F and ρ1, ρ2 are embeddings
V/M → F such that ρ1k = τ = ρ2k, then ρ1 = ρ2. Consider the ring homomorphisms f :
R→ F and g1,g2 : V → F defined by f := τπ1 and gi := ρiπ2 (for i= 1,2). Notice that f , g1

and g2 are each strong local homomorphisms. Moreover, g1iR = ρ1π2iR = ρ1kπ1 = τπ1 =
f ; similarly, g2iR = f . Consequently, by (iii), g1 = g2. In other words, ρ1π2 = ρ2π2. As π2

is surjective, it follows that ρ1 = ρ2, to complete the proof. �

In our last main result, Theorem 2.8, we will alter the context of Theorems 2.1, 2.2, and
2.5 by weakening the sl-homomorphism condition. Mindful of Example 2.3, we should
not focus on local homomorphisms, but rather on the following new concept.

Definition 2.6. If (R,M) and (S,N) are each quasilocal domains, then a ring homomor-
phism f : R→ S is called a radical local homomorphism (rl-homomorphism) if f (M)⊆N
and for each x ∈N , there exists a positive integer t such that xt ∈ f (M).

The above definition of rl-homomorphisms was designed to be useful in studying al-
most pseudovaluation domains. Recall from [11] that a quasilocal domain (R,M) is called
an almost pseudovaluation domain (for short, APVD) if (V ,N) := (M :K M) is a valuation
domain in which M is an N-primary ideal; that is, in which RadT(M)=N . (As usual, we
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will let RadA(I) denote the radical of an ideal I in a ring A.) Each PVD is an APVD. For
examples of APVDs that are not PVDs in each Krull dimension ≥ 2, see [13, Example
3.7(1)].

Remarks 2.7. (a) sl-homomorphism ⇒ rl-homomorphism ⇒ local homomorphism;
none of these implications is reversible.

(b) The composite of any rl-homomorphisms is an rl-homomorphism.
(c) If R is an APVD, then the inclusion map iR : R↩�(R) is an rl-homomorphism.

We next give an APVD-theoretic analogue of Theorem 2.5.

Theorem 2.8. Let (R,M) be a APVD, with (V ,N) := (M : M)=:�(R) and, as usual, iR :
R→V denoting the inclusion map. Then

(a) the following six conditions are equivalent:

(1) for each rl-homomorphism f : R→(H ,P) such thatH is a root-closed �-domain
and H/P is an algebraically closed field, there exists an rl-homomorphism g :
V →H such that giR = f ;

(2) for each rl-homomorphism f : R→ (H ,P) such that H is a valuation domain
and H/P is an algebraically closed field, there exists an rl-homomorphism g :
V →H such that giR = f ;

(3) for each rl-homomorphism f : R→H such thatH is an algebraically closed field,
there exists an rl-homomorphism g : V →H such that giR = f ;

(4) R/M↩V/N is an algebraic field extension;
(5) V is integral over R;
(6) V is the integral closure of R (in the quotient field of R);

(b) the following four conditions are equivalent:

(i) for each rl-homomorphism f : R → (H ,P) such that H is a root-closed � -
domain and H/P is an algebraically closed field, there exists a unique rl-
homomorphism g : V →H such that giR = f ;

(ii) for each rl-homomorphism f : R→ (H ,P) such that H is a valuation domain
and H/P is an algebraically closed field, there exists a unique rl-homomorphism
g : V →H such that giR = f ;

(iii) for each rl-homomorphism f : R→H such thatH is an algebraically closed field,
there exists a unique rl-homomorphism g : V →H such that giR = f ;

(iv) R/M↩V/N is a purely inseparable (algebraic) field extension;

(c) assume, in addition, that R has Krull dimension at most 1. Then the four equivalent
conditions in (b) are equivalent to each of the following two conditions:

(v) V is radicial over R (i.e., iR is a radicial homomorphism) and V is integral over
R;

(vi) V is radicial over R (i.e., iR is a radicial homomorphism) and V is the integral
closure of R (in the quotient field of R).

Proof. (a) We noted in the proof of Theorem 2.5(a) that (6)⇔(5) on general principles.
Moreover, it is clear that (5)⇒(4). We show next that (4)⇒(5). Assume (4), and consider



Ahmed Ayache et al. 9

any element v ∈V . As v+N ∈V/N is algebraic over R/M, we have

ξ := vn + rn−1v
n−1 + ···+ r1v+ r0 ∈N (2.3)

for some finite sequence of elements ri ∈ R. However, M is N-primary (since R is an
APVD), and so some integral power of ξ belongs to M. Expanding such a power leads to
an integrality equation for v over R, and so (5) holds.

(4)⇒(1). We adapt the proof of the corresponding implication in Theorem 2.5(a). As-
sume (4). Suppose that (H ,P) and f are as in (1). In proving the existence of a suitable
rl-homomorphism g, we treat two cases.

In the first case, there exists m ∈M such that f (m) �= 0. At this point, we adapt the
construction in the proof of [3, Theorem 2.4]. For each z ∈ V , let g(z) := f (zm)/ f (m).
We claim that g(z) ∈H . Since H is a �-domain, it suffices to prove that g(z) ∈ (P : P);
equivalently, that y := g(z)w ∈ P for each w ∈ P. By the “radical local” property of f ,
there exists a positive integer n such that wn ∈ f (M). As zM ⊆M, it follows that

yn ∈ 1
f
(

mn
) f
(

mnznM
)= 1

f
(

mn
) f
(

mn
)

f
(

znM
)= f

(

znM
)⊆ f (M)⊆ P ⊂H. (2.4)

Since H is assumed to be a root-closed domain, we conclude that y ∈H . As yn ∈ P, we
have y ∈ RadH(P)= P, thus proving the above claim.

We now have a function g : V →H . As in the proof of [3, Theorem 2.4], one checks
that g is a ring homomorphism such that giR = f . For this case, it remains only to es-
tablish the “radical local” property for g. If v ∈ N , then since R is an APVD, there ex-
ists a positive integer t such that vt ∈M, whence g(v)t = g(vt) ∈ g(M)= f (M)⊆ P and
g(v)∈ RadH(P)= P. Moreover, if p ∈ P, the fact that f is a radical local homomorphism
provides a positive integer s and an element m∗ ∈M such that ps = f (m∗). Since giR = f
and M ⊆N , it follows that ps = g(m∗), and so g is radical local, to complete the proof of
the first case.

In the second case, f (M) = 0. As f is an rl-homomorphism, every element of P is
nilpotent. Thus, sinceH is a domain, P = 0, and soH is an algebraically closed field. Then,
as in the proof of Theorem 2.5(a), we can use Lemma 2.4(a) to find an sl-homomorphism
g : V →H such that giR = f . By Remarks 2.7(a) (or since g is unital and H is a field), g is
an rl-homomorphism, as desired.

(1)⇒(2)⇒(3). Trivial.
(3)⇒(4). The following comments explain how to modify the proof of the correspond-

ing implication in Theorem 2.5(a). Replace considerations of V/M throughout with V/N .
As f := τπ1 is a strong local homomorphism, it is also a radical local homomorphism.
After obtaining a radical local homomorphism g : V → F such that giR = f , infer from its
“radical local” property that g(N)= 0, whence g factors through V/N via an embedding
ρ : V/N → F such that ρπ2 = g. The remainder of the proof proceeds as before, mutatis
mutandis.

(b) We sketch how to adapt the above proofs.
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(iv)⇒(i). Modify the above proof of (4)⇒(1) in part (a) as follows. The earlier proof
establishes the existence of at least one rl-homomorphism g with the desired properties.
If f (M) �= 0, there is at most one such g, as it must satisfy the earlier formula g(z) =
f (zm)/ f (m) (for any nonzero m∈M, since g is required to extend f ). Thus, in proving
uniqueness, we may suppose, without loss of generality, that H is an algebraically closed
field, and we consider an(other) rl-homomorphism h : V →H such that hiR = f . For the
rest of the argument, see the proof of (iv)⇒(i) in Theorem 2.5(b), replacing occurrences
of “strong local” with “radical local” and “V/M” with “V/N .”

(i)⇒(ii)⇒(iii). Trivial.
(iii)⇒(iv). It suffices to modify the proof of (iii)⇒(iv) in Theorem 2.5(b) as follows:

replace occurrences of “V/M” with “V/N , and observe that f , g1 and g2 are each radical
local homomorphisms.

(c) (vi)⇔(v). See the above comments concerning (6)⇔(5).
(v)⇒(iv). Since N ∩R=M, it suffices to apply the standard characterization of “radi-

cial” that was mentioned in the proof of (v)⇔(iv) in Theorem 2.5(b).
(iv)⇒(v). Assume (iv). Then, in particular, V/N is algebraic over R/M. By the first

paragraph of the proof of (a), V is integral over R. Since V is an overring of R and the
hypothesis on Krull dimension means that M is the only (possibly) nonzero prime ideal
of R, it follows that if Q ∈ Spec(V) and P := Q∩R, then qf(V/Q) is purely inseparable
(algebraic) over qf(R/P). Therefore, by the above-mentioned characterization of “radi-
cial,” it suffices to prove that the canonical function Spec(V) → Spec(R) is a bijection.
This, in turn, is evident since the “incomparable” property of integrality ensures that N
is the only (possibly) nonzero prime ideal of V . The proof is complete. �

Remarks 2.9. (a) In view of Theorem 2.5(a), it is reasonable to ask if the six equivalent
conditions (1)–(6) in Theorem 2.8(a) are also equivalent to the following condition:

(7) each overring of (the APVD R) is an APVD.
In fact, the answer is in the negative, for Badawi and Houston [11, Example 3.9] have
given an example of a one-dimensional APVD, (R,M), whose integral closure is the valu-
ation domain V := (M : M), although some (integral) overring of R is not an APVD. We
see from that example that, despite expectations possibly raised by Theorem 2.5(b), the
six equivalent conditions (i)–(vi) in Theorem 2.8(c) also fail to be equivalent to condition
(7). However, it follows from [11, Propositions 3.8 and 3.10] that, under the hypotheses of
Theorem 2.8, condition (7) is equivalent to the conjunction of any of the ten conditions
(1)–(6), (i)–(iv) with the condition that each integral overring of R is an APVD.

(b) The above work can be used to motivate a program of domain-theoretic studies
with a categorical flavor. For instance, it is interesting that the integrality of �(R) over
a PVD R, which Theorem 2.5(a) shows is equivalent to the categorical requirement that
certain extensions of ring homomorphisms exist, is also equivalent to the requirement
that each overring of R be a PVD. (cf. also Remarks 2.9(a).) We believe that it would
be valuable to seek categorical characterizations for many of the other instances where
important classes of domains are known to be stable under the formation of overrings.

In addition, in the spirit of Theorem 2.8, it would be interesting to seek other ana-
logues of Theorem 2.5 for some divided domains besides the APVDs. No doubt, this
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would involve introducing variants of the sl- and rl-homomorphism concepts and devel-
oping factorization results for them in the spirit of the work done for sl-homomorphisms
in [3, second half of Section 3].
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