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In this paper we unify the structures of various clean rings by introducing the notion
of P-clean rings. Some properties of P-clean rings are investigated, which generalize the
known results on clean rings, semiclean rings, n-clean rings, and so forth. By the way, we
answer a question of Xiao and Tong on n-clean rings in the negative.
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1. Introduction

Throughout this paper R denotes an associative ring with identity and all modules are
unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of
idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R)
the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R))
the set of regular (unit regular) elements of R, and Peri(R) the set of periodic elements
of R. The Jacobson radical and the prime radical of R are denoted by J(R) and Nil∗(R),
respectively.

Following Han and Nicholson [4], an element x of a ring R is called clean if x = e+u
where e ∈ Id(R) and u∈U(R). A ring R is clean if every element of R is clean. This notion
was first introduced by Nicholson [5] as early as 1977 in his study of lifting idempotents
and exchange rings. Since then, a great deal is known about clean rings and their gener-
alizations (cf. [1–9]).

According to Ye [9], a ring R is called semiclean if every element of R has the form
x = f + u, where u ∈ U(R) and f is periodic, that is, f p = f q for two different positive
integers p and q . In [8], an element x of a ring R is called n-clean if x = e+u1 + ···+un
where e ∈ Id(R), ui ∈ U(R), and n is a positive integer. The ring R is called n-clean if
every element of R is n-clean for some fixed positive integer n. While R is called Σ-clean,
if the n is a positive integer depending on x. Also Zhang and Tong in [10] defined R to be
G-clean, if each x ∈ R has the form x = a+u where a is unit regular and u∈U(R).

Motivated by the results of Han and Nicholson [4] on clean rings, Ye [9] on semiclean
rings, Xiao and Tong [8] on n-clean rings and Σ-clean rings, and Zhang and Tong [10] on
G-clean rings, in this paper we unify the structures of various clean rings by introducing
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the notion of P-clean rings and the common properties of those rings. By the way, we
answer a question of Xiao and Tong [8] in the negative and extend some known results
of [8, 9].

2. P-clean rings

We start this section by the following definitions.
For two subsets A and B of a ring R, the sum of A and B is defined as follows: A+

B = {a + b | a ∈ A, b ∈ B}. The sum of more than two subsets of an R can be defined
inductively.

Let P be a property which is meaningful for elements of a ring. For any ring R, let P(R)
be the subset {a∈ R | a has property P} of R.

Definition 2.1. Property P will be called admissible if the following conditions are satis-
fied.

(1) For any ring homomorphism σ : R→ S, σ(P(R))⊆ P(S).
(2) For any rings R⊆ S, P(R)⊆ P(S).
(3) For any e ∈ Id(R), P(eRe) +P((1− e)R(1− e))⊆ P(R).

For convenience, an element of P(R) is called a P-element in R. In this paper P will
always be an admissible property.

Proposition 2.2. (1) If σ is a ring isomorphism from R onto S, then σ(P(R))= P(S).
(2) If e1,e2, . . . ,en are orthogonal complete idempotents, that is, eie j = 0 whenever i �= j

and e2
i = ei, and e1 + e2 + ···+ en = 1, then P(e1Re1) +P(e2Re2) + ···+P(enRen)⊆

P(R).

Proof. (1) By Definition 2.1, σ(P(R)) ⊆ P(S), hence σ−1(σ(P(R))) ⊆ σ−1(P(S)) ⊆ P(R).
It follows that P(R) ⊆ σ−1(P(S)) ⊆ P(R), which gives σ(P(R)) ⊆ P(S) ⊆ σ(P(R)) and so
σ(P(R))= P(S).

(2) We prove this by using induction on n. In fact, the case n = 2 is condition (3)
of Definition 2.1. Assume (2) holds for n− 1. Let e1 + e2 + ···+ en−1 = f . Then multi-
plied by ei on the two sides of the above equation, we have ei f = f ei = ei, which gives
ei = f ei f and so ei ∈ Id( f R f ). Note that f R f is a ring with identity f . It yields that
P(e1Re1) + P(e2Re2) + ··· + P(en−1Ren−1) ⊆ P( f R f ) by inductive assumption. On the
other hand, f + en = 1 implies P( f R f ) + P(enRen) ⊆ P(R) by Definition 2.1(3). Hence
P(e1Re1) +P(e2Re2) + ···+P(en−1Ren−1) +P(enRen)⊆ P( f R f ) +P(enRen)⊆ P(R). �

Definition 2.3. A ring R is called P-clean if every x ∈ R has the form x = p + u, where
p ∈ P(R) and u∈U(R).

Lemma 2.4. Let R be a ring and e ∈ Id(R). Then the following hold.
(1) If u∈U(eRe) and v ∈U((1− e)R(1− e)), then u+ v ∈U(R).
(2) If e1 ∈ Id(eRe) and e2 ∈ Id((1− e)R(1− e)), then e1 + e2 ∈ Id(R).
(3) If f ∈ Peri(eRe) and g ∈ Peri((1− e)R(1− e)), then f + g ∈ Peri(R).
(4) If x ∈ RE(eRe) and y ∈ RE((1− e)R(1− e)), then x+ y ∈ RE(R).
(5) If x ∈URE(eRe) and y ∈URE((1− e)R(1− e)), then x+ y ∈URE(R).
(6) If x ∈Un(eRe) and y ∈Un((1− e)R(1− e)), then x+ y ∈Un(R).
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(7) If x ∈ Id(eRe) +Un(eRe) and y ∈ Id((1− e)R(1− e)) +Un((1− e)R(1− e)), then
x+ y ∈ Id(R) +Un(R).

(8) If x ∈ Id(eRe) +UΣ(eRe) and y ∈ Id((1− e)R(1− e)) +UΣ((1− e)R(1− e)), then
x+ y ∈ Id(R) +UΣ(R).

Proof. We only prove (3) and (8), the others are very similar.
(3) Let f ∈ Peri(eRe) and g ∈ Peri((1− e)R(1− e)). Then there exist positive integers

m > n and p > q such that f m = f n and g p = gq. By Ye [9, Lemma 5.2], f n(m−n) and
gq(p−q) are both idempotents. Set t = 2n(m− n) q(p− q). Then f 2t = f t and g2t = gt.
Since f g = g f = 0, ( f + g)2t = f 2t + g2t = f t + gt = ( f + g)t. Hence f + g ⊆ Peri(R).

(8) Assume x ∈ Id(eRe) +UΣ(eRe) and y ∈ Id((1− e)R(1− e)) +UΣ((1− e)R(1− e)).
Then x = f + u1 + ··· + un and y = g + v1 + ··· + vm where f ∈ Id(eRe), g ∈ Id((1−
e)R(1− e)), ui ∈ U(eRe), and vj ∈ U((1− e)R(1− e)). It is easy to show that an n-clean
element is m-clean whenever n≤m, since for any e ∈ Id(R), e = (1− e) + (2e− 1) where
1− e ∈ Id(R) and (2e − 1)2 = 1. So without loss of generality, we can assume n = m.
Using (1), f + g ∈ Id(R). And from (6), ui + vi ∈ U(R), hence x + y = ( f + g) + (u1 + v1)
+ ···+ (un + vn)∈ Id(R) +UΣ(R).

Using Lemma 2.4, it is easy to check that for any ring R, 0, R, Id(R), Peri(R), U(R),
RE(R), URE(R), Un(R), Id(R) + Un−1(R) for n ≥ 2, Id(R) + UΣ(R) are all subsets of R
defined by a suitable admissible property P. �

From the above arguments, the following proposition is immediate.

Proposition 2.5. Let R be a ring. Then the following conclusions hold.
(1) Id(R)-clean rings are precisely clean rings.
(2) Pri(R)-clean rings are precisely semiclean rings.
(3) U(R)-clean rings are precisely (S,2)-rings.
(4) Ure(R)-clean rings are precisely G-clean rings.
(5) Id(R) +Un−1(R)-clean rings are precisely n-clean rings when n≥ 2.
(6) Id(R) +UΣ(R)-clean rings are precisely Σ-clean rings.

Note that here an (S,2)-ring is a ring in which every element can be expressed as a sum
of two units of R. While in some literature it referred to a ring in which every element can
be written as a sum of no more than two units.

Proposition 2.6. Any homomorphic image of a P-clean ring is P-clean.

Proof. Let R be a P-clean ring and let f : R→ S be a ring surjective homomorphism.
Then for any y ∈ S, there exists x ∈ R such that f (x) = y. Since R is P-clean, x = p + u
with p ∈ P(R) and u ∈ U(R). Hence f (x) = f (p) + f (u). Obviously f (u) ∈ U(S) and
f (p)∈ f (P)⊆ P(S) by Definition 2.1, the proof is complete. �

Proposition 2.7. A finite direct product R =∏n
i=1Ri of rings Ri is P-clean if and only if

each Ri is P-clean.

Proof. If R is P-clean, then each Ri is P-clean by Proposition 2.6. Conversely, assume
each Ri is P-clean, and x = (xi) ∈ R. Then xi = pi + ui with pi ∈ P(Ri) and ui ∈ U(Ri)
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for each i. By Proposition 2.2, we can identify Ri with (. . . ,0,Ri,0, . . .) canonically. Let ei =
(. . . ,0,1,0, . . .). Then (pi) = (p1,0, . . . ,0) + (0, p2, . . . ,0) + ··· + (0,0, . . . , pn) ∈ P(e1Re1) +
P(e2Re2) + ···+P(enPen)⊆ P(R). Now x = (xi)= (pi +ui)= (pi) + (ui) with (pi)∈ P(R)
and (ui)∈U(R), so we are done. �

It should be noted that Proposition 2.7 is not true for an infinite direct product of
rings Ri. For example, the ring Z of integers is a Σ-clean ring, but R =∏∞

i=1Z is not Σ-
clean since (1,2, . . . ,n, . . .) is obviously not Σ-clean.

Proposition 2.8. The ring R is P-clean if and only if the ring R[[x]] of formal power series
over R is P-clean.

Proof. If R[[x]] is P-clean, then R is P-clean by Proposition 2.6. Now if R is P-clean, then
for any f (x)∈ R[[x]], f (x)= a0 + a1x+ ···+ anxn + ··· . By assumption, a0 = p+uwith
p ∈ P(R) and u ∈ U(R). Hence f (x) = p + u+ a1x + ···+ anxn + ··· with p ∈ P(R) ⊆
P(R[[x]]) and u+ a1x+ ···+ anxn + ··· ∈U(R[[x]]), as desired.

�

The following corollary extends [8, Proposition 2.5] which states that for a commuta-
tive ring R, R is n-clean if and only if R[[x]] is n-clean.

Corollary 2.9. R is n-clean (Σ-clean) if and only if R[[x]] is n-clean (Σ-clean).

It has been proved by Han and Nicholson in [4] that if e is an idempotent in a ring R
such that eRe and (1− e)R(1− e) are both clean rings, then R is clean. Hence the ring of
n×n matrices over R is clean. Similar results hold for semiclean rings, n-clean rings, and
Σ-clean rings. We now extend these results to P-clean rings.

Lemma 2.10. Let e ∈ Id(R) be such that eRe and (1− e)R(1− e) are both P-clean rings.
Then R is a P-clean ring.

Proof. For convenience, write r̄ = 1− r for each r ∈ R. We use the Pierce decomposition
of the ring R:

R= eRe+ eRē+ ēRe+ ēRē. (2.1)

Let x = a + b + c + d where a ∈ eRe, b ∈ eRē, c ∈ ēRe, and d ∈ ēRē. By hypothesis,
write a= p+u where p ∈ P(eRe) and u∈U(eRe) with inverse u1. Then d− cu1b ∈ ēRē,
so write d− cu1b = q + v where q ∈ P(ēRē) and v ∈ U(ēRē) with inverse v1. Hence x =
(p+ q) +u+ b+ c+ v+ cu1b and it suffices to show that u+ b+ c+ v+ cu1b is a unit in R.
To this end compute

(
u+ b+ c+ v+ cu1b

)(
u1 +u1bv1cu1−u1bv1− v1cu1 + v1

)

= (e+ bv1cu1− bv1
)

+
(− bv1cu1 + bv1

)
+
(
cu1 + cu1bv1cu1− cu1bv1

)

+
(− cu1 + 1− e

)
+
(− cu1bv1cu1 + cu1bv1

)= 1.

(2.2)

Similarly, (u1 +u1bv1cu1−u1bv1− v1cu1 + v1) (u+ b+ c+ v+ cu1b)= 1.
Note that p+ q ∈ P(eRe) +P(ēRē)⊆ P(R) by Definition 2.1, the proof is complete. �

Using Lemma 2.10, an inductive argument gives immediately.
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Theorem 2.11. If 1 = e1 + e2 + ···+ en in a ring R where ei are orthogonal idempotents
and each eiRei is P-clean, then R is P-clean.

The following two results are direct consequences of Theorem 2.11

Corollary 2.12. If R is a P-clean ring, so also is the matrix ring Mn(R).

Corollary 2.13. If M =M1 ⊕M2 ⊕ ··· ⊕Mn are modules and end(Mi) is P-clean for
each i, then end (M) is P-clean.

Since any homomorphic image of a P-clean ring is again P-clean, with Theorem 2.11,
this gives the following.

Corollary 2.14. If A and B are rings and V = AVB is a bimodule, the split-null extension
R is P-clean if and only if both A and B are P-clean, where

R=
(
A V
0 B

)

. (2.3)

In particular, induction shows that for each n ≥ 1, a ring R is P-clean if and only if the
ring of all n×n upper triangular matrices over R is P-clean.

Let R be a ring and let I be an ideal of R. We say P-elements in R/I lift modulo I , if
for any p ∈ P(R/I) there exists a∈ P(R) such that π(a)= p where π is the canonical ring
homomorphism from R onto R/I .

We close this section with the following proposition whose proof is very easy.

Proposition 2.15. Let R be a ring and let I be an ideal contained in J(R). If R/I is a P-clean
ring and P-elements lift modulo I , then R is a P-clean ring.

3. Some remarks

It is known by [4, Proposition 6] that a ring R is clean if and only if R/I is clean for any
ideal I ⊆ J(R) and idempotents lift modulo I . Xiao and Tong [8] naturally claimed that
they do not know whether for any n-clean ring R, idempotents of R/I lift modulo I where
I is any ideal of R contained in J(R). The following counterexample shows that the answer
is negative.

Example 3.1. There is a 4-clean ring R in which idempotents of R/J(R) cannot be lifted
to R.

Proof. Let R be the subring of rational numbers Q given by R = {m/n ∈ Q | (m,n) =
(n,6) = 1}. Then R has only two maximal ideals: 2R and 3R, so J(R) = 6R. Denote the
ring of integers modulo n by Zn, then R/J(R)∼= Z2×Z3, which has four idempotents. But
R has only two idempotents. This shows that idempotents of R/J(R) cannot be lifted to R
modulo J(R). But it can be shown that R is a 4-clean ring.

Clearly, x =m/n∈U(R) if and only if (m,6)= (n,6)= 1. Now for any x ∈ R, x has the
form x = 3p2qm/n where (m,6)= (n,6)= 1. If p,q ≥ 1, then 3p2qm= (3p2q − 1 + 1)m=
(3p2q− 1) m+m∈U2(R), so x ∈U2(R). If x = 3pm/n with p ≥ 1 and (m,6)= (n,6)= 1,
then 3pm = (3p − 2 + 2)m = (3p − 2)m+m+m, which implies x ∈ U3(R). Similarly, in
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the case of x = 2qm/n where (m,6)= (n,6)= 1 and q ≥ 1, then 2q = 2q− 3 + 3= 2q− 3 +
1 + 1 + 1. It follows that x ∈ U4(R). Since any n-clean element must be m-clean for any
n≤m (cf. the proof of Lemma 2.4(8)), R is a 4-clean ring from the above arguments. This
ring R is clearly a k-clean for any k ≥ 4 as the proof shows. �

The following two results are obtained by Xiao and Tong [8] for commutative rings,
now we extend them to 2-primal rings (rings whose prime radical coincides with the set
of nilpotent elements).

Proposition 3.2. For any 2-primal ring R, the polynomial ring R[x] is not Σ-clean.
Proof. Assume the contrary, then x = e(x) + u1(x) + u2(x) + ··· + un(x) where e(x) ∈
Id(R[x]), ui(x)∈U(R[x]) for each i, and n is a positive integer. Let

e(x)= e0 + a1x+ ···+ amx
m,

u1(x)= u10 +u11x+ ···+u1mx
m,

...

un(x)= un0 +un1x+ ···+unmx
m.

(3.1)

Since R is 2-primal, a polynomial over R is invertible if and only if its constant term is
in U(R) and the other coefficients are in Nil∗(R) by [3, Theorem 2.4], so ui j ∈Nil∗(R)
for each j ≥ 1. Hence x = e(x) +u1(x) + ···+un(x) gives a1 +u11 + ···+un1 = 1, so a1 is
a unit in R, and a2 +u12 + ···+un2 = 0 implies a2 ∈Nil∗(R). On the other hand, e(x)2 =
e(x) implies e2

0 = e0, and e(x)2 = e0 + (e0a1 + a1e0) x+ (e0a2 + a2
1 + a2e0) x2 + ···+ a2

mx
2m.

So a2 = e0a2 + a2
1 + a2e0 by comparing the coefficient of x2 in e(x)2 = e(x). Note that the

sum of a unit and a nilpotent element must be a unit and e0a2 + a2e0 ∈Nil∗(R). It follows
that a2 ∈U(R). This is a contradiction, and the proof is complete. �

From Proposition 3.2, the following corollary is immediate.

Corollary 3.3. For any 2-primal ring R, the polynomial ring R[x] is not n-clean.

We conclude this paper with the following proposition.

Proposition 3.4. For any 2-primal ring R, the polynomial ring R[x] is not semiclean.

Proof. Assume the contrary, then x = p(x) + u(x) where p(x) is a periodic element and
u(x) is a unit. Let p(x)= p0 + p1x+ ···+ pnxn and u(x)= u0 +u1x+ ···+unxn. Since R
is 2-primal, ui ∈Nil∗(R) for each i≥ 1 by [3, Theorem 2.4]. By comparing the coefficient
of x = p(x) + u(x), we have p1 + u1 = 1, which implies p1 is a unit in R, and pi + ui = 0
gives pi ∈ Nil∗(R) for each i ≥ 2. Clearly we can assume that p(x)s = p(x)t for positive
integers s > t ≥ 2. Then a routine calculation shows that the coefficient of xs in p(x)s is

∑

i1+i2+···+is=s
pi1 pi2 . . . pis = ps1 + a for some a∈Nil∗(R). (3.2)
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While the coefficient of xs in p(x)t is

∑

j1+ j2+···+ jt=s
p j1 pj2 . . . p jt = b for some b ∈Nil∗(R). (3.3)

Comparing the coefficients of xs on two sides of p(x)s = p(x)t, we have p1 ∈Nil∗(R),
which is a contradiction. �

The above result is obtained by Ye [9] only for a commutative ring.
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