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In this contribution we present an extension of the Leverrier-Faddeev algorithm for the
simultaneous computation of the determinant and the adjoint matrix B(s) of a pencil
sE−A where E is a singular matrix but det(sE−A) ≡/ 0. Using a previous result by the
authors we express B(s) and det(sE−A) in terms of classical orthogonal polynomials.
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1. Introduction

Consider a linear, time-invariant, multivariable singular system described in the state
space as follows:

Eẋ =Ax+Bu,

y = Cx,
(1.1)

where E ∈ Cn×n is a singular matrix, x is the n-dimensional state vector, u is the m-
dimensional input vector, y is the r-dimensional output vector, and A, B, and C are
matrices with complex entries and appropriate dimension.

We can take the Laplace transform of our system (1.1). If det(sE−A) ≡/ 0, then the
following transfer function appears:

H(s)= C(sE−A)−1B, (1.2)

which, in general, is a strictly proper rational matrix (see [1, 5] and references therein).
The computation of (sE−A)−1 can be carried out by using the Cramer rule, which

requires the evaluation of n2 determinants of (n− 1)× (n− 1) polynomial matrices.
Clearly, this is not a practical procedure for large n. We will describe an extension of the
classical Leverrier-Faddeev algorithm using families of classical orthogonal polynomials
following our previous contribution [2] when instead of a singular matrix E we used
In. Here we generalize a recent result [6] based on the Chebyshev polynomials, a very
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particular family of classical orthogonal polynomials. Notice that in [3, 5] an alternative
approach using the canonical basis (xn) in the linear space of polynomials with complex
coefficients was given for linear pencils. Along the paper, we will assume that the pencil
sE−A is regular, that is, det(sE−A)≡/ 0.

The structure of the manuscript is the following. In Section 2 we summarize our algo-
rithm presented in [2] as well as we introduce the basic background about monic classical
orthogonal polynomials. In Section 3 we describe the algorithm to find the adjoint matrix
B(s) as well as the determinant of a regular pencil sE−A, where E is a singular matrix. We
also cover a gap in [6] concerning the connection between det(sE−A) and the adjoint
matrix of (sE−A). Finally, in Section 4, some numerical examples in order to test our
algorithm will be shown.

2. Leverrier-Faddeev algorithm and classical orthogonal polynomials

For a matrix A ∈ Cn×n an algorithm attributed to Leverrier, Faddeev, and others allows
the simultaneous determination of the characteristic polynomial of A and the adjoint
matrix of sIn−A. As it is shown in [1], if

pA(s)= det
(
sIn−A

)= sn +
n−1∑

k=0

ân−ksk,

Ã(s)= Adj
(
sIn−A

)= sn−1In +
n−2∑

k=0

skB̂n−k−1,

(2.1)

then the relation between the coefficients (âk) and the matrices (B̂k) follows by identifi-
cation of the coefficients of the monomials in the following two equations:

(
sIn−A

)
Ã(s)= pA(s)In,

dpA(s)
ds

= trÃ(s).
(2.2)

From a numerical point of view, the accuracy of this algorithm is not so good. This
is the reason why in [2] we have presented an alternative approach using in (2.1) the
representation of pA(s) and Ã(s) in terms of a family of monic classical orthogonal poly-
nomials.

The main reason to do it is related to the following fact.

Proposition 2.1 (see [4]). (Pn)∞n=0 is a family of monic classical orthogonal polynomials
(Hermite, Laguerre, Jacobi, and Bessel) if and only if there exist sequences of real numbers
(rn) and (sn) such that

Pn(s)= P′n+1(s)
n+ 1

+ rn
P′n(s)
n

+ sn
P′n−1(s)
n− 1

for n� 2. (2.3)

The coefficients that appear in (2.3) are given in Table 2.1.
Notice that the Hermite case appears when rn = sn = 0, n � 2. The Laguerre case ap-

pears when sn = 0, n � 2. Finally, the Jacobi and the Bessel cases are related to the case
sn �= 0 for every n� 2.
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Table 2.1. Coefficients in the relation of Proposition 2.1.

rn sn

Hermite 0 0

Laguerre n 0

Jacobi
2n(α−β)

(2n+α+β)(2n+α+β+ 2)
− 4n(n− 1)(n+α)(n+β)

(2n+α+β− 1)(2n+α+β)2(2n+α+β+ 1)

Bessel
4n

(2n+α)(2n+α+ 2)
4n(n− 1)

(2n+α− 1)(2n+α)2(2n+α+ 1)

Table 2.2. Coefficients in the three-term recurrence relation (2.4).

βn γn

Hermite 0
n

2

Laguerre 2n+α+ 1 n(n+α)

Jacobi
β2−α2

(2n+α+β)(2n+α+β+ 2)
4n(n+α)(n+β)(n+α+β)

(2n+α+β− 1)(2n+α+β)2(2n+α+β+ 1)

Bessel − 2α
(2n+α)(2n+α+ 2)

− 4n(n+α)
(2n+α− 1)(2n+α)2(2n+α+ 1)

The second ingredient for our algorithm is the fact that if (Pn)∞n=0 is a family of monic
classical orthogonal polynomials, then the following three-term recurrence relation holds:

sPn(s)= Pn+1(s) +βnPn(s) + γnPn−1(s), n� 1 with γn �= 0,

P0(s)= 1, P1(s)= s−β0.
(2.4)

The coefficients that appear in (2.4) are given in Table 2.2.
If we expand the characteristic polynomial pA(s) of A as well as the adjoint matrix Ã(s)

of sIn−A in terms of the above basis of monic classical orthogonal polynomials, that is,

pA(s)= Pn(s) +
n−1∑

k=0

ân−kPk(s), Ã(s)= Pn−1(s)In +
n−2∑

k=0

Pk(s)B̂n−k−1, (2.5)

and take into account (2.2) together with (2.3) and (2.4), then we get the following.

Proposition 2.2 (see [2]). (i) For k = 1, . . . , n,

kâk =
(
βn−k − rn−k

)
tr B̂k−1 +

(
γn−k+1− sn−k+1

)
tr B̂k−2− tr

(
AB̂k−1

)
; (2.6)
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Data: {βk}n−1
k=0, {γk}nk=1, {rk}n−1

k=0, {sk}nk=1.

Initial Condition: B̂−1 = 0, B̂0 = In.
For k = 1,2, . . . ,n− 1

âk = (1/k)
[(
βn−k − rn−k

)
tr B̂k−1 +

(
γn−k+1− sn−k+1

)
tr B̂k−2− tr

(
AB̂k−1

)]
,

B̂k =AB̂k−1 + âkIn− γn−k+1B̂k−2−βn−kB̂k−1.
(2.8)

End (For)

ân = (1/n)
[(
β0− r0

)
tr B̂n−1 +

(
γ1− s1

)
tr B̂n−2− tr

(
AB̂n−1

)]
. (2.9)

Algorithm 2.1

(ii) for k = 1, 2, . . . , n− 1,

B̂k = AB̂k−1 + âkIn− γn−k+1B̂k−2−βn−kB̂k−1, (2.7)

with the convention B̂−1 = 0, r0 = 0, s1 = 0.

Indeed the algorithm to find (ak) and (Bk) is in Algorithm 2.1.

3. Regular pencils

Now, we are interested in the computation of a(s) = det(sE−A), assuming sE−A is a
regular pencil, and B(s)= Adj (sE−A), where A,E ∈ Cn×n and E is a singular matrix. If
in the expressions of the previous section we replace A by A(s)=−sE+A, then we get

ã(λ,s) := det
(
λIn−A(s)

)= Pn(λ) +
n−1∑

k=0

ân−k(s)Pk(λ) (3.1)

as well as

B̃(λ,s) := Adj
(
λIn−A(s)

)= Pn−1(λ)In +
n−2∑

k=0

Pk(λ)B̂n−k−1(s). (3.2)

Thus, from (2.6) and (2.7) we get

kâk(s)= (βn−k − rn−k
)

tr B̂k−1(s)− tr
(
A(s)B̂k−1(s)

)

+
(
γn−k+1− sn−k+1

)
tr B̂k−2(s), k = 1, . . . ,n

(3.3)

as well as

B̂k(s)= âk(s)In− γn−k+1B̂k−2(s)−βn−kB̂k−1(s) +A(s)B̂k−1(s) (3.4)
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for k = 1, . . . ,n− 1. Thus, if λ= 0 in (3.1) and (3.2), then we get

a(s) := det(sE−A)= ã(0,s)= Pn(0) +
n−1∑

k=0

ân−k(s)Pk(0), (3.5)

B(s) := Adj (sE−A)= B̃(0,s)= Pn−1(0)In +
n−2∑

k=0

Pk(0)B̂n−k−1(s). (3.6)

Taking into account deg(Pk(s)) = k for all k � 0, (3.3), and (3.4), we can assure that
the degrees of the polynomial âk(s), k = 1,2, . . . ,n, and the polynomial matrix B̂k(s), k = 1,
2, . . . , n− 1, are at most equal to k. Thus for âk(s) and B̂k(s) we get the expansions

âk(s)=
k∑

j=0

ak, jP j(s), ak, j ∈ C,

B̂k(s)=
k∑

j=0

Pj(s)Bk, j , Bk, j ∈ Cn×n.

(3.7)

Substituting (3.7) in (3.3), we get

k
k∑

j=0

ak, jP j(s)= tr

(
(
βn−k − rn−k

) k−1∑

j=0

Pj(s)Bk−1, j +
(
γn−k+1− sn−k+1

) k−2∑

j=0

Pj(s)Bk−2, j

+ (sE−A)
k−1∑

j=0

Pj(s)Bk−1, j

)

.

(3.8)

Applying in the right-hand side the three-term recurrence relation, we get

k
k∑

j=0

ak, jP j(s)= tr
(
EBk−1,k−1

)
Pk(s)

+
[(
βn−k − rn−k

)
trBk−1,k−1 +βk−1 tr

(
EBk−1,k−1

)

− tr
(
ABk−1,k−1

)
+ tr

(
EBk−1,k−2

)]
Pk−1(s)

+
k−2∑

j=1

[
γj+1 tr

(
EBk−1, j+1

)
+βj tr

(
EBk−1, j

)

+
(
βn−k − rn−k

)
trBk−1, j +

(
γn−k+1− sn−k+1

)
trBk−2, j

− tr
(
ABk−1, j

)
+ tr

(
EBk−1, j−1

)]
Pj(s)

+
[
γ1 tr

(
EBk−1,1

)
+β0 tr

(
EBk−1,0

)
+
(
βn−k − rn−k

)
trBk−1,0

+
(
γn−k+1− sn−k+1

)
trBk−2,0− tr

(
ABk−1,0

)]
P0(s).

(3.9)
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Thus, for k = 1,2, . . . ,n,

kak,0 = γ1 tr
(
EBk−1,1

)
+β0 tr

(
EBk−1,0

)
+
(
βn−k − rn−k

)
trBk−1,0

− tr
(
ABk−1,0

)
+
(
γn−k+1− sn−k+1

)
trBk−2,0,

...

kak, j = γj+1 tr
(
EBk−1, j+1

)
+βj tr

(
EBk−1, j

)
+ tr

(
EBk−1, j−1

)

+
(
γn−k+1− sn−k+1

)
trBk−2, j +

(
βn−k − rn−k

)
trBk−1, j

− tr
(
ABk−1, j

)
, j = 1, . . . ,k− 2,

...

kak,k−1 =
(
βn−k − rn−k

)
trBk−1,k−1 + tr

(
EBk−1,k−2

)

+βk−1 tr
(
EBk−1,k−1

)− tr
(
ABk−1,k−1

)
,

kak,k = tr
(
EBk−1,k−1

)
.

(3.10)

In an analogous way, substituting (3.7) in (3.4),

k∑

j=0

Pj(s)Bk, j =
k∑

j=0

ak, jP j(s)In− γn−k+1

k−2∑

j=0

Pj(s)Bk−2, j

−βn−k
k−1∑

j=0

Pj(s)Bk−1, j + (−sE+A)
k−1∑

j=0

Pj(s)Bk−1, j .

(3.11)

Using again the three-term recurrence relation, we get

k∑

j=0

Pj(s)Bk, j = Pk(s)
[
ak,kIn−EBk−1,k−1

]

+Pk−1(s)
[
ak,k−1In−EBk−1,k−2 +

(
A−βk−1E−βn−kIn

)
Bk−1,k−1

]

+
k−2∑

j=1

Pj(s)
[
ak, j In−EBk−1, j−1 +

(
A−βjE−βn−kIn

)
Bk−1, j

− γj+1EBk−1, j+1− γn−k+1Bk−2, j
]

+P0(s)
[
ak,0In +

(
A−β0E−βn−kIn

)
Bk−1,0

− γ1EBk−1,1− γn−k+1Bk−2,0
]
.

(3.12)
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Data: {βk}n−1
k=0, {γk}nk=1, {rk}n−1

k=0, {sk}nk=1.

Initial Condition: Bi, j = 0, if i < j or j < 0, a0,0 = 1, B0,0 = In.

For k = 1, . . . , n− 1

αn−k = βn−k − rn−k.

δn−k+1 = γn−k+1− sn−k+1.

Ak =A−βn−kIn.

For j = 0,1, . . . , k

ak, j := (1/k)[γj+1 tr(EBk−1, j+1) +βj tr(EBk−1, j) +αn−k trBk−1, j

+tr(EBk−1, j−1) + δn−k+1 trBk−2, j − tr(ABk−1, j)].

Bk, j := ak, j In−EBk−1, j−1 + (Ak −βjE)Bk−1, j − γj+1EBk−1, j+1

−γn−k+1Bk−2, j .

End (For j).

End (For k).

For j = 0,1, . . . , n

an, j := (1/n)[γj+1 tr(EBn−1, j+1) +βj tr(EBn−1, j) +β0 trBn−1, j

+tr(EBn−1, j−1) + γ1 trBn−2, j − tr(ABn−1, j)].

End.

Algorithm 3.1

Thus, for k = 1,2, . . . ,n− 1,

Bk,0 = ak,0In +
(
A−β0E−βn−kIn

)
Bk−1,0− γ1EBk−1,1− γn−k+1Bk−2,0,

...

Bk, j = ak, j In−EBk−1, j−1 +
(
A−βjE−βn−kIn

)
Bk−1, j

− γj+1EBk−1, j+1− γn−k+1Bk−2, j , j = 1, . . . ,k− 2,

...

Bk,k−1 = ak,k−1In−EBk−1,k−2 +
(
A−βk−1E−βn−kIn

)
Bk−1,k−1,

Bk,k = ak,kIn−EBk−1,k−1.

(3.13)

As a conclusion, the algorithm for the computation of the coefficients ai, j in (3.5) and
Bi, j in (3.6) is as in Algorithm 3.1.

Notice that formula (3.10) in [6] is not right as a simple computation shows. Indeed
for a regular pencil it is enough to consider the expression of a(s) and B(s) in the example
provided in [6, Section 4].

Next we will give the right result.
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Theorem 3.1. Let A,E ∈ Cn×n, a(s)= det(sE−A), and B(s)= Adj (sE−A). Then

d

ds
a(s)= tr

(
EB(s)

)
. (3.14)

Proof. First, assume that E is a nonsingular matrix. Then sE−A= (sIn−AE−1)E and

d

ds
a(s)= det(E)

d

ds

(
det

(
sIn−AE−1))

= det(E)tr
(
Adj

(
sIn−AE−1))

= det(E)det(E)−1 det(sE−A)tr
(
E(sE−A)−1)

= det(sE−A)tr
(
E(sE−A)−1)

= tr
(
EB(s)

)
.

(3.15)

Next, if E is a singular matrix, then consider ε > 0, such that ε < min{|λi| : λi is an
eigenvalue of E,λi �= 0}.

Then Eε := E+ εIn is a nonsingular matrix. Using the first part of the proof,

d

ds
aε(s)= tr

(
EεBε(s)

)
, (3.16)

where aε(s)= det(sEε−A) and Bε(s) := Adj (sEε−A).
Taking into account Eε → E, aε(s) → a(s), and Bε(s) → B(s), when ε→ 0, we deduce

our statement. �

4. Examples

Let A,E ∈ C3×3 given by

A=

⎡

⎢
⎢
⎣

1 1 1

1 1 1

1 1 1

⎤

⎥
⎥
⎦ , E =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 0

⎤

⎥
⎥
⎦ . (4.1)

Notice that rankE = 2. It is straightforward to prove that

a(s)= det(sE−A)=−s2,

B(s)= Adj (sE−A)=

⎡

⎢
⎢
⎣

−s 0 s

0 −s s

s s s2− 2s

⎤

⎥
⎥
⎦ .

(4.2)



J. Hernández and F. Marcellán 9

Applying the algorithm of the previous section for Hermite polynomials {Hk(s)}nk=0,
we get

a1,0 =− trA=−3, a1,1 = trE = 2;

B1,0 = a1,0I3 +A=

⎡

⎢
⎢
⎣

−2 1 1

1 −2 1

1 1 −2

⎤

⎥
⎥
⎦ , B1,1 = a1,1I3−E =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 2

⎤

⎥
⎥
⎦ ;

a2,0 = 1
2

[
1
2

tr
(
EB1,1

)− tr
(
AB1,0

)
+ 3
]
= 2,

a2,1 = 1
2

[
tr
(
EB1,0

)− tr
(
AB1,1

)]=−4,

a2,2 = 1
2

tr
(
EB1,1

)= 1;

B2,0 = a2,0I3 +AB1,0− 1
2
EB1,1− I3 =

⎡

⎢
⎢
⎢
⎢
⎣

1
2

0 0

0
1
2

0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

,

B2,1 = a2,1I3 +AB1,1−EB1,0 =

⎡

⎢
⎢
⎣

−1 0 1

0 −1 1

1 1 −2

⎤

⎥
⎥
⎦ ,

B2,2 = a2,2I3−EB1,1 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 1

⎤

⎥
⎥
⎦ ;

a3,0 = 1
3

[
1
2

tr
(
EB2,1

)− tr
(
AB2,0

)
+

1
2

trB1,0

]
=−2,

a3,1 = 1
3

[
tr(EB2,2)− tr(AB2,1) + tr(EB2,0) +

1
2

trB1,1

]
= 1,

a3,2 = 1
3

[
tr
(
EB2,1

)− tr
(
AB2,2

)]=−1,

a3,3 = 1
3

tr
(
EB2,2

)= 0.

(4.3)

Thus

â1(s)= a1,0H0(s) + a1,1H1(s)=−3H0(s) + 2H1(s),

â2(s)= a2,0H0(s) + a2,1H1(s) + a2,2H2(s)= 2H0(s)− 4H1(s) +H2(s),

â3(s)= a3,0H0(s) + a3,1H1(s) + a3,2H2(s) + a3,3H3(s)=−2H0(s) +H1(s)−H2(s);

B̂1(s)=H0(s)B1,0 +H1(s)B1,1,

B̂2(s)=H0(s)B2,0 +H1(s)B2,1 +H2(s)B2,2.

(4.4)
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Now, the determinant a(s) and the adjoint B(s) of sE−A are given by

a(s)=H3(0) + â1(s)H2(0) + â2(s)H1(0) + â3(s)H0(0)

=−1
2
â1(s) + â3(s)=−H2(s)− 1

2
H0(s),

B(s)=H2(0)B̂0(s) +H1(0)B̂1(s) +H0(0)B̂2(s)=−1
2
I3 + B̂2(s)

=H0(s)
[
− 1

2
I3 +B2,0

]
+H1(s)B2,1 +H2(s)B2,2.

(4.5)

Next, applying the algorithm for the family {Lαk(s)}nk=0 (Laguerre polynomials with
parameter α), we get

a1,0 = (1 +α)trE+ 3(3 +α)− trA= 8 + 5α, a1,1 = trE = 2;

B1,0 = (a1,0− 5−α)I3 +A− (1 +α)E =

⎡

⎢
⎢
⎣

3 + 3α 1 1

1 3 + 3α 1

1 1 4 + 4α

⎤

⎥
⎥
⎦ ,

B1,1 = a1,1I3−E =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 2

⎤

⎥
⎥
⎦ ;

a2,0 = 1
2

[
(1 +α)

(
tr
(
EB1,1

)
+ tr

(
EB1,0

))
+ (2 +α)

(
trB1,0 + 6

)− tr
(
AB1,0

)]

= 4(1 +α)(3 + 2α),

a2,1 = 1
2

(
(2 +α)trB1,1 + tr

(
EB1,0

)
+ (3 +α)tr

(
EB1,1

)− tr
(
AB1,1

))= 8 + 6α,

a2,2 = 1
2

tr
(
EB1,1

)= 1;

B2,0 =
(
a2,0− 4− 2α

)
I3 +

(
A− (1 +α)E− (3 +α)I3

)
B1,0− (1 +α)EB1,1

= (1 +α)

⎡

⎢
⎢
⎣

2α 1 2

1 2α 2

2 2 2 + 4α

⎤

⎥
⎥
⎦ ,

B2,1 = a2,1I3 +EB1,0 +
(
A− (3 +α)(E+ I3)

)
B1,1 =

⎡

⎢
⎢
⎣

α 0 1

0 α 1

1 1 4 + 4α

⎤

⎥
⎥
⎦ ,
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B2,2 = a2,2I3−EB1,1 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 1

⎤

⎥
⎥
⎦ ;

a3,0 = 1
3

[
(1 +α)

(
tr
(
EB2,1

)
+ tr

(
EB2,0

)
+ trB2,0 + trB1,0

)− tr
(
AB2,0

)]

= 2α(1 +α)(3 + 2α),

a3,1 = 1
3

(
2(2 +α)tr

(
EB2,2

)
+ (3 +α)tr

(
EB2,1

)
+ tr

(
EB2,0

)
+ +(1 +α)trB2,1

+ (1 +α)trB1,1− tr
(
AB2,1

))= 2α(3 + 2α),

a3,2 = 1
3

(
(1 +α)trB2,2 + tr

(
EB2,1

)
+ (5 +α)tr

(
EB2,2

)− tr
(
AB2,2

))= α,

a3,3 = 1
3

tr
(
EB2,2

)= 0.

(4.6)

Thus

â1(s)= a1,0L
α
0(s) + a1,1L

α
1(s)= (8 + 5α)Lα0(s) + 2Lα1(s),

â2(s)= a2,0L
α
0(s) + a2,1L

α
1(s) + a2,2L

α
2(s)

= 4(1 +α)(3 + 2α)Lα0(s) + (8 + 6α)Lα1(s) +Lα2(s),

â3(s)= a3,0L
α
0(s) + a3,1L

α
1(s) + a3,2L

α
2(s) + a3,3L

α
3(s)

= 2α(1 +α)(3 + 2α)Lα0(s) + 2α(3 + 2α)Lα1(s) +αLα2(s);

B̂1(s)= Lα0(s)B1,0 +Lα1(s)B1,1,

B̂2(s)= Lα0(s)B2,0 +Lα1(s)B2,1 +Lα2(s)B2,2.

(4.7)

The determinant a(s) and the adjoint B(s) of sE−A are given by

a(s)= Lα3(0) + â1(s)Lα2(0) + â2(s)Lα1(0) + â3(s)Lα0(0)

=−(1 +α)(2 +α)Lα0(s)− 2(2 +α)Lα1(s)−Lα2(s),

B(s)= Lα2(0)B̂0(s) +Lα1(0)B̂1(s) +Lα0(0)B̂2(s)

= Lα0(s)
[
(1 +α)(2 +α)I3− (1 +α)B1,0 +B2,0

]

+Lα1(s)
[− (1 +α)B1,1 +B2,1

]
+Lα2(s)B2,2.

(4.8)
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Finally, if we consider the family {Tk(s)}nk=0 of the Chebyshev polynomials of first kind,
applying the algorithm we get

a1,0 =− trA=−3, a1,1 = trE = 2;

B1,0 = a1,0I3 +A=

⎡

⎢
⎢
⎣

−2 1 1

1 −2 1

1 1 −2

⎤

⎥
⎥
⎦ , B1,1 = a1,1I3−E =

⎡

⎢
⎢
⎣

1 0 0

0 1 0

0 0 2

⎤

⎥
⎥
⎦ ;

a2,0 = 1
2

(
1
4

tr
(
EB1,1

)− tr
(
AB1,0

)
+

3
2

)
= 5

4
,

a2,1 = 1
2

(
tr
(
EB1,0

)− tr
(
AB1,1

))=−4, a2,2 = 1
2

(
tr
(
EB1,1

))= 1;

B2,0 = a2,0I3 +AB1,0− 1
4
EB1,1− 1

4
I3 =

⎡

⎢
⎢
⎢
⎢
⎣

1
2

0 0

0
1
2

0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

,

B2,1 = a2,1I3−EB1,0 +AB1,1 =

⎡

⎢
⎢
⎣

−1 0 1

0 −1 1

1 1 −2

⎤

⎥
⎥
⎦ ,

B2,2 = a2,2I3−EB1,1 =

⎡

⎢
⎢
⎣

0 0 0

0 0 0

0 0 1

⎤

⎥
⎥
⎦ ;

a3,0 = 1
3

(
1
4

tr
(
EB2,1

)
+

1
2

trB1,0− tr
(
AB2,0

)
)
=−2,

a3,1 = 1
3

(
1
4

tr
(
EB2,2

)
+ tr

(
EB2,0

)
+

1
2

trB1,1− tr
(
AB2,1

)
)
= 1,

a3,2 = 1
3

(
tr
(
EB2,1

)− tr
(
AB2,2

))=−1,

a3,3 = 1
3

tr
(
EB2,2

)= 0.

(4.9)

Thus

â1(s)= a1,0T0(s) + a1,1T1(s)=−3T0(s) + 2T1(s),

â2(s)= a2,0T0(s) + a2,1T1(s) + a2,2T2(s)= 5
4
T0(s)− 4T1(s) +T2(s),

â3(s)= a3,0T0(s) + a3,1T1(s) + a3,2T2(s) + a3,3T3(s)=−2T0(s) +T1(s)−T2(s);

B̂1(s)= T0(s)B1,0 +T1(s)B1,1, B̂2(s)= T0(s)B2,0 +T1(s)B2,1 +T2(s)B2,2.

(4.10)
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The determinant a(s) and the adjoint B(s) of sE−A are given by

a(s)= T3(0) + â1(s)T2(0) + â2(s)T1(0) + â3(s)T0(0)

=−1
2
T0(s)−T2(s),

B(s)= T2(0)B̂0(s) +T1(0)B̂1(s) +T0(0)B̂2(s)

= T0(s)
(
B2,0− 1

2
I3
)

+T1(s)B2,1 +T2(s)B2,2.

(4.11)
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