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We consider the semilinear elliptic problem −Δu + u = λK(x)up + f (x) in Ω, u > 0 in
Ω, u ∈ H1

0 (Ω), where λ ≥ 0, N ≥ 3, 1 < p < (N + 2)/(N − 2), and Ω is an exterior strip
domain in RN . Under some suitable conditions on K(x) and f (x), we show that there
exists a positive constant λ∗ such that the above semilinear elliptic problem has at least
two solutions if λ∈ (0,λ∗), a unique positive solution if λ= λ∗ , and no solution if λ > λ∗ .
We also obtain some bifurcation results of the solutions at λ= λ∗ .

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, we consider the semilinear elliptic problem

−Δu+u= λK(x)up + f (x) in Ω, u > 0 in Ω, u∈H1
0 (Ω), (1.1)λ

where λ≥ 0, N =m+n≥ 3, m≥ 2, n≥ 1, 1 < p < (N + 2)/(N − 2), ω ⊆Rm is a bounded
smooth domain, S = ω×Rn is a strip domain, D is a bounded smooth domain in RN

such that D ⊂⊂ S, Ω = S \D is an exterior strip domain, 0 �≡ f (x) ≥ 0 in Ω, f (x) ∈
L2(Ω)∩ Lq0 (Ω) for some q0 > N/2 if N ≥ 4, q0 = 2 if N = 3, and K(x) is a positive,
bounded, and continuous function on Ω. Moreover K(x) satisfies the following condi-
tions:

(k1) lim|z|→∞K(y,z)= K∞ > 0 uniformly for y ∈ ω;
(k2) there exist some constants K∞ > 0, γ > (n− 1)/2, and ϑ > 0 such that .2

K(y,z)≥ K∞ − ϑexp
(
− p+ 1

p

√
1 +μ1|z|

)
|z|−γ as |z| −→∞, uniformly for y ∈ ω,

(1.2)

where μ1 is the first eigenvalue of the Dirichlet problem −Δ in ω.
If Ω is bounded (n = 0 in our case), then (1.1)λ has been studied by many authors:

see for instance Bahri and Lions [4] and the references therein. We only consider that Ω
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is unbounded (n ≥ 1 in our case). If Ω is an exterior domain (m = 0 in our case), Zhu
and Zhou [18] and Zhu [17] established the existence of multiple positive solutions of
equations with structure unlike that here. If Ω is an exterior strip domain, Hsu and Wang
[12] have investigated the following problem:

−Δu+u= up + f (x) in Ω, u > 0 in Ω, u∈H1
0 (Ω), (1.3)

where 1 < p < (N + 2)/(N − 2) and N ≥ 4. Hsu and Wang [12] have proved that (1.3) has
at least two positive solutions if f is nonzero positive L2 function with the L2 norm small
enough and the decay fast enough.

Throughout this paper, let x = (y,z) be the generic point of RN with y ∈Rm, z ∈Rn,
N =m+n≥ 3, m≥ 2, n≥ 1, 1 < p < (N + 2)/(N − 2), S is a smooth strip domain in RN ,
Ω is a smooth exterior strip domain in RN , u0 is the unique positive solution of (1.1) 0,
and we denote by c and ci (i= 1,2, . . .) the universal constants, unless otherwise specified.
We set

‖u‖ =
(∫

Ω

(|∇u|2 + |u|2)dx
)1/2

,

‖u‖Lq(Ω) =
(∫

Ω
|u|qdx

)1/q

, 2≤ q <∞,

‖u‖L∞(Ω) = sup
x∈Ω

∣∣u(x)
∣∣,

M = inf
{∫

S

(|∇u|2 + |u|2)dx :
∫
S
|u|p+1dx = 1

}
.

(1.4)

Now, we state our main results in the following.

Theorem 1.1. Suppose f (x)≥ 0, f (x) �≡ 0 in Ω, f (x)∈ L2(Ω)∩Lq0 (Ω) for some q0 > N/2
if N ≥ 4, q0 = 2 if N = 3, K(x) is a positive, bounded, and continuous function on Ω and
K(x) satisfies conditions (k1) and (k2). Then there is a λ∗ > 0, λ∗ depending on K and f ,
such that

(i) equation (1.1)λ has at least two solutions uλ, Uλ and uλ < Uλ if λ∈ (0,λ∗);
(ii) equation (1.1)λ∗ has a unique solution uλ∗ ;

(iii) equation (1.1)λ has no positive solutions if λ > λ∗.
Furthermore,

λ1 ≡ (p+ 1)(p− 1)p−1M(p+1)/2

(2p)p‖K‖L∞(Ω)‖ f ‖p−1
L2(Ω)

≤ λ∗ ≤ inf
w∈H1

0 (Ω)\{0}

(
‖w‖2

p
∫
ΩKu

p−1
0 w2dx

)
≡ λ2

≤ p‖ f ‖2
L2(Ω)

(p− 1)2
∫
ΩKu

p+1
0 dx

≡ λ3,

(1.5)



Tsing-San Hsu 3

where uλ is the minimal solution of (1.1)λ and Uλ is the second solution of (1.1)λ constructed
in Section 5.

Theorem 1.2. Under the assumptions of Theorem 1.1,
(i) uλ is strictly increasing with respect to λ, uλ is uniformly bounded in L∞(Ω)∩H1

0 (Ω)
for all λ∈ [0,λ∗], and

uλ −→ u0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+; (1.6)

(ii) Uλ is unbounded in L∞(Ω)∩H1
0 (Ω), that is,

lim
λ→0+

∥∥Uλ

∥∥= lim
λ→0+

∥∥Uλ

∥∥
L∞(Ω) =∞; (1.7)

(iii) moreover, assume that K(x) and f (x) are in Cα(Ω)∩ L2(Ω), then all solutions of
(1.1)λ are in C2,α(Ω)∩H2(Ω), and (λ∗,uλ∗) is a bifurcation point for (1.1)λ, and

uλ −→ u0 in C2,α(Ω)∩H2(Ω) as λ−→ 0+. (1.8)

This paper is organized as follows. In Section 2, we give some notations and prelimi-
nary results. In Section 3, we assert that there exists a positive constant λ∗, depending on
K and f , such that (1.1)λ has a minimal solution for λ∈ [0,λ∗]. In Section 4, we establish
several lemmas for the regularity and asymptotic behaviors of the solution of (1.1)λ. In
Section 5, we establish the existence of a second solution Uλ for λ∈ (0,λ∗). In Section 6,
we analyize the set of solutions.

2. Preliminaries

In this section, we give some notations and some known results. In order to get the ex-
istence of positive solutions of (1.1)λ, we consider the energy functional Iλ : H1

0 (Ω)→ R
defined by

Iλ(u)=
∫
Ω

[
1
2

(|∇u|2 + |u|2)− λ

p+ 1
K(x)

(
u+)p+1− f (x)u

]
dx, (2.1)

where u±(x)=max{±u(x),0}.
Then the critical points of Iλ are the positive solutions of (1.1)λ.
Consider the equation

−Δu+u= λK∞up in S, u > 0 in S, u∈H1
0 (S), (2.1)λ

and its associated energy functional I∞λ defined by

I∞λ (u)=
∫
S

[
1
2

(|∇u|2 + |u|2)− λ

p+ 1
K∞
(
u+)p+1

]
dx, u∈H1

0 (S). (2.2)
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By Esteban [8] and Lien et al. [14], (2.1)λ has a ground state solution uλ such that

M∞
λ = I∞λ

(
uλ
)= sup

t≥0
I∞λ
(
tuλ
)
, (2.3)

and we also have

M = inf
{∫

S

(|∇u|2 + |u|2) :
∫
S
|u|p+1 = 1

}
= inf

{∫
Ω

(|∇u|2 + |u|2) :
∫
Ω
|u|p+1 = 1

}
.

(2.4)

Now, we quote here a precise asymptotic behavior result of Hsu [10] for positive solu-
tions of (2.1)λ at infinity.

Proposition 2.1. Let u be a positive solution of (2.1)λ in an unbounded strip S= ω×Rn

⊆ Rm+n, m≥ 2, n≥ 1, and let ψ be the first positive eigenfunction of the Dirichlet problem
−Δψ = μ1ψ in ω, then for any ε > 0, there exist constants cε, c̃ε > 0 such that

u(x)≤ cεψ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2+ε

c̃εψ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2−ε ≤ u(x)

as |z| −→∞, y ∈ 	. (2.5)

3. Existence of minimal solution

In this section, by the standard barrier method, we will establish the existence of minimal
positive solution uλ for all λ in some finite interval [0,λ∗] (i.e, for any positive solution u
of (1.1)λ, then u≥ uλ).

Lemma 3.1. Let condition (k1) hold. Then (1.1)λ has a solution uλ if 0≤ λ < λ1, where λ1 is
given by (1.5).

Proof. For λ= 0, the existence question is equivalent to the existence of u0 ∈H1
0 (Ω) such

that
∫
Ω
∇u0 ·∇φ+u0φ =

∫
Ω
f φ (3.1)

for all φ ∈H1
0 (Ω) since

∣∣∣∣
∫
Ω
f φ
∣∣∣∣≤ ‖ f ‖L2(Ω)‖φ‖L2(Ω) ≤ ‖ f ‖L2(Ω)‖φ‖ (3.2)

for all φ ∈ H1
0 (Ω). According to the Lax-Milgram theorem, there exists a unique u0 ∈

H1
0 (Ω) that satisfies (3.1). Since 0 �≡ f ≥ 0 inΩ, by strong maximum principle (see Gilbarg

and Trudinger [9]), we conclude that u0 > 0 in Ω.
We consider next the case λ > 0. We show first that for sufficiently small λ, say λ= λ0,

there exists t = t0(λ0) > 0 such that Iλ0 (u) > 0 for ‖u‖ = t0. From the definitions of Iλ and
M we have for any u∈H1

0 (Ω),

Iλ(u)≥ 1
2
‖u‖2− λ

p+ 1
‖K‖L∞(Ω)M

−(p+1)/2‖u‖p+1−‖ f ‖L2(Ω)‖u‖. (3.3)
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Set

h(t)= 1
2
t− λc1t

p− c2, (3.4)

where c1 = (1/(p+ 1))‖K‖L∞(Ω)M−(p+1)/2 and c2 = ‖ f ‖L2(Ω).
It then follows that h(t) achieves a maximum at tλ = (2pλc1)−(p−1)−1

. Set Btλ = {u ∈
H1

0 (Ω) : ‖u‖ < tλ}. Then for all u∈ ∂Btλ = {u∈H1
0 (Ω) : ‖u‖ = tλ},

Iλ(u)≥ tλh
(
tλ
)≥ tλ

[
tλ(p− 1)
2p− c2

]
> 0 (3.5)

provided that c2 < tλ(p− 1)/2p, which is satisfied for λ∈ (0,λ1). Fix a λ0 ∈ (0,λ1), and set
t0 = tλ0 . Let 0 �≡ φ≥ 0, φ∈ C∞0 (Ω), such that

∫
Ω f φdx > 0. Then

Iλ0 (tφ)= t2

2
‖φ‖2− λ0

p+ 1
tp+1

∫
Ω
Kφp+1− t

∫
Ω
f φ < 0 (3.6)

for sufficiently small t > 0, and it is easy to see that Iλ0 is bounded below on Bt0 . Set
α0 = inf{Iλ0 (u)|u ∈ Bt0}. Then α0 < 0, and since Iλ0 (u) > 0 on ∂Bt0 , the continuity of Iλ0

on H1
0 (Ω) implies that there exists 0 < t1 < t0 such that Iλ0 (u) > α0 for all u∈H1

0 (Ω) and
t1 ≤ ‖u‖ ≤ t0. By the Ekeland variational principle [7], there exists a sequence {uk}∞k=1 ⊂
Bt1 such that Iλ0 (uk) = α0 + o(1) and I′λ0

(uk) = o(1) strongly in H−1(Ω), as k →∞. It is
easy to see that {uk} is bounded in H1

0 (Ω). Hence, there exist a subsequence {uk} and u
in Bt1 such that

uk u weakly in H1
0 (Ω),

uk −→ u strongly in L
q
loc(Ω) for 2≤ q < 2N

N − 2

uk −→ u a.e. in Ω.

as k −→∞ (3.7)

For φ ∈ C∞0 (Ω), we get

∫
Ω
∇uk ·∇φ−→

∫
Ω
∇u ·∇φ,

∫
Ω
ukφ−→

∫
Ω
uφ,

∫
Ω
K
(
u+
k

)p
φ−→

∫
Ω
K
(
u+)pφ

(3.8)
as k→∞. Since 〈I′λ0

(uk),φ〉 = o(1) as k→∞, I′λ0
(u)= 0 in H−1(Ω). Therefore u is a weak

positive solution of (1.1)λ0 . �

Denote

λ∗ = sup
{
λ≥ 0 : (1.1)λ has a positive solution

}
. (3.9)

Now, by the standard barrier method, we get the following lemma.
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Lemma 3.2. Let condition (k1) hold, then there exists λ∗ > 0 such that for each λ∈ [0,λ∗),
problem (1.1)λ has a minimal positive solution uλ and uλ is strictly increasing in λ.

Proof. By Lemma 3.1 and the definition of λ∗, we deduce that λ∗ ≥ λ1 > 0. Now, consider
λ∈ [0,λ∗). By the definition of λ∗, we know that there exists λ′ > λ such that λ′ < λ∗ and
(1.1)λ′ has a positive solution uλ′ > 0, that is,

−Δuλ′ +uλ′ = λ′K(x)u
p
λ′ + f (x)

> λK(x)u
p
λ′ + f (x).

(3.10)

Then uλ′ is a supersolution of (1.1)λ. From f (x)≥ 0 and f (x) �≡ 0, it is easily verified that
0 is a subsolution of (1.1)λ. By the standard barrier method, there exists a solution uλ of
(1.1)λ such that 0≤ uλ ≤ uλ′ . Since 0 is not a solution of (1.1)λ and λ′ > λ, the maximum
principle implies that 0 < uλ < uλ′ . Again using a result of Amann [2], we can choose a
minimum positive solution uλ of (1.1)λ. This completes the proof of Lemma 3.2. �

Now, we consider a solution u of (1.1)λ. Let σλ(u) be defined by

σλ(u)= inf
{∫

Ω

(|∇w|2 + |w|2)dx :w ∈H1
0 (Ω),

∫
Ω
pKup−1w2dx = 1

}
. (3.11)

By the standard direct minimization procedure, we can show that σλ(u) is attained by a
function ϕλ > 0, ϕλ ∈H1

0 (Ω), satisfying

−Δϕλ +ϕλ = σλ(u)pKup−1ϕλ in Ω. (3.12)

Lemma 3.3. Assume condition (k1) holds. For λ∈ [0,λ∗), let uλ be the minimal solution of
(1.1)λ and let σλ(uλ) be the corresponding number given by (3.11). Then

(i) σλ(uλ) > λ and is strictly decreasing in λ, λ∈ [0,λ∗);
(ii) λ∗ <∞, and (1.1)λ∗ has a minimal solution uλ∗ .

Proof. Consider uλ′ , uλ, where λ∗ > λ′ > λ ≥ 0. Let ϕλ be a minimizer of σλ(uλ), then by
Lemma 3.2, we obtain

∫
Ω
pKu

p−1
λ′ ϕ2

λdx >
∫
Ω
pKu

p−1
λ ϕ2

λdx = 1, (3.13)

and there is t, 0 < t < 1, such that

∫
Ω
pKu

p−1
λ′
(
tϕλ
)2 = 1. (3.14)

Therefore,

σλ′
(
uλ′
)≤ t2∥∥ϕλ∥∥2

<
∥∥ϕλ∥∥2 = σλ

(
uλ
)
, (3.15)

showing the monotonicity of σλ(uλ), λ∈ [0,λ∗).
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Consider now λ∈ (0,λ∗). Let λ < λ′ < λ∗. From (3.12) and the monotonicity of uλ, we
get

σλ
(
uλ
)
p
∫
Ω

(
uλ′ −uλ

)
Ku

p−1
λ ϕλdx =

∫
Ω
∇(uλ′ −uλ) ·∇ϕλdx+

∫
Ω

(
uλ′ −uλ

)
ϕλdx

= (λ′ − λ)
∫
Ω
Ku

p
λ′ϕλdx+ λ

∫
Ω
K
(
u
p
λ′ −upλ

)
ϕλdx

> λp
∫
Ω
Kϕλ

∫ uλ′
uλ

tp−1dtdx

≥ λp
∫
Ω
Ku

p−1
λ

(
uλ′ −uλ

)
ϕλdx,

(3.16)

which implies that σλ(uλ) > λ, λ∈ (0,λ∗). This completes the proof of (i).
We show next that λ∗ <∞. Let λ0 ∈ (0,λ∗) be fixed. For any λ≥ λ0, (3.15) and (3.16)

imply

σλ0

(
uλ0

)≥ σλ(uλ) > λ (3.17)

for all λ∈ [λ0,λ∗). Thus, λ∗ <∞.
By (3.11) and σλ(uλ) > λ, we have

∫
Ω

(∣∣∇uλ∣∣2
+
∣∣uλ∣∣2

)
dx− λp

∫
Ω
Ku

p+1
λ dx > 0,

∫
Ω

(∣∣∇uλ∣∣2
+
∣∣uλ∣∣2

)
dx−

∫
Ω
λKu

p+1
λ dx−

∫
Ω
f uλ = 0.

(3.18)

Thus
∫
Ω

(∣∣∇uλ∣∣2
+
∣∣uλ∣∣2

)
dx =

∫
Ω
λKu

p+1
λ dx+

∫
Ω
f uλdx

<
1
p

∫
Ω

(∣∣∇uλ∣∣2
+
∣∣uλ∣∣2

)
dx+‖ f ‖L2(Ω)

∥∥uλ∥∥

<
(

1
p

+
δ

2

)∥∥uλ∥∥2
+

1
2δ
‖ f ‖2

L2(Ω)

(3.19)

for any δ > 0. Since p > 1, we can obtain ‖uλ‖ ≤ c < +∞ for all λ ∈ (0,λ∗) by taking δ
small enough. By Lemma 3.2, the solution uλ is strictly increasing with respect to λ; we
may suppose that

uλ uλ∗ weakly in H1
0 (Ω),

uλ −→ uλ∗ strongly in L
q
loc(Ω) for 2≤ q < 2N

N − 2

uλ −→ uλ∗ a.e. in Ω,

as λ−→ λ∗, (3.20)



8 Elliptic problems on exterior strip domains

For φ ∈ C∞0 (Ω), we get

∫
Ω
∇uλ∇φ−→

∫
Ω
∇uλ∗∇φ,

∫
Ω
uλφ−→

∫
Ω
uλ∗φ, λ

∫
Ω
Ku

p
λφ −→ λ∗

∫
Ω
Ku

p
λ∗φ,

(3.21)

as λ→ λ∗. From 〈I′λ(uλ),φ〉 = 0 and letting λ→ λ∗, we deduce I′λ∗(uλ∗) = 0 in H−1(Ω).
Hence uλ∗ is a positive solution of (1.1)λ∗ .

Let u be any positive solution of (1.1)λ∗ . By adopting the argument as in Lemma 3.1,
we have u≥ uλ in Ω for λ∈ (0,λ∗), where uλ is the minimal solution of (1.1)λ. Therefore
u≥ uλ∗ in Ω. This implies that uλ∗ is a minimal solution of (1.1)λ∗ . �

In the following lemma, we give an estimate of λ∗.

Lemma 3.4. If condition (k1) holds, then λ1 ≤ λ∗ ≤ λ2 ≤ λ3, where λ1, λ2, and λ3 are given
by (1.5).

Proof. By Lemma 3.1 and the definition of λ∗, we conclude that λ∗ ≥ λ1.
As in Lemma 3.3, we have σλ(uλ) > λ for all λ ∈ (0,λ∗), so for any w ∈ H1

0 (Ω) \ {0},
we have

∫
Ω

(|∇w+ |w|2)dx > λp
∫
Ω
Ku

p−1
λ w2dx. (3.22)

Let u0 be the unique solution of (1.1) 0, then by (3.22) and uλ > u0 for all λ∈ (0,λ∗], we
obtain that

∫
Ω

(|∇w+ |w|2)dx > λp
∫
Ω
Ku

p−1
0 w2dx, (3.23)

that is,

λ≤ inf
w∈H1

0 (Ω)\{0}

(
‖w‖2

p
∫
ΩKu

p−1
0 w2dx

)
= λ2. (3.24)

This implies that λ∗ ≤ λ2.
For all λ ∈ [0,λ∗], let uλ be a minimal solution of (1.1)λ and take w = uλ in (3.22),

then we have

∥∥uλ∥∥2 = λ
∫
Ω
Ku

p+1
λ dx+

∫
Ω
f uλdx

<
1
p

∥∥uλ∥∥2
+‖ f ‖L2(Ω)

∥∥uλ∥∥.
(3.25)

This implies that

∥∥uλ∥∥≤ p

p− 1
‖ f ‖L2(Ω). (3.26)
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Take w = uλ in (3.24), and by (3.26) and the monotonicity of uλ, we get

λ2 ≤
∥∥uλ∥∥2

p
∫
ΩKu

p−1
0 u2

λdx

≤ p‖ f ‖2
L2(Ω)

(p− 1)2
∫
ΩKu

p+1
0 dx

= λ3.

(3.27)

�

4. Asymptotic behaviors of solutions

In this section, we will prove that a solution of (1.1)λ belongs to Cb(Ω) and derive several
precise estimates on its behavior at infinity. Now, let N be all natural numbers, let X be
a smooth domain in RN , and hence we have the extension lemma, embedding lemma,
interpolation lemma (see Adams [1] for the proof), and for regularity Lemmas 4.1–4.7.

Lemma 4.1 (extension). There is a positive constant c = c(�,q) such that for any u ∈
W�,q(X), � ∈N, 1 < q <∞, there exists some u ∈W�,q(RN ) such that u = u a.e. in X and
‖u‖W�,q(RN ) ≤ ‖u‖W�,q(X).

Lemma 4.2 (embedding). There exists the following continuous embedding:

Wj+�,q(X)−→ Cj,α(X), 0≤ α≤ �− N

q
, (4.1)

provided (�− 1)q < N < �q and j ∈N∪{0}.
Lemma 4.3 (interpolation). Given � ∈ N,1 < q <∞, there exists a positive constant c =
c(�,q,N) such that for any 0 < ε < 1, 0≤ j≤ �− 1, and any u∈W�,q(X),

‖u‖Wj,q(X) ≤ cε‖u‖W�,q(X) +
c

εj/(�−j)
‖u‖W0,q(X). (4.2)

Lemma 4.4 (regularity Lemma 1). Let g : X×R→R be a Carathéodory function such that
for almost every x ∈ X, there holds

∣∣g(x,u)
∣∣≤ c(|u|+ |u|p) uniformly in x ∈ X, (4.3)

where c, p are some positive constants, N ≥ 3, and 1 < p < (N + 2)/(N − 2). Also, let u ∈
H1

0 (X) be a weak solution of equation −Δu = g(x,u) + f (x) in X, where f ∈ LN/2(X)∩
L2(X). Then u∈ Lq(X) for q ∈ [2,∞).

Proof. See Hsu [11]. �

Now, we quote regularity Lemmas 4.5–4.7 (see Gilbarg and Trudinger [9, Theorems
8.8, 9.11, 9.16] for the proof).
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Lemma 4.5 (regularity Lemma 2). Let X ⊂ RN be a domain, let g ∈ L2(X), and let u ∈
H1(X) be a weak solution of the equation−Δu+u= g inX. Then for any subdomainX′ ⊂⊂
X with d′ = dist(X′,∂X) > 0, u∈H2(X′) and

‖u‖H2(X′) ≤ c
(‖u‖H1(X) +‖g‖L2(X)

)
(4.4)

for some c = c(N ,d′). Furthermore u satisfies the equation −Δu+u= g a.e. in X.

Lemma 4.6 (regularity Lemma 3). Let g ∈ L2(X) and let u∈H1
0 (X) be a weak solution of

the equation −Δu+u= g. Then u∈H2
0 (X) satisfies

‖u‖H2(X) ≤ c‖g‖L2(X), (4.5)

where c = c(N ,∂X).

Lemma 4.7 (regularity Lemma 4). Let g ∈ L2(X)∩Lq(X) for some q ∈ [2,∞) and let u∈
H1

0 (X) be a weak solution of the equation −Δu + u = g in X. Then u ∈W2,q(X) and u
satisfies

‖u‖W2,q(X) ≤ c
(‖u‖Lq(X) +‖g‖Lq(X)

)
, (4.6)

where c = c(N ,q,∂X).

By Lemma 4.7, we obtain the first asymptotic behavior of solution of (1.1)λ.

Lemma 4.8 (asymptotic Lemma 1). Let condition (k1) hold. If u is a weak solution of
(1.1)λ, then u(y,z)→ 0 as |z| →∞ uniformly for y ∈ ω.

Proof. Let u satisfy

−Δu+u= λK(x)up + f (x) in H−1(Ω), (4.7)

since K is bounded in Ω and f ∈ L2(Ω)∩Lq0 (Ω) for some q0 > N/2. Hence f ∈ LN/2(Ω)
and by Lemma 4.4, we have u∈ Lq(Ω) for q ∈ [2,∞). Hence λK(x)up + f (x)∈ L2(Ω)∩
Lq0 (Ω) for some q0 > N/2. Then by Lemma 4.7, we have u∈W2,q0 (Ω) for some q0 > N/2.
By Lemma 4.2, u∈ Cb(Ω) and there exists a constant c > 0, such that for any r > 1,

‖u‖L∞(B
c
r )
≤ c‖u‖W2,q0 (B

c
r )

, (4.8)

where B
c
r = {x = (y,z)∈Ω : |z| > r}. Hence lim|z|→∞u(y,z)= 0 uniformly for y ∈ ω. �

Lemma 4.9 (asymptotic Lemma 2). Let u be a positive solution of (1.1)λ for λ∈ [0,λ∗] and
let ψ be the first positive eigenfunction of the Dirichlet problem −Δψ = μ1ψ in ω, then there
exists a positive constant c such that

u(x)≥ cψ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2 as |z| −→∞, y ∈ 	. (4.9)

Proof. Let Φ(x) = (1 + 1/
√|z|)ψ(y)exp(−√1 +μ1|z|)|z|−(n−1)/2 for x = (y,z) ∈ Ω and

|z| > 0. It is very easy to show that there is a R0 > 0 such that

−ΔΦ+Φ≤ 0, ∀|z| ≤ R0. (4.10)
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Let uλ be the minimal solution of (1.1)λ, let q = (qy ,qz), qy ∈ ∂ω, |qz| = R0, and B a
small ball in Ω such that q ∈ ∂B. Since ψ(y) > 0 for x = (y,z)∈ B, ψ(qy)= 0, u(x) > 0 for
x ∈ B, uλ(q) = 0, by the strongly maximum principle (∂ψ/∂y)(qy) < 0, (∂uλ/∂x)(q) < 0.
Thus

lim
x→q

|z|=R0

uλ(x)
ψ(y)

= (∂uλ/∂x)(q)
(∂ψ/∂y)(qy)

> 0. (4.11)

Note that uλ(x)ψ−1(y) > 0 for x = (y,z), y ∈ ω, |z| = R0. Thus uλ(x)ψ−1(y) > 0 for x =
(y,z), y ∈ 	, |z| = R0.

Since Φ(x) and uλ(x) are C1(ω× ∂BR0 (0)), if we set

α= inf
y∈	, |z|=R0

(
uλ(x)Φ−1(x)

)
, (4.12)

then α > 0 and

αΦ(x)≤ uλ(x) for y ∈ 	, |z| = R0. (4.13)

For |z| ≥ R0, we have

−Δ(uλ−αΦ)(x) +
(
uλ−αΦ

)
(x)= λK(x)u

p
λ (x) + f (x) +α(ΔΦ+Φ)(x)≥ 0. (4.14)

By the maximum principle, we obtain

uλ(x)≥ αΦ(x) for y ∈ 	, |z| ≥ R0. (4.15)

Let c = α > 0, we get

uλ(x)≥ cψ(y)exp
(
−
√

1 +μ1|z|
)
|z|−(n−1)/2 for y ∈ 	, |z| ≥ R0. (4.16)

This implies that (4.9) holds for uλ and hence for arbitrary positive solution u. �

5. Existence of second solution

The existence of a second solution of (1.1)λ, λ∈ (0,λ∗), will be established via the moun-
tain pass theorem. When 0 < λ < λ∗, we have known that (1.1)λ has a minimal positive
solution uλ by Lemma 3.2, then we need only to prove that (1.1)λ has another positive
solution in the form of Uλ = uλ + vλ, where vλ is a solution of the following problem:

−Δv+ v = λK[(v+uλ
)p−upλ

]
in Ω, v ∈H1

0 (Ω), v > 0 in Ω. (5.1)λ

The corresponding variational functional of (5.1)λ is

Jλ(v)= 1
2

∫
Ω

(|∇v|2 + v2)− λ
∫
Ω

∫ v+

0
K
[(
s+uλ

)p−upλ
]
dsdx, v ∈H1

0 (Ω). (5.1)

To verify the conditions of the mountain pass theorem, we need the following lemmas.
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Lemma 5.1. For any ε > 0, there is a positive constant cε such that

(ξ + s)p− ξ p− pξ p−1s≤ εξ p−1s+ cεsp, ∀s≥ 0, ξ > 0. (5.2)

Proof. From the fact

lim
t→0+

(1 + t)p− 1− pt

t
= 0, lim

s→∞
(1 + t)p− 1− pt

tp
= 1, (5.3)

we obtain that for any ε > 0, there is a positive constant cε such that

(1 + t)p− 1− pt ≤ εt+ cεtp, ∀t ≥ 0. (5.4)

Let ξ > 0, s≥ 0, and take t = s/ξ in (5.4), we can deduce that

(ξ + s)p− ξ p− pξ p−1s≤ εξ p−1s+ cεsp. (5.5)

�

Lemma 5.2. There exist positive constants ρ and α, such that

Jλ(v)≥ α > 0, v ∈H1
0 (Ω), ‖v‖ = ρ. (5.6)

Proof. For any ε > 0 there is by Lemma 5.1 (with ξ = uλ) a positive constant cε such that

Jλ(v)= 1
2

∫
Ω

(|∇v|2 + v2)dx− 1
2
λp
∫
Ω
Ku

p−1
λ

(
v+)2

dx

− λ
∫
Ω

∫ v+

0
K
[(
uλ + s

)p−upλ − pu
p−1
λ s

]
dsdx

≥ 1
2

[∫
Ω

(|∇v|2 + v2)dx− λp
∫
Ω
Ku

p−1
λ

(
v+)2

dx
]

− λ
∫
Ω
K

[
ε
2
u
p−1
λ

(
v+)2

+ cε

(
v+
)p+1

p+ 1

]
dx.

(5.7)

Furthermore, from the definition σλ(uλ) in (3.11), we have

∫
Ω

(|∇v|2 + v2)dx ≥ σλ(uλ)p
∫
Ω
Ku

p−1
λ (v+)2dx, (5.8)

and, therefore, by (5.7) we obtain

Jλ(v)≥ 1
2
σλ
(
uλ
)−1
(
σλ
(
uλ
)− λ− ε

2
λ
)
‖v‖2− λcε(p+ 1)−1

∫
Ω
K
(
v+)p+1

dx. (5.9)
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Since σλ(uλ) > λ, by property (ii) in Lemma 3.3, the boundedness of K and the Sobolev
inequality imply that for small ε > 0,

Jλ(v)≥ 1
4
σλ
(
uλ
)−1(

σλ
(
uλ
)− λ)‖v‖2− λc‖v‖p+1, (5.10)

and the conclusion in Lemma 5.2 follows. �

Now, we give the following decomposition lemma for later use.

Lemma 5.3. Assume condition (k1) holds. Let {vk} be a (PS)c sequence of Jλ in H1
0 (Ω):

Jλ
(
vk
)= c+ o(1) as k −→∞,

J ′λ
(
vk
)= o(1) strongly in H−1(Ω).

(5.11)

Then there exists a subsequence (still denoted by) {vk} for which the following holds: there
exist an integer l ≥ 0, sequence {xik} ⊂RN of the form (0,zik)∈ S for 1≤ i≤ l, a solution vλ
of (5.1)λ, and solutions viλ of (2.1)λ for 1≤ i≤ l, such that as k⇀∞

vk vλ weakly in H1
0 (Ω);

vk −
[
vλ +

l∑
i=1

viλ
( ·−xik

)]−→ 0 strongly in H1
0 (Ω);

Jλ
(
vk
)= Jλ(vλ)+

l∑
i=1

I∞λ
(
viλ
)

+ o(1),

(5.12)

where its agreed upon that in the case l = 0, the above holds without viλ,{xin}.
Proof. The proof can be obtained by using the arguments in Bahri and Lions [5] (also see
[15, 16]). We omit it. �

Now, let δ be small enough, Dδ a δ-tubular neighborhood of D such that Dδ ⊂⊂ S.
Let η(x) : S→ [0,1] be a C∞ cutoff function such that 0≤ η ≤ 1 and

η(x)=
⎧⎪⎨
⎪⎩

0 if x ∈D;

1 if x ∈Ω \Dδ.
(5.13)

Let eN = (0,0, . . . ,0,1)∈RN , denote

τ0 = 2 sup
x∈Dδ

|x|+ 1,

ũτ(x)= η(x)uλ
(
x− τeN

)
, τ ∈ [0,∞),

(5.14)

where uλ is a ground state solution of (2.1)λ.

Lemma 5.4. Assume condition (k1) holds, then there exist some constants t0 > 0, τ∗ ≥ τ0

such that Jλ(tũτ) < 0 for all τ ≥ τ∗, t ≥ t0.
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Proof. By the inequality (a+ b)p ≥ ap + bp for all a ≥ 0, b ≥ 0, p > 1 and uλ is a ground
state solution of (2.1)λ, denote ητ(x)= η(x+ τeN ), then we have

Jλ
(
tũτ
)= 1

2
t2
∫
Ω

(∣∣∇ũτ∣∣2
+
∣∣ũτ∣∣2

)
dx− 1

p+ 1
tp+1

∫
Ω
λK(x)ũ

p+1
τ dx

−
∫
Ω

∫ tũτ
0

λK(x)
[(
s+uλ

)p−upλ − sp
]
dsdx

≤ 1
2
t2
∫
S

(−Δuλ +uλ
)(
η2
τuλ
)
dx+

1
2
t2
∫
S

∣∣∇ητ∣∣2∣∣uλ∣∣2
dx

− 1
p+ 1

tp+1
∫
S
λK(x)ηp+1(x)u

p+1
λ

(
x− τeN

)
dx

≤ 1
2
t2
∫
S
λK∞u

p+1
λ dx+

1
2
t2
(

max
x∈S

|∇η|2)
∫
S

∣∣uλ∣∣2
dx

− tp+1

p+ 1

∫
S
λK(x)ηp+1(x)u

p+1
λ

(
x− τeN

)
dx.

(5.15)

Set B1(τeN )= {x = (y,z)∈ S : y ∈ ω,|z− τeN | < 1}. By condition (k1), there exists τ∗ ≥
τ0 such thatK(x)≥ K∞/2 for x ∈ B1(τeN ) for all τ ≥ τ∗ and note that η(x)≡ 1 on B1(τeN )
for τ ≥ τ∗, then we obtain that

∫
S
λK(x)ηp+1(x)u

p+1
λ

(
x− τeN

)
dx

≥
∫
B1

(
τeN
) λ

2
K∞u

p+1
λ

(
x− τeN

)
dx

=
∫
{x=(y,z)∈S:y∈ω,|z|≤1}

λ

2
K∞u

p+1
λ (x)dx = c > 0,

(5.16)

where c is independent of τ. Combining (5.15) and (5.16), there exist some positive con-
stants c1, c2, independent of τ, such that

Jλ
(
tũτ
)≤ c1t

2− c2t
p+1 ∀τ ≥ τ∗. (5.17)

From (5.17), we conclude the result. �

Lemma 5.5. Assume conditions (k1) and (k2) hold, then there exists a constant τ∗ > 0, such
that the following inequality holds for τ ≥ τ∗:

0 < sup
t≥0

Jλ
(
tũτ
)
< I∞λ

(
uλ
)=M∞

λ . (5.18)
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Proof. From (5.6), we easily see that the left-hand of (5.18) holds and we need only to
show that the right-hand side of (5.18) holds. By Lemma 5.4, we have that there exists a
constant t2 > 0 such that

sup
t≥0

Jλ
(
tũτ
)= sup

0≤t≤t2
Jλ
(
tũτ
)

for any τ ≥ τ∗. (5.19)

Since J is continuous in H1
0 (Ω) and J(0)= 0, there exists a constant t1 > 0 such that

Jλ
(
tũτ
)
<M∞

λ for any τ ∈ (0,∞), 0≤ t < t1. (5.20)

Then, to prove (5.18) we now need only to prove the following inequality:

sup
t1≤t≤t2

Jλ
(
tũτ
)
<M∞

λ for τ large enough. (5.21)

By the definition of Jλ, we get

Jλ
(
tũτ
)= t2

2

∫
Ω

(∣∣∇ũτ∣∣2
+ ũ2

τ

)
dx− tp+1

p+ 1

∫
S
λK∞ũ

p+1
τ dx

+
tp+1

p+ 1

∫
Ω
λ
(
K∞ −K(x)

)
ũ
p+1
τ dx

−
∫
Ω

∫ tũτ
0

λK(x)
[(
s+uλ

)p−upλ − sp
]
dsdx.

(5.22)

Since uλ is a ground state solution of (2.1)λ, denote ητ(x)= η(x+ τeN ), then we have

Jλ
(
tũτ
)≤ t2

2

∫
S

(−Δuλ +uλ
)(
η2
τuλ
)
dx− tp+1

p+ 1

∫
S
λK∞u

p+1
λ dx

+
t22
2

∫
S

∣∣∇ητ∣∣2∣∣uλ∣∣2
dx

+
t
p+1
2

p+ 1

∫
S
λK∞

(
u
p+1
λ − ũp+1

τ

)
dx

+
t
p+1
2

p+ 1

∫
S
λ
(
K∞ −K(x)

)+
ũ
p+1
τ dx

−
∫
Ω

∫ tũτ
0

λK(x)
[(
s+uλ

)p−upλ − sp
]
dsdx.

(5.23)
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It follows from (2.5) that for any ε > 0, there exists a constant c1 > 0, independent of τ,
such that, for all τ ≥ τ∗,

t22
2

∫
S

∣∣∇ητ∣∣2∣∣uλ∣∣2
dx ≤ c1 exp

(
−2
√

1 +μ1τ
)
τ−n+1+2ε,

t
p+1
2

p+ 1

∫
S
λK∞

(
u
p+1
λ − ũp+1

τ

)
dx ≤ c1 exp

(
− 2

√
1 +μ1τ

)
τ−n+1+2ε.

(5.24)

From condition (k2) and (2.5), there exists a constant τ1 > 0 such that, for all τ ≥ τ1,

t
p+1
2

p+ 1

∫
S
λ
(
K∞ −K(x)

)+
ũ
p+1
τ dx

≤ c
(∫

S∩{|z|≥τ/(p+1)}
+
∫
S∩{|z|≤τ/(p+1)}

)(
K∞ −K(x)

)+
u
p+1
λ

(
x+ τeN

)
dx

≤ cexp
(
−
√

1 +μ1τ
)( p

p+ 1

)
τ−γ + c1 exp

(
−
√

1 +μ1τ
)( 1

p+ 1
τ
)(p+1)(−(n−1)/2+ε)

≤ c2 exp
(
−
√

1 +μ1τ
)
τ−γ0 ,

(5.25)

where c2 > 0 is a constant independent of τ and γ0 =min{γ, (p+ 1)(−(n− 1)/2 + ε)}.
Let ω0 ⊂⊂ ω be a smooth bounded domain in Rm. Set D1(τeN ) = {x = (y,z) ∈ S :

y ∈ ω0,|z− τeN | < 1}. Noting that (a+ b)p ≥ ap + bp for all a≥ 0, b ≥ 0, p > 1, then for
τ ≥ τ0, we have η(x)= 1 on D1(τeN ) and

∫
Ω

∫ tũτ
0

λK(x)
[(
s+uλ

)p−upλ − sp
]
dsdx

≥
∫
D1

(
τeN
)
∫ tũτ

0
λK(x)

[(
s+uλ

)p−upλ − sp
]
dsdx

=
∫
D1(τeN )

∫ tũτ
0

λK(x)
([(

s+uλ
)p−1− sp−1]s+

[(
s+uλ

)p−1−up−1
λ

]
uλ
)
dsdx

≥
∫
D1(τeN )

∫ tũτ
0

λK(x)
[(
s+uλ

)p−1−up−1
λ

]
uλdsdx

=
∫
D1(τeN )

λK(x)

[(
tũτ +uλ

)p−upλ
pũτ

− tup−1
λ

]
ũτuλdx.

(5.26)

By Lemma 4.8, there exist some constants τ2 ≥ τ0 + τ1 and α > 0, such that

(
tũτ +uλ

)p−upλ
pũτ

− tup−1
λ ≥ α for τ ≥ τ2, x ∈D1

(
τeN

)
, t ∈ [t1, t2

]
, (5.27)
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then by (k1), (4.9), and (5.26), there exists a constant τ3 ≥ τ2 such that K(x)≥ K∞/2 for
x ∈D1(τeN ) and

∫
Ω

∫ tũτ
0

λK(x)
[(
s+uλ

)p−upλ − sp
]
dsdx

≥ 1
2
λαK∞

∫
D1(τeN )

uλ
(
x− τeN

)
uλ(x)dx

≥ c
∫
D1(τeN )

uλ
(
x− τeN

)
exp

[
− (τ + 1)

√
1 +μ1

]
(τ + 1)−(n−1)/2

≥ c3 exp
(
−
√

1 +μ1τ
)
τ−(n−1)/2,

(5.28)

where c3 > 0 is a constant independent of τ for all τ ≥ τ3 and t ∈ [t1, t2].
From (5.23)–(5.28), we get, for τ ≥ τ3 + τ∗ and t ∈ [t1, t2],

Jλ
(
tũτ
)≤M∞

λ + 2c1 exp
(
−2
√

1 +μ1τ
)
τ−n+1+2ε

+ c2 exp
(
−
√

1 +μ1τ
)
τ−γ0 − c3 exp

(
−
√

1 +μ1τ
)
τ−(n−1)/2,

(5.29)

where ci, 1≤ i≤ 3, are independent of τ.
Let ε = p(n− 1)/4(p+ 1) and by γ > (n− 1)/2, we have γ0 > (n− 1)/2. Hence, we can

find some constant τ∗ > τ3 + τ∗ large enough such that

2c1 exp
(
−2
√

1 +μ1τ
)
τ−n+1+2ε + c2 exp

(
−
√

1 +μ1τ
)
τ−γ0 − c3 exp

(
−
√

1 +μ1τ
)
τ−(n−1)/2 < 0

(5.30)

and (5.18) is proved. �

Proposition 5.6. Let conditions (k1) and (k2) hold, then (5.1)λ has at least one solution
for λ∈ (0,λ∗).

Proof. For the constant τ∗ in Lemma 5.5, by Lemma 5.4, we know that there is a constant
t0 > 0 such that Jλ(t0ũτ∗) < 0. We set

Γ= {γ ∈ C([0,1],H1
0 (Ω)

)
: γ(0)= 0, γ(1)= t0ũτ∗

}
, (5.31)

then, from (5.6) and (5.18) we get

0 < c = inf
γ∈Γ

max
0≤s≤1

Jλ
(
γ(s)

)
<M∞

λ . (5.32)

Applying the mountain pass lemma of Ambrosetti and Rabinowitz [3], there exists a
(PS)c-sequence {vk} such that

Jλ
(
vk
)−→ c, J ′λ

(
vk
)−→ 0 in H−1(Ω). (5.33)
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By Lemma 5.3, there exist a subsequence, still denoted by {vk}, an integer l ≥ 0, a solution
vλ of (5.1)λ, and solutions viλ of (2.1)λ, for 1≤ i≤ l, such that

c = Jλ
(
vλ
)

+
l∑

i=1

I∞λ
(
viλ
)
. (5.34)

By the strongly maximum principle, to complete the proof, we only need to prove vλ �≡ 0
in Ω. We proceed by contradiction. Assume that vλ ≡ 0 in Ω. From (5.32) and (5.34), we
have l ≥ 1 and

0 <M∞
λ ≤ lM∞

λ ≤
l∑

i=1

I∞λ
(
viλ
)= c <M∞

λ . (5.35)

This implies vλ �≡ 0 in Ω. �

6. Properties and bifurcation of solutions

DenoteA= {(λ,u) : u satisfies (1.1)λ,λ∈ [0,λ∗]}. By Lemma 4.8, we haveA⊂R×L∞(Ω)
∩H1

0 (Ω). Moreover, we assume that f (x),K(x)∈ Cα(Ω)∩L2(Ω). By elliptic regular the-
ory [9], we can deduce that A⊂R×C2,α(Ω)∩H2(Ω).

For each (λ,u) ∈ A, let σλ(u) denote the number defined by (3.11), which is the first
eigenvalue of the problem (3.12).

Lemma 6.1. Let u be a solution and let uλ be the minimal solution of (1.1)λ for λ∈ (0,λ∗).
Then

(i) σλ(u) > λ if and only if u= uλ;
(ii) σλ(Uλ) < λ, where Uλ is the second solution of (1.1)λ constructed in Section 5.

Proof. Now, let φ ≥ 0 and φ∈H1
0 (Ω). Since u and uλ are the solution of (1.1)λ, then

∫
Ω
∇φ ·∇(uλ−u)dx+

∫
Ω
φ
(
uλ−u

)
dx

= λ
∫
Ω
K
(
u
p
λ −up

)
φdx = λ

∫
Ω

(∫ uλ
u
tp−1dt

)
pKφdx ≥ λ

∫
Ω
pKup−1(uλ−u)φdx.

(6.1)

Let φ = (u−uλ)+ ≥ 0 and φ∈H1
0 (Ω). If φ �≡ 0, then (6.1) implies

−
∫
Ω

(|∇φ|2 +φ2)dx ≥−λ
∫
Ω
pKup−1φ2dx (6.2)

and, therefore, the definition of σλ(u) implies
∫
Ω

(|∇φ|2 +φ2)dx
≤ λ

∫
Ω
pKup−1φ2dx < σλ(u)

∫
Ω
pKup−1φ2dx ≤

∫
Ω

(|∇φ|2 +φ2)dx,
(6.3)

which is impossible. Hence φ≡ 0, and u= uλ in Ω. On the other hand, by Lemma 3.3, we
also have that σλ(uλ) > λ. This completes the proof of (i).
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By (i), we get that σλ(Uλ)≤ λ for λ∈ (0,λ∗). We claim that σλ(Uλ)= λ cannot occur.
We proceed by contradiction. Set wλ =Uλ−uλ; we have

−Δwλ +wλ = λK
[
U

p
λ −

(
Uλ−wλ

)p]
, wλ > 0 in Ω. (6.4)

By σλ(Uλ)= λ, we have that the problem

−Δϕ+ϕ= λpKUp−1
λ ϕ, ϕ∈H1

0 (Ω), (6.5)

possesses a positive solution ϕλ.
Multiplying (6.4) by ϕλ and (6.5) by wλ, integrating, and subtracting we deduce that

0=
∫
Ω
λK
[
U

p
λ −

(
Uλ−wλ

)p− pU
p−1
λ wλ

]
ϕλdx

=−1
2
p(p− 1)

∫
Ω
λKξ

p−2
λ w2

λϕλdx,
(6.6)

where ξλ ∈ (uλ,Uλ). Thus wλ ≡ 0, that is, Uλ = uλ for λ∈ (0,λ∗). This is a contradiction.
Hence, we have σλ

(
Uλ
)
< λ for λ∈ (0,λ∗). �

Lemma 6.2. Let uλ be the minimal solution of (1.1)λ for λ ∈ [0,λ∗] and σλ(uλ) > λ. Then
for any g(x)∈H−1(Ω), problem

−Δw+w = λpKup−1
λ w+ g(x), w ∈H1

0 (Ω), (6.4)λ

has a solution.

Proof. Consider the functional

Φ(w)= 1
2

∫
Ω

(|∇w|2 +w2)dx− 1
2
λp
∫
Ω
Ku

p−1
λ w2dx−

∫
Ω
g(x)wdx, (6.7)

wherew ∈H1
0 (Ω). From Hölder inequality and Young’s inequality, we have, for any ε > 0,

Φ(w)≥ 1
2

(
1− λσλ

(
uλ
)−1
)
‖w‖2− 1

2
ε‖w‖2− Cε

2
‖g‖2

H−1(Ω)

≥−C‖g‖2
H−1(Ω)

(6.8)

if we choose ε small.
Now, let {wk} ⊂H1

0 (Ω) be the minimizing sequence of variational problem

d = inf
{
Φ(w) |w ∈H1

0 (Ω)
}
. (6.9)

From (6.8) and σλ(uλ) > λ, we can also deduce that {wk} is bounded in H1
0 (Ω) if we

choose ε small. So we may suppose that

wk w weakly in H1
0 (Ω),

wk −→w strongly in L
q
loc(Ω) for 2≤ q < 2N

N − 2
wk −→w a.e. in Ω,

as k −→∞. (6.10)
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By Fatou’s lemma,

‖w‖2 ≤ liminf
k→∞

∥∥wk

∥∥2
, (6.11)

and by the weak convergence we have
∫
Ω
gwkdx −→

∫
Ω
gwdx as k −→∞. (6.12)

By Lemma 4.8, we have uλ(y,z)→ 0 as |z| →∞ uniformly for y ∈ ω. It follows that there
exists a constant c1 > 0 such that

∣∣uλ(x)
∣∣≤ c1 ∀x ∈Ω. (6.13)

Furthermore, for any ε > 0, there exists R > 0 such that |up−1
λ (x)| < ε for all x = (y,z)∈Ω

and |y| ≥ R. Let ΩR = {x = (y,z)∈Ω : |z| < R}, then we have

∣∣∣∣
∫
Ω
Ku

p−1
λ

(
w2
k −w2)dx

∣∣∣∣

≤ ‖K‖L∞(Ω)

(∫
ΩR

u
p−1
λ

∣∣wk −w
∣∣2
dx+

∫
Ω\ΩR

u
p−1
λ

∣∣wk −w
∣∣2
dx
)

≤ c2

∫
ΩR

∣∣wk −w
∣∣2
dx+ ε

∫
Ω\ΩR

∣∣wk −w
∣∣2
dx.

(6.14)

From wk →w strongly in L
q
loc(Ω) for 2≤ q < 2N/(N − 2) as k→∞, it follows that

lim
k→∞

∫
ΩR

∣∣wk −w
∣∣2
dx = 0. (6.15)

Since {wk} is bounded in H1
0 (Ω), this implies that there exists a constant c3 > 0 such that

∫
Ω\ΩR

∣∣wk −w
∣∣2
dx ≤ c3. (6.16)

Therefore, we conclude that

lim
k→∞

∣∣∣∣
∫
Ω
Ku

p−1
λ

(
w2
k −w2)dx

∣∣∣∣≤ c3ε. (6.17)

Take ε→ 0, we obtain
∫
Ω
Ku

p−1
λ w2

kdx −→
∫
Ω
Ku

p−1
λ w2dx as k −→∞. (6.18)

Therefore

Φ(w)≤ lim
n→∞Φ

(
wk
)= d (6.19)

and Φ(w)= d which gives that w is a solution of (6.4)λ. �
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Remark 6.3. From Lemma 6.2, we know that (6.4)λ has a solution w ∈H1
0 (Ω). Now, we

also assume that K(x), f (x), and g(x) are in Cα(Ω)∩L2(Ω), then by Lemmas 4.4 and 4.6,
we have that w ∈H2

0 (Ω). The standard elliptic regular theory yields w ∈ C2,α(Ω).

Lemma 6.4. Suppose uλ∗ is a solution of (1.1)λ∗ , then σλ∗(uλ∗)= λ∗ and the solution uλ∗ is
unique.

Proof. Define F :R×H1
0 (Ω)→H−1(Ω) by

F(λ,u)= Δu−u+ λK
(
u+)p + f (x). (6.20)

Since σλ(uλ) ≥ λ for λ ∈ (0,λ∗), so σλ∗(uλ∗) ≥ λ∗. If σλ∗(uλ∗) > λ∗, the equation Fu(λ∗,
uλ∗)φ=0 has no nontrivial solution. From Lemma 6.2, Fu maps R×H1

0(Ω) onto H−1(Ω).
Applying the implicit function theorem to F, we can find a neighborhood (λ∗ − δ,λ∗ + δ)
of λ∗ such that (1.1)λ possesses a solution uλ if λ∈ (λ∗ − δ,λ∗ + δ). This is contradictory
to the definition of λ∗. Hence, we obtain σλ∗(uλ∗)= λ∗.

Next, we are going to prove that uλ∗ is unique. In fact, suppose (1.1)λ∗ has another
solution Uλ∗ ≥ uλ∗ . Set w =Uλ∗ −uλ∗ ; we have

−Δw+w = λ∗K[(w+uλ∗
)p−upλ∗

]
, w > 0 in Ω. (6.21)

By σλ∗(uλ∗)= λ∗, we have that the problem

−Δφ+φ= λ∗pKup−1
λ∗ φ, φ ∈H1

0 (Ω) (6.22)

possesses a positive solution φ1.
Multiplying (6.21) by φ1 and (6.22) by w, integrating, and subtracting we deduce that

0=
∫
Ω
λ∗K

[(
w+uλ∗

)p−upλ∗ − pu
p−1
λ∗ w

]
φ1dx

= 1
2
p(p− 1)

∫
Ω
λ∗Kξp−2

λ∗ w2φ1dx,
(6.23)

where ξλ∗ ∈ (uλ∗ ,uλ∗ +w). Thus w ≡ 0. �

Proposition 6.5. Let uλ be the minimal solution of (1.1)λ. Then uλ is uniformly bounded
in L∞(Ω)∩H1

0 (Ω) for all λ∈ [0,λ∗] and

uλ −→ u0 in L∞(Ω)∩H1
0 (Ω) as λ−→ 0+, (6.24)

where u0 is the unique positive solution of (1.1) 0.

Proof. By Lemmas 4.8, 3.3, and 6.4, we can deduce ‖uλ‖L∞(Ω) ≤ ‖uλ∗‖L∞(Ω) ≤ c for λ ∈
[0,λ∗]. By (3.26), we have ‖uλ‖ ≤ (p/(p+1))‖ f ‖H−1 . Hence, uλ is uniformly bounded in
L∞(Ω)∩H1

0 (Ω) for λ∈ [0,λ∗].
Now, let wλ = uλ−u0, then wλ satisfies the following equation:

−Δwλ +wλ = λKupλ in Ω, (6.8)λ
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and by uλ being uniformly bounded in L∞(Ω)∩H1
0 (Ω), we have

∥∥wλ

∥∥2 =
∫
Ω
λKu

p
λwλdx

≤ λ‖K‖L∞(Ω)
∥∥uλ∥∥p−1

L∞(Ω)

∥∥uλ∥∥L2(Ω)

∥∥wλ

∥∥
L2(Ω) ≤ cλ,

(6.25)

where c is independent of λ. Hence, we obtain uλ→ u0 in H1
0 (Ω) as λ→ 0+.

By Lemma 4.4, uλ ∈ Lq(Ω) for all q ∈ [2,∞) and uλ is uniformly bounded in L∞(Ω)∩
H1

0 (Ω), then for any q ∈ [2,∞), there exists a positive constant cq, independent of uλ,
λ∈ [0,λ∗], such that

∥∥Kupλ
∥∥
Lq(Ω) ≤ cq. (6.26)

Now, let q0 =N/2 + 1 > N/2 and by Lemma 4.4, we have λKu
p
λ ∈ Lq0 (Ω). Apply Lemmas

4.2, 4.4, 4.6, to (6.8)λ and by (6.25) and (6.26), we obtain

∥∥wλ

∥∥
L∞(Ω) ≤ c1

∥∥wλ

∥∥
W2,q0 (Ω)

≤ c2

(∥∥λKupλ
∥∥
Lq0 (Ω) +

∥∥wλ

∥∥
Lq0 (Ω)

)

≤ c3λ+ c2
∥∥wλ

∥∥1−2/q0

L∞(Ω)

∥∥wλ

∥∥2/q0

L2(Ω) ≤ c
(
λ+ λ1/q0

)
,

(6.27)

where c is independent of λ. Hence, we obtain uλ→ u0 in L∞(Ω) as λ→ 0+. �

Proposition 6.6. For λ∈ (0,λ∗), letUλ be the positive solution of (1.1)λ withUλ > uλ, then
Uλ is unbounded in L∞(Ω)∩H1

0 (Ω), that is,

lim
λ→0+

∥∥Uλ

∥∥= lim
λ→0+

∥∥Uλ

∥∥
L∞(Ω) =∞. (6.28)

Proof. Let ϕλ be a minimizer of σλ(Uλ) for λ∈ (0,λ∗), that is,

∫
Ω
pKU

p−1
λ ϕ2

λdx = 1,
∥∥ϕλ∥∥2 = σλ

(
Uλ
)
. (6.29)

(i) First, we show that {Uλ : λ ∈ (0,λ0)} is unbounded in L∞(Ω) for any λ0 ∈ (0,λ∗).
We proceed by contradiction. Assume to the contrary that there exists c0 > 0 such that

∥∥Uλ

∥∥∞ ≤ c0 <∞ ∀λ∈ (0,λ0
)
, (6.30)

by (6.29) and σλ(Uλ) < λ for all λ∈ (0,λ0), we obtain

1=
∫
Ω
pKU

p−1
λ ϕ2

λdx ≤ c
∥∥ϕλ∥∥2 = cσλ

(
Uλ
)
< cλ, (6.31)

where c = p‖K‖L∞(Ω)c
p−1
0 . This is a contradiction for all λ < 1/c. Hence, for any λ0 ∈

(0,λ∗), {Uλ : λ ∈ (0,λ∗)} is unbounded in L∞(Ω). From this result, it is easy to see that
limλ→0+ ‖Uλ‖∞ =∞.
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(ii) Now, we show that {Uλ : λ∈ (0,λ0)} is unbounded in H1
0 (Ω) for any λ0 ∈ (0,λ∗).

If not, then there exists a constant c0 > 0 independent of λ, such that

∥∥Uλ

∥∥≤ c0 ∀λ∈ (0,λ0
)
. (6.32)

By (6.29), (6.32), Hölder inequality, Sobolev embedding theorem, and σλ(Uλ) < λ for all
λ∈ (0,λ∗), we have

1=
∫
Ω
pKU

p−1
λ ϕ2

λdx ≤ p‖K‖L∞(Ω)
∥∥Uλ

∥∥p−1
Lp+1(Ω)

∥∥ϕλ∥∥2
Lp+1(Ω)

≤ c1
∥∥Uλ

∥∥p−1∥∥ϕλ∥∥2 ≤ c1c
p−1
0

∥∥ϕλ∥∥2 = c1c
p−1
0 σλ

(
Uλ
)
< c1c

p−1
0 λ,

(6.33)

where c1 is a constant independent of λ. Now, let λ→ 0+, then we obtain a contradiction.
Hence, {Uλ : λ∈ (0,λ∗)} is unbounded in H1

0 (Ω) and limλ→0+ ‖Uλ‖ = +∞. �

In order to get bifurcation results we need the following bifurcation theorem which
can be found in Crandall and Rabinowitz [6].

Theorem 6.7. Let X , Y be Banach spaces. Let (λ,x) ∈ R×X and let F be a continuously
differentiable mapping of an open neighborhood of (λ,x) into Y . Let the null space N(Fx(λ,
x)) = span{x0} be one-dimensional and codim R(Fx(λ,x)) = 1. Let Fλ(λ,x) �∈ R(Fx(λ,x)).
If Z is the complement of span {x0} in X , then the solutions of F(λ,x)= Fx(λ,x) near (λ,x)
form a curve (λ(s),x(s)) = (λ+ τ(s),x + sx0 + z(s)), where s→ (τ(s),z(s)) ∈ R×Z is con-
tinuously differentiable function near s= 0 and τ(0)= τ′(0)= 0, z(0)= z′(0)= 0.

Proof of Theorems 1.1 and 1.2. Theorem 1.1 now follows from Lemmas 3.2, 3.3, 6.1, 6.4,
and Proposition 5.6. The conclusions (i) and (ii) of Theorem 1.2 follow immediately from
Lemma 3.3, Remark 6.2 and Propositions 6.5, 6.6. Now we are going to prove that (λ∗,
uλ∗) is a bifurcation point in C2,α(Ω)∩H2(Ω) by using an idea in [13]. We also assume
that K(x) and f (x) are in Cα(Ω)∩L2(Ω) and define

F :R1×C2,α(Ω)∩H2(Ω)−→ Cα(Ω)∩L2(Ω) (6.34)

by

F(λ,u)= Δu−u+ λK
(
u+)p + f (x), (6.35)

where C2,α(Ω)∩H2(Ω) and Cα(Ω)∩ L2(Ω) are endowed with the natural norm; then
they become Banach spaces. It can be verified easily that F(λ,u) is differentiable. From
Lemma 6.2 and Remark 6.3, we know that

Fu(λ,u)w = Δw−w+ λpKu
p−1
λ w (6.36)

is an isomorphism ofR1×C2,α(Ω)∩H2(Ω) ontoCα(Ω)∩L2(Ω). It follows from implicit
function theorem that the solutions of F(λ,u)= 0 near (λ,uλ) are given by a continuous
curve.

Now we are going to prove that (λ∗,uλ∗) is a bifurcation point of F. We show first that
at the critical point (λ∗,uλ∗), Theorem 6.7 applies. Indeed, from Lemma 6.4, problem
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(6.22) has a solution φ1 > 0 in Ω. By the standard elliptic regular theory, we have φ1 ∈
C2,α(Ω)∩H2(Ω) if f ∈ Cα(Ω)∩ L2(Ω). Thus Fu(λ∗,uλ∗)φ = 0, φ ∈ C2,α(Ω)∩H2(Ω)
has a solution φ1 > 0. This implies that N(Fu(λ∗,uλ∗)) = span{φ1} = 1 is one dimen-
sional and codim R(Fu(λ∗,uλ∗))= 1 by the Fredholm alternative. It remains to check that
Fλ(λ∗,uλ∗) �∈ R(Fu(λ∗,uλ∗)).

Assuming the contrary would imply the existence of v �≡ 0 such that

Δv− v+ λ∗pKup−1
λ∗ v = Kupλ∗ , v ∈H1

0 (Ω). (6.37)

From Fu(λ∗,uλ∗)φ1 = 0, we conclude that
∫
ΩKu

p
λ∗φ1dx = 0. This is impossible because

K(x)≥ 0, K(x) �≡ 0, uλ∗(x) > 0, and φ1(x) > 0 in Ω.
Applying Theorem 6.7, we conclude that (λ∗,uλ∗) is a bifurcation point near which the

solution of (1.1)λ forms a curve (λ∗ + τ(s),uλ∗ + sφ1 + z(s)) with s near s= 0 and τ(0)=
τ′(0) = 0, z(0) = z′(0) = 0. We claim that τ′′(0) < 0 which implies that the bifurcation
curve turns strictly to the left in (λ,u) plane. In order to obtain that τ′′(0) < 0, we need
the following lemma. �

Lemma 6.8. Suppose condition (k1) holds, then

∫
Ω
Ku

p−2
λ∗ φ3

1dx < +∞. (6.38)

Proof. Since uλ∗(x)→ 0 as |x| →∞, there is R1 > 0 such that

0= Δφ1−φ1 + λ∗pKup−1
λ∗ φ1 ≤ Δφ1− 1

4
φ1, for y ∈ ω, |z| ≥ R1. (6.39)

It is well-known that the Dirichlet equation Δw− (1/4)w = −wp in S has a positive
ground-state solution, denoted by w (see [14] and the references there). We can mod-
ify the proof in Hsu [10] and obtain that for any ε > 0 with 0 < ε < 1/4 + μ1, there exist
constants cε > 0 and R2 > 0 such that

w(y,z)≤ cεψ(y)exp

⎛
⎝−

√
1
4

+μ1− ε|z|
⎞
⎠ for y ∈ ω, |z| ≥ R2, (6.40)

where ψ is the first positive eigenfunction of the Dirichlet problem−Δψ = μ1ψ inω. Now,
let ε = (1/2)μ1. Since Δw− (1/4)w =−wp ≤ 0 in Ω, hence by the maximum principle we
obtain that there exist constants c1 > 0 and R3 > 0 such that

φ1(y,z)≤ c1ψ(y)exp
(
−1

2

√
1 + 2μ1|z|

)
for y ∈ ω, |z| ≥ R3. (6.41)

Let q ∈ ∂Ω, and B a small ball in Ω such that q ∈ ∂B. Since φ1(x) > 0 for x ∈ B, φ1(q)=
0, uλ∗(x) > 0 for x ∈ B, u(q) = 0, by the strongly maximum principle (∂φ1/∂x)(q) < 0,
(∂uλ∗ /∂x)(q) < 0. Thus

lim
x→q

uλ∗(x)
φ1(x)

= (∂uλ∗ /∂x)(q)
(∂φ1/∂x)(q)

> 0, (6.42)
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and we have u−1
λ∗ φ1 ∈ C1(Ω) and u−1

λ∗ φ1 > 0 on Ω. Therefore, there exists c2 > 0 such that

u−1
λ∗ (x)φ1(x)≤ c2 for x ∈ΩR0 , (6.43)

where ΩR0 = {x = (y,z)∈Ω : |z| < R0}.
Now, by (4.9), (6.41), and (6.43), there exists c3 > 0 such that

u−1
λ∗ (x)φ2

1(x)≤ c3 for x ∈Ω. (6.44)

From (6.41), (6.44) and Hölder’s inequality, we derive
∫
Ω
Ku

p−2
λ∗ φ3

1dx

≤ c3

∫
Ω
Ku

p−1
λ∗ φ1dx

≤ c
(∫

Ω
u
p+1
λ∗ dx

)(p−1)/(p+1)(∫
ω

[
ψ(y)

]p+1/2
dy ·

∫
Rn
e−(p+1)/4

√
1+2μ1|z|dz

)2/(p+1)

<∞.
(6.45)

�

Since λ= λ∗ + τ(s), u= uλ∗ + sφ1 + z(s) in

−Δu+u− λKup− f = 0, u > 0, u∈ C2,α(Ω)∩H2(Ω). (6.46)

Differentiating (6.46) in s twice, we have

−Δuss +uss− λpKup−1uss− 2λspKup−1us− λp(p− 1)Kup−2u2
s − λssKup = 0. (6.47)

Setting here s= 0 and using the facts that τ′(0)= 0, us = φ1(x), and u= uλ∗ as s= 0, we
obtain

−Δuss +uss− λ∗pKup−1
λ∗ uss− λ∗p(p− 1)Ku

p−2
λ∗ φ2

1− τ′′(0)Ku
p
λ∗ = 0. (6.48)

Multiplying Fu(λ∗,uλ∗)φ1 = 0 by uss and (6.48) by φ1, integrating, and subtracting the
result, and by (6.38) we obtain

∫
Ω
λ∗p(p− 1)Ku

p−2
λ∗ φ3

1dx+ τ′′(0)
∫
Ω
Ku

p
λ∗φ1dx = 0, (6.49)

which immediately gives τ′′(0) < 0. Thus

uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗,

Uλ −→ uλ∗ in C2,α(Ω)∩H2(Ω) as λ−→ λ∗.
(6.50)

Using Lemma 6.2, Remark 6.3, the implicit function theorem, and the uniqueness of the
positive ground-state solution of (1.1) 0, we can easily prove that

uλ −→ u0 in C2,α(Ω)∩H2(Ω) as λ−→ 0+, (6.51)

which proves Theorem 1.2.
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Remark 6.9. If Ω= S, Ω=RN , or Ω=RN \D, the proof still holds after simple modifi-
cation.
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