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We introduce the warped product of maps defined between Riemannian warped product
spaces and we give necessary and sufficient conditions for warped product maps to be
(bi)harmonic. We obtain then some characterizations of nontrivial harmonic metrics and
nonharmonic biharmonic metrics on warped product spaces.
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1. Introduction

Let f : (Mm,g) → (Nn,h) be a map between the m-dimensional Riemannian manifold
(M,g) and the n-dimensional Riemannian manifold (N ,h).

The energy of the map f is given by

E( f )=
∫
M
e( f )vg , (1.1)

where vg is the volume form on (M,g) and e( f )(x) := (1/2)‖df (x)‖2
T∗M⊗ f −1TN is the

energy density of f at the point x ∈M. In local coordinates (xi)mi=1 on M and (ya)na=1

on N , the energy density is given by e( f )(x)= (1/2)gi j(x)hab( f (x))(∂ f a/∂xi)(∂ f b/∂x j).
Critical points of the energy functional are called harmonic maps.
The first variational formula of the energy gives the following characterization of

harmonic maps: the map f is harmonic if and only if its tension field τ( f ) vanishes
identically, where the tension field is given by

τ( f ) := traceg∇df = gi j
(

∂2 f a

∂xi∂x j −M Γki j
∂ f a

∂xk
+N Γabc

∂ f b

∂xi
∂ f c

∂x j

)
∂

∂ya
, (1.2)

with MΓki j and NΓabc being the Christoffel symbols of the metrics g and h, respectively.
The theory of harmonic maps was introduced by Eells and Sampson [7] and has been

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 73094, Pages 1–11
DOI 10.1155/IJMMS/2006/73094

http://dx.doi.org/10.1155/S0161171206730940


2 On the biharmonicity of product maps

developed by many authors. The bienergy E2( f ) of the map f is defined by

E2( f ) := 1
2

∫
M

∥∥τ( f )
∥∥2
vg . (1.3)

As it was observed in [1], the bienergy is the first variation of the energy with respect to a
particular variation of the map; precisely that with −τ( f ) as variational vector field.

The map f is said to be biharmonic if it is a critical point of the bienergy functional.
The Euler-Lagrange equation associated to the bienergy functional is given by

τ2( f ) :=−Δ f τ( f )− traceg RN
(
df ,τ( f )

)
df = 0, (1.4)

where Δ f =− traceg(∇ f∇ f −∇ f
∇) is the Laplacian on the sections of f −1(TN), and RN

is the Riemannian curvature operator of (N ,h) (see [8, 9]).
Note that τ2( f ) = −J f (τ( f )), where J f is the Jacobi operator of f , which gives the

second variation of the energy functional at its critical (harmonic) points.
Harmonic maps are obviously biharmonic and are absolute minimum of the bienergy.

In [9], the author proved that harmonicity and biharmonicity are equivalent if M is
compact and RN ≤ 0, or if f is a Riemannian immersion with ‖τ( f )‖ constant (see [11])
and RN ≤ 0.

Examples of nonharmonic biharmonic maps are given in [5] and also in [8], where it is
proved that the generalized Clifford torus Sp(1/

√
2)×Sq(1/

√
2)→ Sm+1 with p+ q =m,

p 
= q, is a nonharmonic biharmonic submanifold of Sm+1.
A classification of nonharmonic biharmonic submanifolds of S3 is given in [3, 4].
The method of conformal deformation of metrics has been used by several authors to

study the existence or properties of (bi)harmonic maps.
In the case of warped or twisted product spaces, the same techniques can be used,

not by deforming conformally the whole metric but by acting only on the warping or
twisting functions. In the present paper we consider a particular class of maps defined
between warped product spaces, the so-called warped product maps, and we examine
(bi)harmonic properties of these maps in relation to that of the component maps. We ap-
ply the results obtained to characterize (bi)harmonic metrics on warped product spaces.

Throughout the paper, manifolds, metrics, and maps are assumed to be smooth.

2. Harmonicity of warped product maps, harmonic metrics, and nonharmonic
biharmonic metrics on warped product spaces

2.1. Warped product of manifolds. Let (M,g) and (N ,h) be two Riemannian manifolds
of dimensions m and n, respectively, and λ∈ C∞(M) a strictly positive function on M.

The warped product of (M,g) and (N ,h), with warping function λ, is the product
manifold M×N endowed with the metric Gλ defined by

Gλ =: π∗g + (λ◦π)2σ∗h, (2.1)

where π and σ are the projections of M×N on M and N , respectively.
The metric Gλ is also called the warped product of the metrics g and h with warping

function λ.
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For X ,Y ∈�(TM) and U ,V ∈�(TN),

Gλ(X +U ,Y +V)= g(X ,Y) + (λ◦π)2h(U ,V), (2.2)

where we use the same convention as in [10] for the notations of vector fields.
Let g∇, h∇, and ∇ be the Levi-Civita connections of (M,g), (N ,h), and (M×N ,Gλ),

respectively. We have the following (see [10]).

Lemma 2.1. For X ,Y ∈�(TM) and U ,V ∈�(TN), it holds that

(i) π∗(∇XY)= g∇XY and σ∗(∇XY)= 0,

(ii) ∇XU =∇UX = (dλ(X)/λ)U ,

(iii) π∗(∇UV)=−(〈U ,V〉/λ)gradλ=−λh(U ,V)gradλ,

(iv) σ∗(∇UV)=h ∇UV .

Let (X1,X2, . . . ,Xm+n) = (x1,x2, . . . ,xm,u1,u2, . . . ,un) be a local coordinates system in
M×N , where (x1,x2, . . . ,xm) and (u1,u2, . . . ,un) are local coordinates systems inM andN ,
respectively. We use the indices notations Î , Ĵ , K̂ , . . .∈ {1, . . . ,m+n} on M×N , i, j,k, . . .∈
{1, . . . ,m} on M, and ī, j̄, k̄, . . . ∈ {1, . . . ,n} on N and for Î , Ĵ , K̂ , . . . ∈ {1, . . . ,m}, we put
Î = i, Ĵ = j, K̂ = k, . . .; for Î , Ĵ , K̂ , . . .∈ {m, . . . ,m+ n}, we put Î =m+ ī ≡ ī, Ĵ =m+ j̄ ≡ j̄,
K̂ =m+ k̄ ≡ k̄. We have

Gλ =
(
GλÎĴ

)=
(
gi j 0
0 λ2hī j̄

)
, G−1

λ =
(
GÎĴ
λ

)
=
(
gi j 0
0 λ−2hī j̄

)
. (2.3)

Let 1Γki j ,
2Γk̄ī j̄ , and ΓK̂

Î Ĵ
be Christoffel’s symbols on (M,g), (N ,h), and (M×N ,Gλ), respec-

tively.
A direct computation from Lemma 2.1 leads to the following (see, e.g., [12, page 111]).

Lemma 2.2. (i) Γki j =1 Γki j , for all i, j,k ∈ {1, . . . ,m}.
(ii) Γki j̄ = Γk̄i j = 0, for all i, j,k ∈ {1, . . . ,m} and for all j̄, k̄ ∈ {1, . . . ,n}.

(iii) Γk̄i j̄ = (∂ logλ/∂xi)δk̄j̄ , for all i∈ {1, . . . ,m} and for all j̄, k̄ ∈ {1, . . . ,n}.
(iv) Γkī j̄ =−(1/2)(gradλ2)khī j̄ , for all k ∈ {1, . . . ,m} and for all ī, j̄ ∈ {1, . . . ,n}.
(v) Γk̄ī j̄ =2 Γk̄ī j̄ , for all ī, j̄, k̄ ∈ {1, . . . ,n}.

The relations (i)–(v) of Lemma 2.2 can be also obtained directly from the formula

ΓK̂
Î Ĵ
= 1

2
GK̂L̂
λ

(
∂GλÎL̂

∂XĴ

+
∂GλĴL̂

∂XÎ

− ∂Gλ ÎĴ

∂XL̂

)
. (2.4)

2.2. Warped product maps. Let (M,Gλ) be the warped product of two Riemannian man-
ifolds (M1,g1) and (M2,g2) with warping function λ ∈ C∞(M1), and let (N ,Hρ) be the
warped product of the Riemannian manifolds (N1,h1) and (N2,h2) with warping func-
tion ρ∈ C∞(N1).

Let φ1 : (M1,g1)→ (N1,h1) and φ2 : (M2,g2)→ (N2,h2) be two maps.
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Defintion 2.3. The warped product of φ1 and φ2, with warping functions λ and ρ, is de-
fined as the map Φλ,ρ by

Φλ,ρ :
(
M,Gλ

)−→ (
N ,Hρ

)
,(

P1,P2
) �−→ (

φ1
(
P1
)
,φ2
(
P2
))
.

(2.5)

The maps φ1 and φ2 are then called the components of Φλ,ρ.

Let (X1,X2, . . . ,Xm1+m2 ) = (x1,x2, . . . ,xm1 ,u1,u2, . . . ,um2 ) and (Y1,Y2, . . . ,Yn1+n2 ) = (y1,
y2, . . . , yn1 ,v1,v2, . . . ,vn2 ) be local coordinates systems in M1 ×M2 and N1 ×N2, respec-
tively, defined as above with the same notations’ conventions for the indices for which we
use Î , Ĵ , K̂ on M1×M2; i, j, k on M1; ī, j̄, k̄ on M2; Â, B̂, Ĉ on N1×N2; a, b, c on N1, and
ā, b̄, c̄ on N2.

The second fundamental form of the warped product map Φλ,ρ of φ1 and φ2 is given
by the following.

Lemma 2.4. (i) For i, j ∈ {1, . . . ,m1} and a∈ {1, . . . ,n1},
(∇dΦλ,ρ

)a
i j =

(1∇dφ1
)a
i j . (2.6)

(ii) For i, j ∈ {1, . . . ,m1}, a∈ {1, . . . ,n1}, j̄ ∈ {1, . . . ,m2}, and ā∈ {1, . . . ,n2},
(∇dΦλ,ρ

)ā
i j =

(∇dΦλ,ρ
)a
i j̄ = 0. (2.7)

(iii) For i∈ {1, . . . ,m1} , j̄ ∈ {1, . . . ,m2}, and ā∈ {1, . . . ,n2},

(∇dΦλ,ρ
)ā
i j̄ =−

∂ logλ
∂xi

.
∂φā

2

∂uj̄
+
∂ logρ

∂yb
.
∂φb

1

∂xi
.
∂φā

2

∂uj̄
. (2.8)

(iv) For ī, j̄ ∈ {1, . . . ,m2} and a∈ {1, . . . ,n1},

(∇dΦλ,ρ
)a
ī j̄ =

1
2

(
gradλ2)k ∂φa

1

∂xk
g2ī j̄ − 1

2

(
gradρ2)a ∂φb̄

2

∂uī
· ∂φ

c̄
2

∂uj̄
h2b̄c̄ . (2.9)

(v) For ī, j̄ ∈ {1, . . . ,m2} and ā∈ {1, . . . ,n2},
(∇dΦλ,ρ

)ā
ī j̄ =

(2∇dφ2
)ā
ī j̄ . (2.10)

Let τ(Φλ,ρ), τ(φ1), and τ(φ2) be the tension fields of the warped product map Φλ,ρ and
of its components φ1 and φ2. From Lemma 2.4 we have the following proposition.

Proposition 2.5.

τ
(
Φλ,ρ

)= τ
(
φ1
)

+ λ−2τ
(
φ2
)

+ λ−2
[
m2

2
dφ1

(
gradM1

λ2)− e
(
φ2
)(

gradN1
ρ2)◦φ1

]
,

(2.11)

with dφ1(gradM1
λ2) = [dφa

1(gradM1
λ2)](∂/∂ya), where e(φ2) is the energy density of φ2,

and gradM1
and gradN1

denote the gradient operators on M1 and N1, respectively.
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Proof. We have

τ
(
Φλ,ρ

)=GÎĴ
λ

(∇dΦλ,ρ
)Â
Î Ĵ

∂

∂YÂ

=G
ij
λ

(∇dΦλ,ρ
)a
i j

∂

∂ya
+G

ij
λ

(∇dΦλ,ρ
)ā
i j

∂

∂vā

+G
ī j̄
λ

(∇dΦλ,ρ
)a
ī j̄

∂

∂ya
+G

ī j̄
λ

(∇dΦλ,ρ
)ā
ī j̄

∂

∂vā

= g
i j
1

(1∇dφ1
)a
i j

∂

∂ya
+

1
2
λ−2g

ī j̄
2

(
gradM1

λ2)k ∂φa
1

∂xk
g2ī j̄

∂

∂ya

− 1
2
λ−2g

ī j̄
2

(
gradN1

ρ2)a ∂φb̄
2

∂uī
· ∂φ

c̄
2

∂uj̄
h2b̄c̄

∂

∂ya
+ λ−2g

ī j̄
2

(2∇dφ2
)ā
ī j̄

∂

∂vā
.

(2.12)

By evaluating each term of the second hand member of the last equality, we obtain

g
i j
1

(1∇dφ1
)a
i j

∂

∂ya
= τ

(
φ1
)
,

1
2
λ−2g

ī j̄
2

(
gradM1

λ2)k ∂φa
1

∂xk
g2ī j̄

∂

∂ya
= λ−2 m2

2

[
dφ1

(
gradM1

λ2)],
1
2
λ−2g

ī j̄
2

(
gradN1

ρ2)a ∂φb̄
2

∂uī
· ∂φ

c̄
2

∂uj̄
h2b̄c̄

∂

∂ya
= λ−2 e

(
φ2
)[(

gradN1
ρ2)◦φ1

]
,

λ−2g
ī j̄
2

(2∇dφ2
)ā
ī j̄

∂

∂vā
= λ−2τ

(
φ2
)
.

(2.13)

Thus we get the result. �

The following result is a consequence of the previous proposition.

Corollary 2.6. Let φ1 : (M1,g1)→ (N1,h1) and φ2 : (M2,g2)→ (N2,h2) be two harmonic
maps. The warped product Φλ,ρ of φ1 and φ2, with warping functions λ ∈ C∞(M1) and
ρ∈ C∞(N1), is harmonic if and only if

m2

2
dφ1

(
gradM1

λ2)= e
(
φ2
)(

gradN1
ρ2)◦φ1. (2.14)

2.3. Harmonic metrics on warped product spaces. Let us first recall the definition of
harmonic metrics.

Defintion 2.7. Let (M,g) be a Riemannian manifold. A metric G on M is said to be
harmonic with respect to g if the identity id : (M,g)→ (M,G) is a harmonic map (see
[6] for more information about harmonic metrics).

Let (M ×N ,Gλ) be the warped product of two Riemannian manifolds (M,g) and
(N ,h) with warping function λ∈ C∞(M), λ > 0.

Let Gρ be the metric defined on M×N by Gρ = π∗g + (ρ ◦ π)2σ∗h, with ρ∈ C∞(M),
ρ > 0, where π and σ are as usual the projections of M×N on M and N , respectively. The
following holds.
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Theorem 2.8. Assume M is connected.
The metric Gρ is harmonic with respect to Gλ if and only if

λ2− ρ2 is a constant function on M. (2.15)

Proof. Let �λ,ρ : (M×N ,Gλ)→ (M×N ,Gρ) be the warped product of the identity maps
idM : (M,g)→ (M,g) and id N : (N ,h)→ (N ,h), with warping functions λ and ρ.

The metric Gρ is harmonic with respect to Gλ if and only if �λ,ρ is a harmonic map.
Since idM and idN are harmonic, it follows from Corollary 2.6 that �λ,ρ is a harmonic

map if and only if

n

2
d
(

idM
)[

gradM λ2]= e
(

idN
)(

gradM ρ2)◦ idM . (2.16)

But

e
(

idN
)= n

2
, d

(
idM

)[
gradM λ2]= gradM λ2,

(
gradM ρ2)◦ idM = gradM ρ2.

(2.17)

Thus �λ,ρ is harmonic if and only if

n

2
gradM λ2− n

2
gradM ρ2 = 0. (2.18)

That is,

gradM

(
λ2− ρ2)= 0. (2.19)

Since M is assumed to be connected, we get the result. �

Example 2.9. (1) Consider S3 \ {(±1,0,0,0)} with the metric G defined in local coordi-
nates (t,θ,φ) by

ds2
G = dt2 + sin2 t dθ2 + sin2 t sin2 θdφ2. (2.20)

For any real c < 0, the metric G′ defined by

ds2
G′ = dt2 +

(
sin2 t− c

)
dθ2 +

(
sin2 t− c

)
sin2 θdφ2 (2.21)

is harmonic with respect to G.
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Indeed, S3 \ {(+−1,0,0,0)} can be viewed as the warped product of the open interval

]0,π[ and of S2 with warping function λ defined on ]0,π[ by λ(t)= sin t.
(2) On the spaceH3 \ {(0)} with the metric G defined in local coordinates (t,θ,φ) by

ds2
G = dt2 + sinh2 t dθ2 + sinh2 t sin2 θdφ2, (2.22)

the metric G′ defined by

ds2
G′ = dt2 +

(
sinh2 t− c

)
dθ2 +

(
sinh2 t− c

)
sin2 θdφ2 with c < 0 (2.23)

is harmonic with respect to G.
Indeed, H3 \ {(0)} can be viewed as the warped product of the open interval ]0,∞[

and of S2 with warping function λ defined on ]0,∞[ by λ(t)= sinh t.

2.4. Nonharmonic biharmonic metrics on product spaces. In this paragraph, we study
the biharmonicity of the warped product of two identity maps with warping functions of
which one is constant.

We obtain then necessary and sufficient conditions for warped metrics to be nonhar-
monic biharmonic on product spaces.

Before giving the definition of biharmonic metrics, let us point out that, due to the fact
that we are interested in nonharmonic biharmonic metrics, we conserve the same places of
the domain and the codomain of the identity maps as in the definition of harmonic met-
rics (see [6]), contrary to the authors in [1] where the places of the domain and codomain
are reversed.

Defintion 2.10. Let (M,g) be a Riemannian manifold. A metric G on M is said to be
biharmonic with respect to g if the identity id : (M,g)→ (M,G) is a biharmonic map.
Let (M,g) and (N ,h) be two Riemannian manifolds of dimensions m and n, respectively,
and (M×N ,G) the Riemannian product of (M,g) and (N ,h), respectively; that is, (M×
N ,G)= (M,g)× (N ,h).

Let ρ∈ C∞(M) be a strictly positive function on M and let Gρ = π∗g + (ρ ◦π)2σ∗h be
the warped product metric of g and h with warping function ρ.

We have the following result.

Theorem 2.11. The warped product metric Gρ is nonharmonic biharmonic with respect to
G if and only if

gradρ 
= 0, Δgω+
n

4
d
(‖ω‖2)− 2

(
Ricg

(
ω�
))� = 0, (2.24)

with ω = dρ2 and (Ricg(ω�))�(X)= Ricg(ω�,X), for all X ∈ TM, where gradΔg = dd∗ +
d∗d, and Ricg are, respectively, the gradient, the Laplacian, and the Ricci tensor on (M,g).

Proof. By Theorem 2.8 applied to λ≡ 1 and the function ρ, the metric Gρ is nonharmonic
with respect to G if and only if gradρ2 = 2ρgradρ 
= 0.

Since ρ is a strictly positive function, Gρ is then nonharmonic with respect to G if and
only if (i) gradρ 
= 0.
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Let τ be the tension field of the identity map id : (M×N ,G)→ (M×N ,Gρ), and let J
be the Jacobi field along id. We have

τ =−n

2
gradρ2, J(τ)= Δidτ + traceGRρ(·,τ), (2.25)

with Δidτ = − traceG(∇∇τ −∇∇τ) is the Laplacian on the sections of T(M ×N) and
where Rρ is the Riemannian curvature operator on (M×N ,Gρ).

Let (E1, . . . ,Em+n) be a geodesic orthonormal basis on T(M×N),

Δidτ =−
m+n∑
Î=1

(
∇EÎ∇EÎ τ −∇∇E

Î
EÎ τ
)
=−

⎛
⎝ m∑
Î=1

∇EÎ∇EÎ τ +
m+n∑

Î=m+1

∇EÎ∇EÎ τ

⎞
⎠ . (2.26)

By Lemma 2.1 we have

m∑
Î=1

∇EÎ∇EÎ τ =
m∑
Î=1

∇g
EÎ
∇g

EÎ
τ, where∇g is the Levi-Civita connection on (M,g). (2.27)

Otherwise for Î ∈ {m+ 1, . . . ,m+n},

∇EÎ τ =
τ · ρ

ρ
EÎ (see [10]), (2.28)

and then

∇EÎ

(∇EÎ τ
)=∇EÎ

(
τ · ρ

ρ
EÎ

)

=
(
τ · ρ

ρ

)
∇EÎ EÎ +

(
EÎ ·

τ · ρ

ρ

)
EÎ

= τ · ρ

ρ

[− ρ
〈
EÎ ,EÎ

〉
gradρ +∇h

EÎ
EÎ
]
,

since EÎ ·
τ · ρ

ρ
= 0 and by Lemma 2.1

= n‖gradρ‖2ρhÎÎ gradρ, since∇h
EÎ
EÎ = σ∗

(
∇EÎ EÎ

)
= 0,

where∇h is the Levi-Civita connection on (N ,h).

(2.29)

Thus

m+n∑
Î=m+1

∇EÎ∇EÎ τ =
n2

2
‖gradρ‖2 gradρ2. (2.30)

We obtain then

Δidτ =−
m∑
Î=1

∇g
EÎ
∇g

EÎ
τ − n2

2
‖gradρ‖2 gradρ2. (2.31)
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On the other hand,

m+n∑
Î=1

Rρ
(
EÎ ,τ

)
EÎ =

m∑
Î=1

Rρ
(
EÎ ,τ

)
EÎ +

m+n∑
Î=m+1

Rρ
(
EÎ ,τ

)
EÎ

=
m∑
Î=1

Rg
(
EÎ ,τ

)
EÎ +

m+n∑
Î=m+1

ρ < EÎ , EÎ >∇τ(gradρ),

by [10, Proposition 40, page 210]

=
m∑
Î=1

Rg
(
EÎ ,τ

)
EÎ +nρ∇τ(gradρ)

=−
m∑
Î=1

Rg
(
τ,EÎ

)
EÎ −

n2ρ2

2
grad

(‖gradρ‖2),

(2.32)

since

∇τ(gradρ)=−n

2
∇gradρ2 (gradρ)=−nρ∇gradρ(gradρ),

∇gradρ(gradρ)= 1
2

grad
(‖gradρ‖2).

(2.33)

It follows

J(τ)=−n

2

{
−

m∑
Î=1

∇g
EÎ
∇g

EÎ
gradρ2−

m∑
Î=1

Rg
(

gradρ2,EÎ
)
EÎ

+n‖gradρ‖2 gradρ2 +nρ2 grad
(∥∥gradρ‖2)}

=−n

2

{
−

m∑
Î=1

∇g
EÎ
∇g

EÎ
gradρ2−

m∑
Î=1

Rg
(

gradρ2,EÎ)EÎ

+
n

4
grad

(∥∥gradρ2
∥∥2
)}

,

(2.34)

since

‖gradρ‖2 gradρ2 + ρ2 grad
(‖gradρ‖2)= 1

4
grad

(∥∥gradρ2
∥∥2
)
. (2.35)

Thus Gρ is biharmonic with respect to G if and only if

−
m∑
Î=1

∇g
EÎ
∇g

EÎ
gradρ2−

m∑
Î=1

Rg
(

gradρ2,EÎ
)
EÎ +

n

4
grad

(∥∥gradρ2
∥∥2
)
= 0. (*)



10 On the biharmonicity of product maps

By the Weitzenböck formula,

Δgω =− trace∇2
gω+

(
Ricg

(
ω�
))�

, (2.36)

where � and � are the usual musical isomorphisms.
Hence the relation (*) is equivalent to
(ii)

Δgω+
n

4
d
(‖ω‖2)− 2

(
Ricg

(
ω�
))� = 0. (2.37)

From (i) and (ii) we get the result. �

When (M,g) is Einstein, the one-form (Ricg(ω�))� is proportional to ω. Thus as an
immediate consequence of the previous theorem, we have the following.

Corollary 2.12. Let ρ∈ C∞(M), ρ > 0, with gradρ 
= 0. Assume that (M,g) is an Einstein
manifold and that grad(‖gradρ‖) is parallel to gradρ. If Gρ is harmonic with respect to G,
then ρ is an isoparametric function on M.

Recall that a function f on M is said to be isoparametric if there exist real functions α and
β such that ‖df ‖2 = α◦ f and Δ f = β ◦ f or equivalently if grad(‖grad f ‖) and grad(Δ f )
are parallel to grad f , with grad f 
= 0 (see [1, 2] for more information about isoparametric
functions).
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