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We determine the lower bounds for classes of Rhaly matrices, considered as bounded
linear operators on �p. We improve on and provide correct proofs of the results of the
first author (1990).
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The following conjecture was posed by Axler and Shields. Let {xn} be a monotone de-
creasing sequence of nonnegative numbers, C the Cesáro matrix of order one. What is
the best constant K for which ‖Cx‖2 ≥ K‖x‖2 for all such sequences {xn}? Lyons [3] de-
termined that the best constant is π/

√
6. This result was extended to �p spaces for p > 1

by Bennett [1]. In [1], Bennett established the following result, where B(�p) denotes the
set of bounded linear operators on �p.

Theorem 1. Let {xn} be a monotone decreasing nonnegative sequence, let A∈ B(�p) with
nonnegative entries, and 1 < p <∞. Then

‖Ax‖p ≥ L‖x‖p, (1)

where

Lp := inf
r

(r + 1)−1
∞∑

j=0

( r∑

k=o
ajk

)p

= inf
r

f (r), say. (2)

For A= C, the minimum occurs at f (0), which is the sum of the pth power of the first
column of C. The proof of the result of Bennett is relatively easy, when contrasted with
the task of finding Lp for a particular matrix, or class of matrices.

A factorable matrix is a lower triangular matrix whose nonzero entries ank can be
written in the form anbk, where an depends only on n and bk depends only on k. Rhaly
[4–6] defined three classes of matrices, all of which are factorable.
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2 Factorable matrices

In [8], Rhoades investigated the lower bounds question for the Rhaly matrices, and
obtained some partial results. In this paper, we return to the study of the Rhaly matrices,
as special cases of factorable matrices. This paper differs from [8] in three important
respects. First, one general result is proved, and the theorems of [8] then follow as special
cases. Second, the results of [8] are extended to all p > 1. Third, as an application of the
general procedure developed here, we are able to provide a new proof of [7, Theorem 1]
as well as to verify the conjecture that, for the weighted mean methods with pn = (n+ 1)α,
α≥ 1, Lp = f (0).

For any sequence {xn}, the forward difference operatorΔ is defined byΔxn = xn− xn+1,
and Δm+1xn = Δ(Δmxn).

Theorem 2. Let A be a factorable matrix with positive entries, row sums tn, and {an}mono-
tone decreasing. Then sufficient conditions for f (0)= Lp are that

Δy
p
r < 0, Δ2y

p
r > 0, (3)

Δ2

(
1

Δy
p
r

)
≤ 0, (4)

where yr = tr /ar ,

lim
r→∞

a
p
r+1Δy

p
r+1

Δ2y
p
r

≥ 0, (5)

t0 + 2Δy
p
0

∞∑

j=1

a
p
j ≤ 0. (6)

Proof. With

tn = an

n∑

k=0

bk, yn = tn
an

,

f (r)= 1
r + 1

∞∑

j=0

( r∑

k=0

ajk

)p

= 1
r + 1

[ r∑

j=0

( j∑

k=0

ajk

)P

+
∞∑

j=r+1

( r∑

k=0

ajk

)p]

= 1
r + 1

[ r∑

j=0

t
p
j + y

p
r

∞∑

j=r+1

a
p
j

]
,

f (r)− f (r + 1)= 1
(r + 1)(r + 2)

r∑

j=0

t
p
j −

t
p
r+1

r + 2
+
y
p
r a

p
r+1

r + 1
+Δ
(

y
p
r

r + 1

) ∞∑

j=r+2

a
p
j .

(7)

Note that

− t
p
r+1

r + 2
+
y
p
r a

p
r+1

r + 1
= y

p
r a

p
r+1

r + 1
−
(
ar+1yr+1

)p

r + 2
= a

p
r+1Δ

(
y
p
r

r + 1

)
. (8)
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Thus

f (r)− f (r + 1)= 1
(r + 1)(r + 2)

r∑

j=0

t
p
j +Δ

(
y
p
r

r + 1

) ∞∑

j=r+1

a
p
j . (9)

Define

g(r)= (r + 1)(r + 2)
[
f (r)− f (r + 1)

]

=
r∑

j=0

t
p
j + (r + 1)(r + 2)Δ

(
y
p
r

r + 1

) ∞∑

j=r+2

a
p
j .

(10)

Then

g(r)− g(r + 1)=−tpr+1 + (r + 2)

[
(r + 1)Δ

(
y
p
r

r + 1

)
− (r + 3)Δ

(
y
p
r+1

r + 2

)] ∞∑

j=r+2

a
p
j

+ (r + 1)(r + 2)Δ

(
y
p
r

r + 1

)
a
p
r+1.

(11)

But

(r + 1)Δ

(
y
p
r

r + 1

)
− (r + 3)Δ

(
y
p
r+1

r + 2

)

= (r + 1)

[
y
p
r

r + 1
− y

p
r+1

r + 2

]
− (r + 3)

[
y
p
r+1

r + 2
− y

p
r+2

r + 3

]

= y
p
r − (r + 1)y

p
r+1

r + 2
− (r + 3)y

p
r+1

r + 2
+ y

p
r+2 = Δ2y

p
r ,

− t
p
r+1 + (r + 1)(r + 2)Δ

(
y
p
r

r + 1

)
a
p
r+1

=−(ar+1yr+1
)p

+ (r + 1)(r + 2)

(
y
p
r

r + 1
− y

p
r+1

r + 2

)
a
p
r+1

= a
p
r+1

[− y
p
r+1 + (r + 2)y

p
r − (r + 1)y

p
r+1

]= a
p
r+1(r + 2)Δyr p.

(12)

Thus

g(r)− g(r + 1)= (r + 2)a
p
r+1

(
Δyr+1

)p
+ (r + 2)Δ2y

p
r

∞∑

j=r+1

a
p
j . (13)
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Define

h(r)= g(r)− g(r + 1)

(r + 2)Δ2y
p
r
= a

p
r+1Δy

p
r

Δ2y
p
r

+
∞∑

j=r+2

a
p
j ,

h(r)−h(r + 1)= a
p
r+1Δy

p
r

Δ2y
p
r

+ a
p
r+2

(
1− Δy

p
r+1

Δ2y
p
r+1

)

= 1

Δ2y
p
r Δ2y

p
r+1

[
a
p
r+1Δ

2y
p
r+1Δy

p
r + a

p
r+2Δ

2y
p
r
(−Δy

p
r+2

)]

= Δy
p
r Δy

p
r+2

Δ2y
p
r Δ2y

p
r+1

[
a
p
r+1Δ

2y
p
r+1

Δy
p
r+2

− a
p
r+2

(
1− Δy

p
r+1

Δy
p
r

)]
,

(14)

and h(r)−h(r + 1)≥ 0 if and only if

a
p
r+1

(
Δy

p
r+1

Δy
p
r+2

− 1

)
− a

p
r+2

(
1− Δy

p
r+1

Δy
p
r

)
≥ 0. (15)

Since {ar} is monotone decreasing, it is sufficient to have

Δy
p
r+1

Δy
p
r+2

− 1≥ 1− Δy
p
r+1

Δy
p
r

; (16)

that is,

Δy
p
r+1

(
1

Δy
p
r

+
1

Δy
p
r+2

)
≥ 2. (17)

Using (3), Δy
p
r+1 > Δy

p
r+2 and Δy

p
r+1 < Δy

p
r . Since Δy

p
r < 0, the above inequality is equiv-

alent to (4). Thus h is monotone decreasing in r. From (5), h is nonnegative, so g is
monotone decreasing in r. From (6), g(0) is negative, so that f is monotone increasing
in r. �

Lemma 3. Define sequences {u(r)} and {v(r)} by u(r) = 1/Δv(r). Then Δ2u(r) can be
written in the form

Δ2u(r)= 1
Δv(r)

[
2Δ2v(r)Δ2v(r + 1)
Δv(r + 1)Δv(r + 2)

− Δ3v(r)
Δv(r + 2)

]
. (18)

Proof. The equation u(r)= 1/Δv(r) implies that

Δu(r)Δv(r) +u(r + 1)Δ2v(r)= 0, (19)
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or

Δu(r)=−u(r + 1)Δ2v(r)
Δv(r)

. (20)

Hence

Δ2u(r)Δv(r) + 2Δu(r + 1)Δ2v(r) +u(r + 2)Δ3v(r)= 0, (21)

or

Δ2u(r)= 1
Δv(r)

[
− 2Δ2v(r)

(
− u(r + 2)Δ2v(r + 2)

Δv(r + 1)

)
− Δ3v(r)
Δv(r + 2)

]
. (22)

�

Lemma 4. Suppose that v ∈ C3[0,∞). If, for all 0 < t < 1, p > 1, one has
(a) v′ > 0,
(b) v′′ > 0,
(c) 2(v′′)2− v′v′′′ > 0,

then Δ2v(r)≤ 0.

Proof. Conditions (a) and (b) imply that Δv(r) < 0 and Δ2v(r) > 0. Therefore, from (18),
Δ2u(r)≤ 0. �

The Rhaly generalized Cesáro matrices [4] are factorable matrices with nonzero entries
an = tn/(n+ 1), bk = t−k, where 0 < t < 1. If t = 1, the matrix reduces to C.

Theorem 5. Let p > 1. Then, for the Rhaly generalized Cesáro matrices, Lp = f (0) for t0 ≤
t < 1, where t0 satisfies

1− 2
[(

1 + t0
t0

)p

− 1
] ∞∑

j=1

(
t
j
0

j + 1

)p

= 0. (23)

Proof. First, we will show that conditions (a)–(c) of Lemma 4 are satisfied.
Clearly

tn = 1− tn+1

(n+ 1)(1− t)
, yn = 1− tn+1

tn(1− t)
. (24)

Thus

v(r)= 1
(1− t)p

(
1− tr+1

tr

)p

,

v′(r)= pt−r log(1/t)
(1− t)p

(
t−r − t

)p−1
,

v′′(r)= p(1− t)−p
(
t−r − t

)p−2(
pt−2r − t−r+1)

(
log

(
1
t

))2

,

(25)
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and (a) and (b) are satisfied.

v′′′(r)= p(1− t)−p
(

log

(
1
t

))2
[
(p− 2)

(
t−r − t

)p−3(− t−r log t
)(
pt−2r − t−r+1)

+
(
t−r − t

)p−2(− 2pt−2r log t+ t−r+1 log t
)]

= p(1− t)−p
(
t−r − t

)p−3
t−3r

(
log

(
1
t

))3

× [(p− 2)
(
p− tr+1)+

(
t−r − t

)(
2ptr − t2r+1)].

(26)

It then follows that

2(v′′)2− v′v′′′ = 2

[
p(1− t)−p

(
t−r − t

)p−2(
pt−2r − t−r+1)

(
log

(
1
t

))2]2

− p(1− t)−pt−r log

(
1
t

)
(
t−r − t

)p−1

× p(1− t)−p
(
t−r − t

)p−3
t−3r

(
log

(
1
t

))3

× [p2− (3p− 1)tr+1 + t2r+2]

= p2t−4r(1− t)−2p

(
log

(
1
t

))4
(
t−r − t

)2p−4
w(r, p),

(27)

where

w(r)= p2− (p+ 1)tr+1 + t2r+2. (28)

Note that w′(r) > 0 for p ≥ 1. Therefore, w is monotone increasing in r. Since w(0) >
0, w is positive for 0 < t < 1, r ≥ 0, and condition (4) is satisfied. Thus h is monotone
decreasing in r:

lim
r→∞h(r)= lim

r→∞

(
tr+1

r + 2

)p

=
[(

1/(1− t)p
){(

1− tr+2/tr+1
)p−(1− tr+3/tr+2

)p}]
[(

1/(1− t)p
){(

1− tr+1/tr
)p− 2

(
1− tr+2/tr+1

)p
+
(
1− tr+3/tr+2

)p}] .

(29)
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Since the limit of the quantity in brackets is (tp − 1)/(tp − 1)2, limr→∞h(r) = 0, and
condition (5) of Theorem 2 is satisfied; that is, g is monotone decreasing in p,

g(0)= t
p
0 + 2

[
y
p
0 − y

p
1

] ∞∑

j=1

a
p
j

= 1− 2
[(

1 + t

t

)p

− 1
] ∞∑

j=1

(
t j

j + 1

)p

= q(t, p), say,

∂q

∂t
=−2p

(
1 + t

t

)p−1(
− 1
t2

) ∞∑

j=1

(
t j

j + 1

)p

− 2
[(

1 + t

t

)p

− 1p
] ∞∑

j=1

p jt j−1

( j + 1)p

= 2p
∞∑

j=1

(
t j

j + 1

)p[(1 + t

t

)p−1 1
t2
−
((

1 + t

t

)p

− 1
)
j

t

]
.

(30)

Since the coefficient of j is negative, the quantity in brackets is monotone decreasing
in j. For j = 1, it becomes

1
t2

[(
1 + t

t

)p−1

+ t− t
(

1 + t

t

)p]

= 1
t2

[(
1 + t

t

)p−1

(1− 1− t) + t
]
= 1

t

[
1−

(
1 + t

t

)p−1]
< 0,

(31)

and q is monotone decreasing in t.

q(1, p)= 1− 2
[
2p− 1

] ∞∑

j=1

1
( j + 1)p

. (32)

The function in brackets is convex in p for p > 1. So also is the series. Therefore, so is
the product. Multiplying by −1 yields a concave function. Since 1 is also concave, q(1, p)
is a concave function of p for p > 1. Since

lim
p→∞q(1, p)= 0, (33)

g(0) is negative for those values of t > t0, where t0 satisfies (23); that is, (6) of Theorem 2,
and Lp = f (0). �

The Rhaly s-Cesáro matrices [5] are factorable matrices with nonzero entries an =
(n+ 1)−s, s > 1, and each bk = 1. Thus tn = (n+ 1)s−1 and yn = n+ 1.

Theorem 6. For the Rhaly s-Cesáro matrices, Lp = f (∞) for p, s > 1.
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Proof. First, we will show that conditions (a)–(c) of Lemma 4 are satisfied,

v(r)= (r + 1)p, v′(r)= p(r + 1)p−1,

v′′(r)= p(p− 1)(r + 1)p−2,
(34)

and conditions (a) and (b) are satisfied,

v′′′(r)= p(p− 1)(p− 2)(r + 1)p−3. (35)

Therefore

2(v′′)2− v′v′′′ = 2
(
p(p− 1)(r + 1)p−2)2− p(r + 1)p−1q(p− 1)(p− 2)(r + 1)p−3

= p2(p− 1)(r + 1)2p−4[2(p− 1)− (p− 2)
]

= p3(p− 1)(r + 1)2p−4 > 0,

(36)

and condition (c) is satisfied,

0≤ h(r)≤
∞∑

j=r+1

1
( j + 1)sp

. (37)

Therefore limr→∞h(r)= 0 and condition (5) of Theorem 2 is satisfied. Thus g is mono-
tone decreasing in r,

g(r)=
r∑

j=0

1
( j + 1)(s−1)p + (r + 1)(r + 2)

[
(r + 1)s−1− (r + 2)s−1]

∞∑

j=r+1

1
( j + 1)ps

. (38)

It then follows that

lim
r→∞g(r)=

∞∑

j=0

1
( j + 1)(p−1)s > 0, (39)

and so Lp = f (∞). �

The Rhaly terraced matrices [6] are factorable matrices with each bk = 1 and an = an,
where {an} is a monotone decreasing positive sequence such that lim(n + 1)an exists.
Clearly tn = (n+ 1)an and yn = n+ 1.

Theorem 7. For the Rhaly terraced matrices, Lp = f (0) for p > 1.

Proof. Since yn = n+ 1, the first part of the proof of Theorem 6 applies and h is monotone
decreasing in r,

h(r)= a
p
r+1

[
(r + 2)p− (r + 3)p

]

(r + 1)p− 2(r + 2)p + (r + 3)p
+

∞∑

j=r+1

a
p
j ≤

∞∑

j=r+1

a
p
j , (40)
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and limh(r)= 0, so that g is monotone decreasing in r,

g(0)= a
p
0 + 2

[
1− 2p−1]

∞∑

j=1

a
p
j

= a
p
0 − 2

(
2p−1− 1

)
a
p
1 − 2

(
2p−1− 1

) ∞∑

j=2

a
p
j < 0,

(41)

since {an} is monotone decreasing. Therefore Lp = f (0). �

A weighted mean matrix is a factorable matrix with an = 1/Pn, bk = pk, where {pk} is
a nonnegative sequence with p0 > 0 and Pn :=∑n

k=0 pk.

Theorem 8. Let (N , pn) be a weighted mean method with the {pn} nondecreasing. Then

1 + (r + 1)
(
Pr+1

Pr

)p

− (r + 2)
(
Pr+2

Pr+1

)p

≥ 0 for each r ≥ 0, p > 1, (42)

is a sufficient condition for Lp = f (0).

Proof. Since a weighted mean matrix has row sums one, from (9),

f (r)− f (r + 1)= 1
r + 2

+Δ
(

P
p
r

r + 1

) ∞∑

j=r+1

1

P
p
j

. (43)

Thus

g(r)= f (r)− f (r + 1)

Δ
(
P
p
r /(r + 1)

) = 1

(r + 2)Δ
(
P
p
r /(r + 1)

) +
∞∑

j=r+1

1

P
p
j

, (44)

g(r)− g(r + 1)= 1

(r + 2)Δ
(
P
p
r (r + 1)

) − 1

(r + 3)Δ
(
P
p
r+1/(r + 2)

) +
1

P
p
r+1

= 1

P
p
r+1(r + 2)(r + 3)Δ

(
P
p
r /(r + 1)

)
Δ
(
P
p
r+1/(r + 2)

)m(r),

(45)

where

m(r)= P
p
r+1(r + 3)Δ

(
P
p
r+1

r + 2

)
−P

p
r+1(r + 2)Δ

(
P
p
r

r + 1

)
+ (r + 2)(r + 3)Δ

(
P
p
r

r + 1

)
Δ

(
P
p
r+1

r + 2

)

= P
p
r+1

[
(r + 3)

(
P
p
r+1

r + 2
− P

p
r+2

r + 3

)
− (r + 2)

(
P
p
r

r + 1
− P

p
r+1

r + 2

)]

+ (r + 2)(r + 3)

(
P
p
r

r + 1
− P

p
r+1

r + 2

)(
P
p
r+1

r + 2
− P

p
r+2

r + 3

)
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= P
p
r+1

[(
r + 3
r + 2

)
P
p
r+1−P

p
r+2−

(
r + 2
r + 1

)
P
p
r +P

p
r+1

]

+
(
r + 3
r + 1

)
P
p
r P

p
r+1−

(
r + 3
r + 2

)(
P
p
r+1

)2−P
p
r P

p
r+2

(
r + 2
r + 1

)
+P

p
r+1P

p
r+2

= P
p
r+1

[(
r + 3
r + 2

)
P
p
r+1−P

p
r+2−

(
r + 2
r + 1

)
P
p
r +P

p
r+1 +

(
r + 3
r + 1

)
P
p
r −

(
r + 3
r + 2

)
P
p
r+1 +P

p
r+2

]

−
(
r + 2
r + 1

)
P
p
r P

p
r+2

= P
p
r+1

[
1

r + 1
P
p
r +P

p
r+1

]
−
(
r + 2
r + 1

)
P
p
r P

p
r+2

= 1
r + 1

[
P
p
r P

p
r+1 + (r + 1)

(
P
p
r+1

)2− (r + 2)P
p
r P

p
r+2

]

= P
p
r P

p
r+1

r + 1

[
1 + (r + 1)

(
Pr+1

Pr

)p

− (r + 2)
(
Pr+2

Pr+1

)p]
≥ 0,

(46)

which is [7, Theorem 1, condition (1)] without any monotonicity condition on the {pn}.
Thus g is monotone decreasing in r.

Since {pn} is nondecreasing, Pr ≤ (r + 1)pr ; that is, pr/Pr ≥ (r + 1)−1. Thus

Pr+1

Pr
= 1 +

pr+1

Pr
≥ 1 +

pr
Pr
≥ r + 2

r + 1
, (47)

and Pr+1/Pr(r + 2)≥ Pr(r + 1).
Using (44), since p > 1,

lim
∣∣g(r)

∣∣= lim

∣∣∣∣∣
(r + 1)P

p
r

P
p
r+1

[
(r + 2)P

p
r − (r + 1)P

p
r+1

]

∣∣∣∣∣

= lim

∣∣∣∣∣
r + 1

P
p
r+1

[
(r + 2)− (r + 1)

(
Pr+1/Pr

)p]

∣∣∣∣∣

= lim
(r + 1)

P
p
r+1

[
(r + 1)

(
Pr+1/Pr

)p− (r + 2)
] .

(48)

Using the fact that (1 + x)p ≥ 1 + px for p > 1, x >−1,

lim
∣∣g(x)

∣∣≤ lim
(r + 1)

P
p
r+1

[
(r + 1)

(
1 + ppr+1/Pr

)− (r + 2)
]

= lim
r + 1

Pr
[
p(r + 1)pr+1/Pr − 1

]

≤ lim
r + 1

Pr(p− 1)
= 0.

(49)
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Therefore limg(r) = 0 and g is positive for all r. From (44), since Δ(P
p
r /(r + 1)) < 0,

Lp = f (0). �

Corollary 9. Suppose (N , p) is a weighted mean method with pn = (n+ 1)α, α≥ 1. Then
Lp = f (0).

Proof. To show that (42) is satisfied, it is sufficient to show that

(r + 1)
(
Pr+1

Pr

)p

(50)

is convex. The function r = 1 is trivially convex. Since p > 1, it will be enough to show
that Pr+1/Pr is convex.

Define

n(r)= 1 +
pr+1

Pr
= 1 +

(r + 2)α∑r
k=0(k+ 1)α

. (51)

Then

Δ2n(r)= (r + 2)α∑r
k=0(k+ 1)α

− 2(r + 3)α
∑r+1

k=0(k+ 1)α
+

(r + 4)α
∑r+2

k=0(k+ 1)α

= n(r)
(∑r

k=0(k+ 1)α
)(∑r+1

k=0(k+ 1)α
)(∑r+2

k=0(k+ 1)α
) ,

(52)

where

n(r)= (r + 2)α
( r+1∑

k=0

(k+ 1)α
)( r+2∑

k=0

(k+ 1)α
)
− 2(r + 3)α

( r∑

k=0

(k+ 1)α
)( r+2∑

k=0

(k+ 1)α
)

+ (r + 4)α
( r∑

k=0

(k+ 1)α
)( r+1∑

k=0

(k+ 1)α
)

= (r + 2)α
[ r∑

k=0

(k+ 1)α + (r + 2)α
]
×
[ r∑

k=0

(k+ 1)α + (r + 2)α + (r + 3)α
]

− 2(r + 3)α
( r∑

k=0

(k+ 1)α
)( r∑

k=0

(k+ 1)α + (r + 2)α + (r + 3)α
)

+ (r + 4)α
( r∑

k=0

(k+ 1)α
)( r∑

k=0

(k+ 1)α + (r + 2)α
)

=
( r∑

k=0

(k+ 1)α
)2
[
(r + 2)α− 2(r + 3)α + (r + 4)α

]
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+
[
(r + 2)2α + (r + 2)2α +

(
(r + 2)(r + 3)

)α

− 2
(
(r + 2)(r + 3)

)α− 2(r + 3)2α +
(
(r + 4)(r + 2)

)α]

×
( r∑

k=0

(k+ 1)α
)

+ (r + 2)3α + (r + 2)2α(r + 3)α.

(53)

Since α≥ 1, (r + 2)α is convex, so the first quantity in brackets is positive. The second
quantity in brackets can be written in the form

(r + 2)α
{

(r + 2)α− 2(r + 3)α + (r + 4)α
}

+ (r + 2)α + (r + 3)α
(
(r + 2)α− 2

)
, (54)

which is positive. Therefore n(r) is convex and (42) is satisfied. �

Corollary 10. Let 1 < p <∞, H the Hausdorff matrix generated by μn = a/(n+ a), a≥ 1.
Then Lp = f (0).

Proof. H is also a weighted mean matrix with pn = p0Γ(n+ a)/Γ(a+ 1)Γ(n+ 1) and Pn =
p0Γ(n+ a+ 1)/Γ(a+ 1)Γ(n+ 1). Substituting in (42), one obtains

1 + (r + 1)
(
r + a+ 1
r + 1

)p

− (r + 2)
(
r + a+ 2
r + 2

)p

, (55)

and it is sufficient to prove that (r + a+ 1)/(r + 1) is convex, which it is. �

The Cesáro matrix of order one, written (C,1), is a Hausdorff matrix with generating
sequence μn = (n+ 1)−1.

Corollary 11. For (C,1), Lp = f (0).

Proof. Use Corollary 10 with a= 1. �

Remarks 12. (1) The condition that the {pn} be nondecreasing is not a necessary con-
dition for Lp = f (0). For example, take pn = 2/(n + 1)(n + 2). Then {pn} is monotone
decreasing and satisfies (42) and

Δ
(

Pr
r + 1

)
< 0. (56)

(2) Bennett [1] proved that Lp = f (0) for the Hilbert matrix.
(3) In [2], Bennett has shown that Lp = f (0) for each Hausdorff matrix H ∈ B(�p)

with nonnegative entries.
(4) No results have been established for Nörlund matrices.

An interesting open question is the following. If {pn} is nondecreasing, must {pn}
satisfy (42)?
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[5] , p-Cesàro matrices, Houston Journal of Mathematics 15 (1989), no. 1, 137–146.
[6] , Terraced matrices, The Bulletin of the London Mathematical Society 21 (1989), no. 4,

399–406.
[7] B. E. Rhoades, Lower bounds for some matrices, Linear and Multilinear Algebra 20 (1987), no. 4,

347–352.
[8] , Lower bounds for some matrices. II, Linear and Multilinear Algebra 26 (1990), no. 1-2,

49–58.

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA
E-mail address: rhoades@indiana.edu

Pali Sen: Department of Mathematics and Statistics, University of North Florida, Jacksonville,
FL 32224, USA
E-mail address: psen@unf.edu

mailto:rhoades@indiana.edu
mailto:psen@unf.edu

	References

