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We consider an open bounded set Ω ⊂ Rn and a family {K(t)}t≥0 of orthogonal matri-
ces of Rn. Set Ωt = {x ∈Rn; x = K(t)y, for all y ∈Ω}, whose boundary is Γt. We denote
by ̂Q the noncylindrical domain given by ̂Q =⋃

0<t<T{Ωt ×{t}}, with the regular lateral

boundary ̂

∑ = ⋃

0<t<T{Γt × {t}}. In this paper we investigate the boundary exact con-
trollability for the linear Schrödinger equation u′ − iΔu= f in ̂Q (i2 =−1), u= w on ̂Σ,
u(x,0)= u0(x) in Ω0, where w is the control.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

We consider the linear Schrödinger equation in a domain whose boundary is moving in
time. Let T be a positive real number and let {Ωt}t∈[0,T] be a family of bounded open sets
of Rn, with regular boundary Γt, defined as below. We denote by ̂Q the noncylindrical
domain of Rn+1 defined by

̂Q =
⋃

0<t<T

{

Ωt ×{t}
}

(1.1)

with regular lateral boundary

̂Σ=
⋃

0<t<T

{

Γt ×{t}
}

. (1.2)

Let us consider K a function such that for each t ∈ [0,∞), it associates an orthogo-
nal matrix K(t) = (ai j(t))n×n. Note that K−1(t) = (aji(t))n×n. We denote (a′ji(t))n×n by
(K−1)′(t).

Let Ω be a bounded open set of Rn, with regular boundary Γ. We consider the subsets
Ωt of Rn defined by

Ωt =
{

x ∈Rn; x = K(t)y, y ∈Ω
}

, 0≤ t ≤ T. (1.3)
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2 Schrödinger equations in noncylindrical domains

We develop the article under the following assumptions:
(H1) K ∈ C2[0,T];
(H2) there exists a constant α > 0 such that

((

K−1)′K
)

w ·w ≥ α|w|2 ∀w ∈ Cn. (1.4)

The aim of this paper is to obtain the exact controllability of the following mixed
problem:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u′ − iΔu= ̂f in ̂Q,

u=
∣

∣

∣

∣

∣

ϕ̂ on ̂Σ0

0 on ̂Σ\̂Σ0

(

i2 =−1
)

,

u(x,0)= u0(x) in Ω0,

(1.5)

where ̂Σ0 is a part of ̂Σ with positive measure.
We can formulate the exact controllability problem for (1.5) as follows: given T > 0

large enough, we want to find a Hilbert space H such that, for each initial data u0 belong-
ing to H , there exists a control ϕ̂ belonging to the space of controls, defined on ̂Σ0, such
that a solution u= u(x, t) of (1.5) satisfies the final condition

u(x,T)= 0 in ΩT . (1.6)

The methodology (cf. Lions [7]) consists of transforming (1.5) into an equivalent
problem in the cylinder Q =Ω× (0,T) by the diffeomorphism

τ : ̂Q −→Q (1.7)

defined by τ(x, t)= (y, t), with y = K−1(t)x. The inverse

τ−1 :Q −→ ̂Q (1.8)

is defined by τ−1(y, t)= (K(t)y, t). Then by the change of variables u(x, t)= v(y, t), where
y = K−1(t)x, y ∈Ω, and x ∈Ωt, we obtain

u′(x, t)= v′(y, t) +∇v · (K−1(t)
)′
K(t)y,

Δu(x, t)= Δv(y, t).
(1.9)

Therefore, we transform the problem (1.5) in the noncylindrical domain ̂Q into the fol-
lowing problem in the cylinder Q:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v′ − iΔv+∇v · (K−1)′Ky = f in Q,

v(y, t)=
∣

∣

∣

∣

∣

ϕ on Σ0

0 on Σ\Σ0

(

i2 =−1
)

,

v(y,0)= v0(y) in Ω,

(1.10)



G. O. Antunes et al. 3

where Σ= Γ× (0,T) is the lateral boundary of the cylinder Q and Σ0 is a part of Σ, that
will be defined in Section 5.

We investigate the exact controllability for the equivalent problem (1.10) using HUM
(hilbert uniqueness method) idealized by Lions [8]. The particular case where τt(y) =
μ(t)y, with μ(t) a real function defined on nonnegative real numbers [0,∞), has been
analyzed by Miranda and Medeiros [10]. We can also find a study in controllability for
Schrödinger equation in cylindrical domains in Lebeau [6] and Machtyngier [9]. We in-
clude, in the references at the end of this paper, some works relating to noncylindrical
mixed problems for others models and related arguments, such as: [2–5].

The plan of this paper is as follows. In Section 2, we study the properties of the weak
solution of the homogeneous boundary value problem for the formal adjoint L∗ of the
operator of (1.10), which is calculated in Section 4. Section 3 is dedicated to prove the
direct and inverse inequalities for the weak solutions obtained in Section 2. Section 5 is
dedicated to solve the problem of exact controllability for (1.10) and (1.5), respectively.
In the appendix, we prove an identity which is a key point for the second estimate in
Section 2. Below we state the main result of our paper.

Theorem 1.1. Let Ω be a regular, bounded open set of Rn, let Ωt be defined as in (1.3),
and suppose that (H1) and (H2) hold. If T > 0, then, for each u0 ∈H−1(Ωt), there exists a
control ŵ ∈ L2(̂Σ) such that u solution of problem (1.5) verifies

u(x,T ,ŵ)= 0 ∀x ∈ΩT . (1.11)

2. Weak solutions

The formal adjoint or transposed operator of Lw =w′ − iΔw+∇w · (K−1)′Ky is−L∗v =
v′ − iΔv +∇v · (K−1)′Ky + tr((K−1)K)v. We represent by C(t) = (cjk(t))1≤ j,k≤n the ma-
trix (K−1(t))′K(t) and by tr(C(t)) its trace.

By H1(Ω) we represent the Sobolev space defined by

{

u∈ L2(Ω),
∂u

∂xi
∈ L2(Ω) for i= 1, . . . ,n

}

. (2.1)

Also by H1
0 (Ω) we represent the Sobolev space of functions u ∈ H1(Ω) such that

u|Γ = 0.
In order to apply HUM to the mixed problem (1.10) it is fundamental to know the

properties of the weak solution of the homogeneous boundary value problem for the
formal adjoint L∗, which is studied in this section.

We consider the following problem for the adjoint L∗.
Given v0 ∈H1

0 (Ω) and f ∈ L2(0,T ;H1
0 (Ω)), we want to find a function v : Q→ C so-

lution, in some sense, of the boundary value problem

∣

∣

∣

∣

∣

∣

∣

∣

v′ − iΔv+∇v ·Cy + tr(C)v = f in Q,

v = 0 on Σ,

v(0)= v0 in Ω.

(2.2)
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Theorem 2.1. Given v0 ∈H1
0 (Ω) and f ∈ L2(0,T ;H1

0 (Ω)), there exists one and only one
function v :Q→ C, called the weak solution of (2.2), satisfying

v ∈ L∞(

0,T ;H1
0 (Ω)

)

,

v′ ∈ L2(0,T ;H−1(Ω)
)

,

−
∫ T

0
(v,ϕ′)dt+ i

∫ T

0

(

(v,ϕ)
)

dt+
∫ T

0

(∇v ·C(t)y,ϕ
)

dt+
∫ T

0

(

tr(C)v,ϕ
)

dt =
∫ T

0
( f ,ϕ)dt

(2.3)

for all ϕ∈ L2(0,T ;H1
0 (Ω)), such that ϕ′ ∈ L2(0,T ;L2(Ω)) with ϕ(0)= ϕ(T)= 0,

v(0)= v0 in Ω. (2.4)

Observe that (·,·) and | · |, ((·,·)) and ‖ · ‖ represent the inner product and norm,
respectively, in L2(Ω) and H1

0 (Ω).

Proof. We employ the Galerkin method. In fact, let us consider the sequence (wj) j∈N of
the solutions of the eigenvalue problem

((

wj ,ϕ
))= λj

(

wj ,ϕ
)

, j = 1,2, . . . , (2.5)

for each ϕ∈H1
0 (Ω). Represent by Vm the subspace generated by {w1,w2, . . . ,wm} and let

us consider the approximate problem
∣

∣

∣

∣

∣

∣

∣

∣

∣

find vm ∈Vm solution of
(

v′m(t),wj
)

+ i
((

vm(t),wj
))

+
(∇vm(t) ·C(t)y,wj

)

+tr
(

C(t)
)(

vm(t),wj
)= (

f (t),wj
)

for j=1,2, . . . ,m,

vm(0)= v0m strongly convergent to v0 in H1
0 (Ω).

(2.6)

Note that if vm(t) ∈ Vm, then vm(y, t) =∑m
j=1 gjm(t)wj(y). It follows that (2.6) is a

system of ordinary differential equations in the unknowns gjm(t), j = 1,2, . . . ,m. This
system has a local solution on [0, tm), for some tm ∈ (0,T), and each gjm(t) belongs to
H1(0, tm). The extension to interval [0,T] is a consequence of the following estimate.

First estimate. Multiply both sides of (2.6) by gjm(t), adding from j = 1 to j = m, we
obtain

(

v′m(t),vm(t)
)

+ i
((

vm(t),vm(t)
))

+
(∇vm(t) ·C(t)y,vm(t)

)

+ tr
(

C(t)
)(

vm(t),vm(t)
)= (

f (t),vm(t)
)

.
(2.7)

Note that z is the complex conjugate of z.
Taking the double of the real parts of the last equality’s both sides, we obtain

2Re
(

v′m(t),vm(t)
)

+ 2Re
(∇vm(t) ·C(t)y,vm(t)

)

+ 2tr
(

C(t)
)∣

∣vm(t)
∣

∣

2

= 2Re
(

f (t),vm(t)
)

.
(2.8)

Observe that∇vm(t) · y = (∂vm(t)/∂yj)yj and repeated indexes mean summation.
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We analyze the first and second terms of the last equality.
(i) 2Re(v′m(t),vm(t)).
We have

2Re
(

v′m(t),vm(t)
)= d

dt

∣

∣vm(t)
∣

∣

2
. (2.9)

(ii) 2Re(∇vm(t) ·C(t)y,vm(t)).
By Gauss’ lemma,

∫

Ω

∂

∂yj

(

vm(t)cjk(t)ykvm(t)
)

dy = 0. (2.10)

We observe that

∂

∂yj

(

cjk(t)yk
)= cj j(t)yj , (2.11)

and therefore
∫

Ω

∂vm(t)
∂yj

c jk(t)ykvm(t)dy +
∫

Ω
vm(t)cj j(t)vm(t)dy +

∫

Ω
vm(t)cjk(t)yk

∂vm(t)
∂yj

dy = 0.

(2.12)

Thus,

2Re
(∇vm(t) ·C(t)y,vm(t)

)=−
n
∑

j=1

∫

Ω
cj j(t)

∣

∣vm(t, y)
∣

∣

2
dy =− tr(C)

∣

∣vm(t)
∣

∣

2
.

(2.13)

Substituting (2.9) and (2.13) in (2.8), it follows that

d

dt

∣

∣vm(t)
∣

∣

2
+ tr(C)

∣

∣vm(t)
∣

∣

2 ≤ 2
∣

∣ f (t)
∣

∣

∣

∣vm(t)
∣

∣. (2.14)

From assumption (H2) that tr(C(t))≥ 0, it follows that

d

dt

∣

∣vm(t)
∣

∣

2 ≤ 2
∣

∣ f (t)
∣

∣

∣

∣vm(t)
∣

∣, (2.15)

that is,

d

dt

(
∣

∣vm(t)
∣

∣

2
)

−∣

∣vm(t)
∣

∣

2 ≤ ∣

∣ f (t)
∣

∣

2
. (2.16)

Multiplying (2.16) by e−t and integrating from 0 to t we obtain

∣

∣vm(t)
∣

∣

2 ≤ C1

{
∣

∣v0m
∣

∣

2
+‖ f ‖2

L2(0,T ;L2(Ω))

}

. (2.17)

Since vm(0)= v0m→ v0 in H1
0 (Ω), we conclude that

(

vm(t)
)

is bounded in L∞
(

0,T ;L2(Ω)
)

. (2.18)



6 Schrödinger equations in noncylindrical domains

Second estimate. Multiply both sides of (2.6) by λjgjm(t), adding from j = 1 to j =m and
taking the double of real parts, we obtain

2Re
(

v′m(t),−Δvm(t)
)

+ 2Re
(∇vm(t) ·C(t)y,−Δvm(t)

)

+ 2tr
(

C(t)
)(

vm(t),−Δvm(t)
)= 2Re

(

f (t),−Δvm(t)
)

.
(2.19)

(i) Analysis of 2Re(v′m(t),−Δvm(t)).
We have,

2Re
(

v′m(t),−Δvm(t)
)= 2Re

((

v′m(t),vm(t)
))= d

dt

∥

∥vm(t)
∥

∥

2
. (2.20)

(ii) Analysis of 2Re(∇vm(t) ·C(t)y,−Δvm(t)).
By Green’s formula,

(

∂vm(t)
∂yj

c jk(t)yk,−Δvm(t)

)

=
(

∂

∂yl

[

∂vm(t)
∂yj

c jk(t)yk

]

,
∂vm(t)
∂yl

)

−
∫

Γ
cjk yk · ν j

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ

=
(

∂

∂yl

(

∂vm(t)
∂yj

)

cjk(t)yk,
∂vm(t)
∂yl

)

+

(

∂vm(t)
∂yj

c jk(t)δkl ,
∂vm(t)
∂yl

)

−
∫

Γ
cjk yk · ν j

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ=
∫

Ω

∂

∂yl

(

∂vm(t)
∂yj

)

cjk(t)yk
∂vm(t)
∂yl

dy

+
∫

Ω

∂vm(t)
∂yj

c jl(t)
∂vm(t)
∂yl

dy−
∫

Γ
cjk yk · ν j

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ.

(2.21)

It follows from (2.21) that

2Re

(

∂vm(t)
∂yj

c jk(t)yk,−Δvm(t)

)

= 2Re

(

∂

∂yl

(

∂vm(t)
∂yj

)

cjk(t)yk,
∂vm(t)
∂yl

)

+ 2Re

(

∂vm(t)
∂yj

c jl(t),
∂vm(t)
∂yl

)

− 2
∫

Γ
cjk yk · ν j

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ.

(2.22)

Now, by Gauss’ lemma,

∫

Ω

∂

∂yj

(

∂vm(t)
∂yl

c jk(t)yk
∂vm(t)
∂yl

)

dy =
∫

Γ
ν j ·

(

∂vm(t)
∂yl

c jk(t)yk
∂vm(t)
∂yl

)

dΓ. (2.23)
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That is,

∫

Ω

∂

∂yj

(

∂vm(t)
∂yl

)

cjk(t)yk
∂vm(t)
∂yl

dy

+
∫

Ω

∂vm(t)
∂yl

c j j(t)
∂vm(t)
∂yl

dy +
∫

Ω

∂vm(t)
∂yl

c jk(t)yk
∂

∂yj

(

∂vm(t)
∂yl

)

dy

=
∫

Γ
ν j ·

(

∂vm(t)
∂yl

c jk(t)yk
∂vm(t)
∂yl

)

dΓ=
∫

Γ
ν j c jk(t)yk

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ.

(2.24)

Therefore,

2Re

(

∂

∂yj

(

∂vm(t)
∂yl

)

cjk(t)yk,
∂vm(t)
∂yl

)

=
∫

Γ
ν j c jk(t)yk

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ− cj j(t)
∫

Ω

∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

2

dy.

(2.25)

Substituting (2.25) into (2.22), we obtain

2Re

(

∂vm(t)
∂yj

c jk(t)yk,−Δvm(t)

)

= 2Re

(

∂vm(t)
∂yj

c jl(t),
∂vm(t)
∂yl

)

− cj j(t)
∫

Ω

∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

2

dy−
∫

Γ
ν j c jk(t)yk

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ.

(2.26)

Substituting the expressions (2.20) and (2.26) into (2.19) we obtain

d

dt

∣

∣vm(t)
∣

∣

2
+ 2Re

(

∂vm(t)
∂yj

c jl(t),
∂vm(t)
∂yl

)

− cj j(t)
∫

Ω

∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

2

dy

−
∫

Γ
ν j c jk(t)yk

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ+ 2tr
(

C(t)
)∥

∥vm(t)
∥

∥

2 = 2Re
(

f (t),−Δvm(t)
)

.

(2.27)

By the identity of the appendix, we modify (2.27) as follows:

d

dt

∥

∥vm(t)
∥

∥

2
+ tr

(

C(t)
)∥

∥vm(t)
∥

∥

2− d

dt
Im

(

vm(t),C(t)y ·∇vm(t)
)

+ Im
(

vm(t),C′(t)y ·∇vm(t)
)− tr

(

C(t)
)

Im
(

vm(t),C(t)y ·∇vm(t)
)

+ 2Im
(

Pm f (t),C(t)y ·∇vm(t)
)

+ tr
(

C(t)
)

Im
(

Pm f (t),vm(t)
)

= 2Re
((

f (t),vm(t)
))

.

(2.28)

Setting ϕ(t) = Im(vm(t),C(t)y ·∇vm(t)) and ψ(t) = ‖vm(t)‖2−ϕ(t), we obtain from
(2.28) that

d

dt
ψ(t) + tr

(

C(t)
)

ψ(t)= g(t), (2.29)
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where

g(t)= 2Re
((

f (t),vm(t)
))− tr

(

C(t)
)

Im
(

f (t),vm(t)
)

− 2Im
(

Pm f (t),C(t)y ·∇vm(t)
)− Im

(

vm(t),C′(t)y ·∇vm(t)
)

.
(2.30)

Solving the differential equation (2.29) we attain

ψ(t)= ψ(0)exp
(

−
∫ t

0
tr

(

C(r)
)

dr
)

+
∫ t

0
exp

(

−
∫ t

s
tr

(

C(r)
)

dr
)

g(s)ds. (2.31)

Since ψ(0)= ‖vm(0)‖2−ϕ(0), we have from the last equality

∥

∥vm(t)
∥

∥

2 = ϕ(t) +
(∥

∥vm(0)
∥

∥

2−ϕ(0)
)

exp
(

−
∫ t

0
tr

(

C(r)
)

dr
)

+
∫ t

0
exp

(

−
∫ t

s
tr

(

C(r)
)

dr
)

g(s)ds.

(2.32)

Observe that
(i)

ϕ(t)≤ ∣

∣vm(t)
∣

∣

∣

∣C(t)y ·∇vm(t)
∣

∣≤ ∣

∣vm(t)
∣

∣

n
∑

l=1

( n
∑

k=1

∣

∣clk(t)
∣

∣

∣

∣yk
∣

∣

)
∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

≤ ∣

∣vm(t)
∣

∣

⎡

⎣

n
∑

l=1

( n
∑

k=1

∣

∣clk(t)
∣

∣

∣

∣yk
∣

∣

)2
⎤

⎦

1/2 ( n
∑

l=1

∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

2
)1/2

≤ ∣

∣vm(t)
∣

∣

[ n
∑

l=1

( n
∑

k=1

∣

∣clk(t)
∣

∣

2
)( n

∑

k=1

∣

∣yk
∣

∣

2
)]1/2( n

∑

l=1

∣

∣

∣

∣

∂vm
∂yl

∣

∣

∣

∣

2
)1/2

= ∣

∣vm(t)
∣

∣|y|
[ n

∑

l=1

n
∑

k=1

∣

∣clk(t)
∣

∣

2
]1/2

∣

∣∇vm
∣

∣

≤ ∣

∣vm(t)
∣

∣|y|n
(

max
l,k=1,...,n

(

max
t∈[0,T]

∣

∣clk(t)
∣

∣

))

∣

∣∇vm
∣

∣

≤M(

Ω,n,�C
)∣

∣vm(t)
∣

∣

∣

∣∇vm
∣

∣≤ M
(

Ω,n,�C
)2

2

∣

∣vm(t)
∣

∣

2
+

∣

∣∇vm
∣

∣

2

2
,

(2.33)

where �C=(maxl,k=1,...,n(maxt∈[0,T]|clk(t)|)) and M(Ω,n,�C)=(maxy∈Ω|y|)n�C. Since
(ii)

exp
(

−
∫ t

s
tr

(

C(r)
)

dr
)

≤ exp
(∫ t

s

∣

∣ tr
(

C(r)
)∣

∣dr
)

≤ exp
(

n�CT
)

, (2.34)

(iii)

∣

∣g(s)
∣

∣≤M(

n,Ω,�C
)(∥

∥ f (s)
∥

∥ +
∣

∣vm(s)
∣

∣

)∥

∥vm(s)
∥

∥, (2.35)
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we have
∣

∣

∣

∣

∫ t

0
exp

(

−
∫ t

s
tr

(

C(r)
)

dr
)

g(s)ds
∣

∣

∣

∣

≤M(

n,Ω,�C,T
)

∫ t

0

(∥

∥ f (s)
∥

∥ +
∣

∣vm(s)
∣

∣

)∥

∥vm(s)
∥

∥ds,

(2.36)

where

M
(

n,Ω,�C,T
)= exp

(

n�CT
)

M
(

n,Ω,�C
)

(2.37)

and therefore

∥

∥vm(t)
∥

∥

2 ≤ 1
2
M

(

n,Ω,�C
)∣

∣vm(t)
∣

∣

2
+

1
2

∥

∥vm(t)
∥

∥

2
+M

(

n,Ω,�C,T
)∥

∥v0m
∥

∥

2

+M
(

n,Ω,�C,T
)

∫ t

0

(∥

∥ f (s)
∥

∥ +
∣

∣vm(s)
∣

∣

)∥

∥vm(s)
∥

∥ds.
(2.38)

From the first estimate, it follows that
∣

∣vm(t)
∣

∣

2 ≤ α0
(

T
)

. (2.39)

Then (2.39) implies

∥

∥vm(t)
∥

∥

2

2
≤M(

n,Ω,�C,T ,
∥

∥v0m
∥

∥

)

+M
(

n,Ω,�C,T
)

∫ t

0

(∥

∥ f (s)
∥

∥ +
∣

∣vm(s)
∣

∣

)∥

∥vm(s)
∥

∥ds,

(2.40)

where

M
(

n,Ω,�C,T ,
∥

∥v0m
∥

∥

)= 1
2
M

(

n,Ω,�C
)

α2
0 +M

(

n,Ω,�C,T
)∥

∥v0m
∥

∥

2
. (2.41)

Then, by an inequality similar to Gronwall-Bellman’s one, see Brézis [1, page 157], we
obtain

∥

∥vm(t)
∥

∥

2 ≤ α1(T). (2.42)

Then

(

vm
)

is bounded in L∞
(

0,T ;H1
0 (Ω)

)

. (2.43)

Then, from (2.43), we can extract a subsequence vμ of vm such that

vμ converges to v weak star in L∞
(

0,T ;H1
0 (Ω)

)

. (2.44)

Applying the approximate equation (2.6) to θ ∈�(0,T), we get

∫ T

0

(

vμ,wj
)

θ′dt+
∫ T

0
i
((

vμ,wj
))

θdt+
∫ T

0

(

Cy ·∇vμ,wj
)

θdt

+
∫ T

0
tr

(

C(t)
)(

vμ,wj
)

θdt =
∫ T

0

(

f ,wj
)

θdt.

(2.45)
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Taking the limit when μ→∞, j fixed, we obtain that v is a solution in the sense of
Theorem 2.1.

We observe that

d

dt

(

v(t),w
)

+ i
((

v(t),w
))

+
(

Cy ·∇v(t),w
)

+ tr
(

C(t)
)(

v(t),w
)= (

f (t),w
)

, (2.46)

in the sense of �′(0,T), for each w ∈H1
0 (Ω).

Since G = iΔv−Cy · ∇v− tr(C)v + f ∈ L2(0,T ;H−1(Ω)), it follows from (2.46) (cf.
Temam [11]) that

v′ ∈ L2(0,T ;H−1(Ω)
)

, v′ =G in L2(0,T ;H−1(Ω)
)

. (2.47)

As we have seen v ∈ L2(0,T ;H1
0 (Ω)), then, identifying L2(Ω) to its dual (L2(Ω))′, we

obtain

v ∈ C0([0,T];L2(Ω)
)

. (2.48)

The equality stated in Theorem 2.1 follows from the one in (2.47), as the uniqueness
of solution does too. We must observe that the solution v also satisfies v(0)= v0.

To prove uniqueness, suppose v1, v2 are solutions and w = v1− v2. Then, by the equal-
ity in (2.47), we obtain

w′ − iΔw+Cy ·∇w+ tr(C)w = 0 in L2(0,T ;H−1(Ω)
)

. (2.49)

Thus, multiplying by w and taking the double of the real part of it, we have

2Re
〈

w′
(

t),w(t)
〉

+ 2Re
(∇w(t) ·C(t)y,w(t)

)

+ 2tr
(

C(t)
)∣

∣w(t)
∣

∣

2 = 0. (2.50)

Analyzing the first and second terms of the last equality as in the first estimate, we
attain

d

dt

∣

∣w(t)
∣

∣

2
+ tr

(

C(t)
)∣

∣w(t)
∣

∣

2 ≤ 0. (2.51)

From assumption (H2) that tr(C(t))≥ 0 it follows that

d

dt

∣

∣w(t)
∣

∣

2 ≤ 0, (2.52)

and since w(0)= 0, we conclude that w ≡ 0 which means the solution v is unique. �

Remark 2.2. If we consider the boundary value problem (2.2) with initial data

v0 ∈H1
0 (Ω)∩H2(Ω) f ∈ L2(0,T ;H1

0 (Ω)
)

such that f ′ ∈ L1(0,T ;L2(Ω)
)

, (2.53)

by the same argument used to prove Theorem 2.1, we prove the following theorem.
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Theorem 2.3. Given v0 and f satisfying (2.53), there exists only one function v : Q→ C,
satisfying the following conditions:

∣

∣

∣

∣

∣

∣

∣

∣

v ∈ L∞(

0,T ;H1
0 (Ω)∩H2(Ω)

)

,

v′ − iΔv+Cy ·∇v+ tr(C)v = f a.e. in Q,

v(0)= v0 in Ω.

(2.54)

The solution v of Theorem 2.3 is called the strong solution of problem (2.2).

3. Inequalities

HUM is based on two inequalities: one is called direct, Lemma 3.2; another inverse,
Lemma 3.3. This section is dedicated to prove these inequalities, for the solution of the
boundary value problem (2.2), which are the key points in order to solve the exact con-
trollability problem for the Schrödinger equation, see (5.19).

We begin proving the following identity.

Lemma 3.1. Let q = (ql), 1≤ l ≤ n, be a vector field, with ql ∈ C2(Ω) for all l. Then, for all
strong solution v of the adjoint boundary value problem (2.2), there exists the identity

∫ T

0

∫

Γ
q · ν

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt

= Im

(

v,ql
∂v

∂yl

)∣

∣

∣

∣

∣

T

0

+
∫ T

0
Re

(

∂v

∂yj
,
∂2ql
∂yj∂yl

v

)

dt

+ 2Re

(

∂v

∂yj
,
∂ql
∂yj

∂v

∂yl

)

dt+
∫ T

0
Im

(

cjk yk
∂v

∂yj
,
∂ql
∂yl

v

)

dt

+
∫ T

0
2Im

(

cjk yk
∂v

∂yj
,ql

∂v

∂yl

)

dt+
∫ T

0
2Imtr

(

C(t)
)

(

v,ql
∂v

∂yl

)

dt

−
∫ T

0
Im

(

f ,
∂ql
∂yl

v

)

dt−
∫ T

0
2Im

(

f ,ql
∂v

∂yl

)

dt.

(3.1)

Proof. Multiplying both sides of (2.2)1, Section 2, by ql(∂v/∂yl), integrating on Q, and
taking the double of the imaginary parts of the resulting equality’s both sides, we have

∫ T

0
2Im

(

v′,ql
∂v

∂yl

)

dt+
∫ T

0
2Re

(

−Δv,ql
∂v

∂yl

)

dt+
∫ T

0
2Im

(

cjk · yk ∂v
∂yj

,ql
∂v

∂yl

)

dt

+
∫ T

0
2Imtr

(

C(t)
)

(

v,ql
∂v

∂yl

)

dt =
∫ T

0
2Im

(

f ,ql
∂v

∂yl

)

dt.

(3.2)

We have

d

dt

(

v,ql
∂v

∂yl

)

=
(

v′,ql
∂v

∂yl

)

+

(

v,ql
∂v′

∂yl

)

. (3.3)
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By Gauss’ lemma, we obtain

∫

Ω

∂

∂yl

(

vqlv
′)dy = 0, because v = 0 on Σ. (3.4)

It follows that

(

v,ql
∂v′

∂yl

)

+

(

ql
∂v

∂yl
,v′

)

+

(

∂ql
∂yl

v,v′
)

= 0. (3.5)

Substituting (3.5) in (3.3) and integrating on (0,T), we obtain

∫ T

0

(

v′,ql
∂v

∂yl

)

dt−
∫ T

0

(

ql
∂v

∂yl
,v′

)

dt =
(

v,ql
∂v

∂yl

)∣

∣

∣

∣

∣

T

0

+
∫ T

0

(

∂ql
∂yl

v,v′
)

dt. (3.6)

Since z− z = 2iImz, the last identity implies

2Im
∫ T

0

(

v′,ql
∂v

∂yl

)

dt =−i
(

v,ql
∂v

∂yl

)∣

∣

∣

∣

∣

T

0

− i
∫ T

0

(

∂ql
∂yl

v,v′
)

dt. (3.7)

Taking the real parts of both sides of the above identity, we get

2Im
∫ T

0

(

v′,ql
∂v

∂yl

)

dt = Im

(

v,ql
∂v

∂yl

)∣

∣

∣

∣

∣

T

0

− Im
∫ T

0

(

v′,
∂ql
∂yl

v

)

dt. (3.8)

(i) Analysis of Im
∫ T

0 (v′, (∂ql/∂yl)v)dt.
Multiplying (2.2)1 by (∂ql/∂yl)v, integrating on Ω, and taking the imaginary parts of

the resulting equality’s both sides, we obtain

Im

(

v′,
∂ql
∂yl

v

)

+ Re

(

−Δv,
∂ql
∂yl

v

)

+ Im

(

cjk · yk ∂v
∂yj

,
∂ql
∂yl

v

)

+ Im

(

tr
(

C(t)
)

v,
∂ql
∂yl

v

)

= Im

(

f ,
∂ql
∂yl

v

)

.

(3.9)

By Green’s formula, we obtain

Re

(

−Δv,
∂ql
∂yl

v

)

= Re

(

∂v

∂yj
,
∂2ql
∂yj∂yl

v

)

+ Re

(

∂v

∂yj
,
∂ql
∂yl

∂v

∂yj

)

, (3.10)

because v = 0 on Γ.



G. O. Antunes et al. 13

By (3.8), (3.9), and (3.10) we have

2Im
∫ T

0

(

v′,ql
∂v

∂yl

)

dt

= Im

(

v,ql
∂v

∂yl

)∣

∣

∣

∣

∣

T

0

−
∫ T

0
Im

(

f ,
∂ql
∂yl

v

)

dt+
∫ T

0
Re

(

∂v

∂yj
,
∂2ql
∂yj∂yl

v

)

dt

+
∫ T

0

(

∂v

∂yj
,
∂ql
∂yl

∂v

∂yj

)

dt+
∫ T

0
Im

(

cjk · yk ∂v
∂yj

,
∂ql
∂yl

v

)

dt.

(3.11)

(ii) Analysis of
∫ T

0 2Re(−Δv,ql(∂v/∂yl))dt.
By Gauss’ lemma,

∫

Ω

∂

∂yj

(

∂v

∂yj
ql
∂v

∂yj

)

dy =
∫

Γ
ql · νl

∂v

∂yj

∂v

∂yj
dΓ. (3.12)

Since ∂v/∂yj = ν j(∂v/∂ν), we have from the last identity that

2Re

(

∂v

∂yj
,ql

∂

∂yj

(

∂v

∂yj

))

=−
(

∂v

∂yj
,
∂ql
∂yj

∂v

∂yj

)

+
∫

Γ
q · ν

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓ. (3.13)

By Green’s formula, we have

(

−Δv,ql
∂v

∂yl

)

=
(

∂v

∂yj
,
∂ql
∂yj

∂v

∂yl

)

+

(

∂v

∂yj
,ql

∂

∂yj

(

∂v

∂yj

))

−
∫

Γ
ql · νl

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓ.

(3.14)

From (3.13), we modify (3.14) obtaining

∫ T

0
2Re

(

−Δv,ql
∂v

∂yl

)

dt

=
∫ T

0
2Re

(

∂v

∂yj
,
∂ql
∂yj

∂v

∂yl

)

dt−
∫ T

0
2Re

(

∂v

∂yj
,
∂ql
∂yl

∂v

∂y j

)

dt−
∫ T

0

∫

Γ
q · ν

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt.

(3.15)

Substituting (3.11) and (3.15) in the identity (3.2), we obtain the identity (3.1). �

Before stating the direct inequality, the following consideration will be made. Let
(W ,‖ · ‖W

)

be the Banach space of the weak solutions of (2.2), where ‖v‖W =
max0≤t≤T‖v(t)‖. Considering by �= { f ∈ L2(0,T ;H1

0 (Ω)); f ′ ∈ L1(0,T ;L2(Ω))} and de-
noting by S the vector space of the strong solutions of (2.2) relating to {v0, f } ∈ (H1

0 (Ω)∩
H2(Ω))×�, it follows that

S is dense in W. (3.16)
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Lemma 3.2 (direct inequality). If v is the weak solution of the boundary value problem
(2.2), then there exists the inequality

∫ T

0

∫

Γ

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≤ α
[

∥

∥v0
∥

∥

2
+

∫ T

0

∥

∥ f (s)
∥

∥

2
ds

]

. (3.17)

Proof. If v is the strong solution of (2.2), it satisfies the identity of Lemma 3.1. If we
choose the vector field q = (ql)1≤l≤n, with q ∈ [C2(Ω)]n, such that q = ν on Γ, where ν
is the unit exterior normal vector to Γ, then q · ν = 1 on Γ and the left-hand side of the
identity (3.1) is reduced to

∫ T

0

∫

Γ

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt. (3.18)

The right-hand side of the identity (3.1), for q = ν on Γ, is bounded by

α

(

max
0≤t≤T

∥

∥v(t)
∥

∥

2
+

∫ T

0

∥

∥ f (s)
∥

∥

2
ds

)

. (3.19)

From the second estimate, we know that
∥

∥v
∥

∥

2 ≤ α1
∥

∥v0
∥

∥

2
. (3.20)

Therefore, we obtain

∫ T

0

∫

Γ

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≤ α
[

∥

∥v0
∥

∥

2
+

∫ T

0

∥

∥ f (s)
∥

∥

2
ds

]

. (3.21)

Let us consider the operator γ : S→ L2(Σ) such that γ(v)= ∂v/∂ν and the vector space
S is defined previously. From (3.1), we have

∣

∣γ(v)
∣

∣

2
L2(Σ) =

∫ T

0

∫

Γ

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≤ c max
0≤t≤T

∥

∥v(t)
∥

∥

2 = c‖v‖2
W. (3.22)

Thus, γ is linear and continuous on S that is dense in W . Therefore, γ admits a linear and
continuous extension to S =W . Let v be the weak solution relating to v0 and f . Then,
there exists a sequence of strong solutions (vn) such that vn→ v in W .

For each strong solution vn, the inequality (3.21) is true, and therefore taking the limit
we obtain

∫ T

0

∫

Γ

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≤ α
[

∥

∥v0
∥

∥

2
+

∫ T

0

∥

∥ f (s)
∥

∥

2
ds

]

(3.23)

now for the weak solution v. �

The next inequality is true on a part Γ(y0) which we will define. In fact, let us con-
sider a point y0 ∈Rn and represent by m(y) the vector y− y0. We consider the following
decomposition of Γ:

Γ
(

y0
)= {

y ∈ Γ;Cm(y) · ν≥ 0
}

, Γ∗
(

y0
)= {

y ∈ Γ;Cm(y) · ν < 0
}

, (3.24)
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where C is the matrix (K−1(t))′K(t). We also define

∑
(

y0
)= Γ

(

y0
)× (0,T),

∑

∗

(

y0
)= Γ∗

(

y0
)× (0,T). (3.25)

Lemma 3.3 (inverse inequality). If v is a weak solution of the boundary value problem (2.2),
with f = 0, there exists the inequality

α
∥

∥v0
∥

∥

2 ≤
∫ T

0

∫

Γ(y0)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt, (3.26)

where the constant α is independent of v and depends only on T , ‖y0‖, and Ω.

Proof. Let v be the weak solution of (2.2) corresponding to v0 ∈H1
0 (Ω). It follows from

the identity (3.1), for −→q = C(y− y0) and f ≡ 0, that

∫ T

0

∫

Γ

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt

= (

v,Cm(y) ·∇v)∣∣T0 + 2
∫ T

0
Re

(

C ·∇v,∇v)dt+
∫ T

0
H(t)dt,

(3.27)

where

H(t)= Im
(

Cy ·∇v, (trC)v
)

+ 2Im
(

Cy ·∇v,Cm(y) ·∇v)

+ 2Im
(

(trC)v,Cm(y) ·∇v). (3.28)

We have

H(t)= Im
(

(trC)(Cy ·∇v),v
)

+ 2Im(Cy ·∇v,Cy ·∇v)− 2Im(Cy ·∇v,Cy0 ·∇v)

+ 2Im
(

(trC)v,Cy ·∇v)− 2Im
(

(trC)v,Cy0 ·∇v
)

.
(3.29)

Observe that if z is a complex number −2Imz− Imz = Imz, then

2Im
(

v, (trC)(Cy ·∇v)
)

+ Im
(

(trC)(Cy ·∇v),v
)=−Im

(

(trC)(Cy ·∇v),v
)

.
(3.30)

Using (3.30) we modify H obtaining

H(t)=−Im
(

(trC)(Cy ·∇v),v
)

+ 2Im|Cy ·∇v|2− 2Im(Cy ·∇v,Cy0 ·∇v)

− 2Im
(

(trC)v,Cy0 ·∇v
)=−Im

(

(trC)(Cy ·∇v),v
)

− 2Im(Cy ·∇v,Cy0 ·∇v)− 2Im
(

(trC)v,Cy0 ·∇v
)

.

(3.31)
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Substituting (3.31) in (3.27) we find

∫ T

0

∫

Γ

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt

= (

v,Cm(y) ·∇v)∣∣T0 + 2
∫ T

0
Re(C ·∇v,∇v)dt−

∫ T

0
Im(Cy ·∇v, tr(C)v

)

dt

− 2
∫ T

0
Im

(

Cy ·∇v,Cy0 ·∇v
)

dt− 2
∫ T

0
Im

(

tr(C)v,Cy0 ·∇v
)

dt.

(3.32)

Now we prove the inverse inequality (3.26). It will be done by steps.
Step 1. We prove that the weak solution of (2.2) satisfies

α1
∣

∣v0
∣

∣

2
+

∫ T

0

∫

Γ(y0)

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≥ α2
∥

∥v0
∥

∥

2
. (3.33)

We note that from (H2) we have

2
∫ T

0
Re(C ·∇v,∇v)dt ≥ 2α

∫ T

0
‖v‖2dt. (3.34)

Now, from the second estimate we have

‖v‖2 = ∥

∥v0
∥

∥

2
exp

(

−
∫ t

0
tr(C)dr

)

− Im
(

v0,Cy ·∇v0
)

exp
(

−
∫ t

0
tr(C)dr

)

+ Im(v,Cy ·∇v)−
∫ t

0
Im(v,C′y ·∇v)exp

(

−
∫ t

0
tr(C)dr

)

ds,

(3.35)

therefore,

2
∫ T

0
Re(C ·∇v,∇v)dt ≥ 2α

∫ T

0
‖v‖2dt

= 2α
∥

∥v0
∥

∥

2
∫ T

0
exp

(

−
∫ t

0
tr(C)dr

)

dt− 2α
∫ T

0
Im

(

v0,Cy ·∇v0
)

exp
(

−
∫ t

0
tr(C)dr

)

dt

+ 2α
∫ T

0
Im(v,Cy ·∇v)dt− 2α

∫ T

0

∫ t

0
Im(v,C′y ·∇v)exp

(

−
∫ t

0
tr(C)dr

)

dsdt.

(3.36)

Observe that for each ejk = (δkj ), k = 1, . . . ,n, where

δkj =
⎧

⎨

⎩

1 if j = k,

0 if j �= k,
(3.37)

we have, from (H2), that C(t)ejk · ejk ≥ α|ejk|2 = α and C(t)ejk · ejk = Ckk(t), for all k =
1, . . . ,n for all t ∈ [0,T], then Ckk(t)≥ α > 0 and, therefore,

tr(C)≥ nα > 0. (3.38)
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From (3.38), it follows that, for all s, t ∈ [0,T], s≤ t,

0≤
∫ t

s
tr(C)dr ≤

∫ T

0
tr(C)dr, (3.39)

and then

exp
(

−
∫ T

0
tr(C)dr

)

≤ exp
(

−
∫ t

s
tr(C)dr

)

≤ 1. (3.40)

Therefore,

2α
∥

∥v0
∥

∥

2
∫ T

0
exp

(

−
∫ t

0
tr(C)dr

)

dt

≥ 2α
∥

∥v0
∥

∥

2
∫ T

0
exp

(

−
∫ T

0
tr(C)dr

)

dt ≥ 2αTC1(T)
∥

∥v0
∥

∥

2
.

(3.41)

We also have

− 2α
∫ T

0
Im

(

v0,Cy ·∇v0
)

exp
(

−
∫ t

0
tr(C)dr

)

dt

≥−2α
∣

∣v0
∣

∣

∥

∥v0
∥

∥

∫ T

0

∣

∣C(t)y
∣

∣dt.

(3.42)

Observe that |C(t)y| = |y| for all t ∈ [0,T], because {C(t)}t≥0 is a family of orthogonal
matrices of Rn. Therefore,

∫ T

0

∣

∣C(t)y
∣

∣dt ≤M(T ,Ω). (3.43)

Substituting (3.43) in (3.42) we obtain

−2α
∫ T

0
Im

(

v0,Cy ·∇v0
)

exp
(

−
∫ t

0
tr(C)dr

)

dt ≥−2αM(T ,Ω)
∣

∣v0
∣

∣

∥

∥v0
∥

∥. (3.44)

From Young’s inequality we get

−2α
∫ T

0
Im

(

v0,Cy ·∇v0
)

exp
(

−
∫ t

0
tr(C)dr

)

dt ≥ −
(

αM(T ,Ω)
)2

ε
∣

∣v0
∣

∣

2− ε∥∥v0
∥

∥

2
,

(3.45)

where ε > 0.
(i) Analysis of 2α

∫ T
0 Im(v,Cy ·∇v)dt.

We observe that from the second estimate there exists a constant α1 > 0 such that

∥

∥v(t)
∥

∥≤ K1
∥

∥v0
∥

∥. (3.46)
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Therefore, from Young’s inequality, it follows that

2α
∫ T

0
Im(v,Cy ·∇v)dt ≥−2α2

∫ T

0

∣

∣v0
∣

∣

∣

∣Cy
∣

∣

∥

∥v0
∥

∥dt

≥ −M(Ω,T)2

ε
∣

∣v0
∣

∣

2− ε∥∥v0
∥

∥

2
.

(3.47)

(ii) Analysis of −2α
∫ T

0

∫ t
0 Im(v,C′y ·∇v)exp(−∫ t

0 tr(C)dr)dsdt.

− 2α
∫ T

0

∫ t

0
Im(v,C′y ·∇v)exp

(

−
∫ t

0
tr(C)dr

)

dsdt

≥−2α
∫ T

0

∫ t

0
|v||C′y|‖v‖dsdt ≥−2α3

∫ T

0

∫ t

0

∣

∣v0
∣

∣|C′y|∥∥v0
∥

∥dsdt

≥
(

M(Ω,T ,n)
)

ε
∣

∣v0
∣

∣

2− ε∥∥v0
∥

∥

2
.

(3.48)

Substituting (3.42), (3.45), (3.47), and (3.48) in (3.36) we obtain

2
∫ T

0
Re(C ·∇v,∇v)dt ≥ (

2M(α,T)− 3ε
)∥

∥v0
∥

∥

2−
(

M(α,T ,n,Ω)
)2

ε
∣

∣v0
∣

∣

2
. (3.49)

Choosing ε > 0 such that 0 < ε < 2M(α,T)/3, then we have

2
∫ T

0
Re(C ·∇v,∇v)dt ≥ α4(T)

∥

∥v0
∥

∥

2−α5(T)
∣

∣v0
∣

∣

2
, (3.50)

where α4(T) and α5(T) are positive constants.
(iii) Analysis of −2

∫ T
0 Im(Cy ·∇v,Cy0 ·∇v)dt.

−2
∫ T

0
Im

(

Cy ·∇v,Cy0 ·∇v
)

dt ≥−2
∫ T

0
|Cy|‖v‖∣∣Cy0

∣

∣‖v‖dt

≥−2M(Ω)
∫ T

0
‖v‖2dt.

(3.51)

From (3.35) and (3.40), it follows that
∫ T

0
‖v‖2dt ≤ ∥

∥v0
∥

∥

2
T +

∫ T

0

∣

∣

(

v0,Cy ·∇v0
)∣

∣dt

+
∫ T

0

∣

∣(v,Cy ·∇v)
∣

∣dt+T
∫ T

0

∣

∣(v,C′y ·∇v)
∣

∣dt

≤ ∥

∥v0
∥

∥

2
T ≤ M(Ω,T ,n)

2ε
∣

∣v0
∣

∣

2
+

3ε
2

∥

∥v0
∥

∥

2
.

(3.52)

Substituting (3.52) in (3.51), we get

− 2
∫ T

0
Im

(

Cy ·∇v,Cy0 ·∇v
)

dt

≥−2M(Ω,T)
∥

∥v0
∥

∥

2− M(Ω,T ,n)
ε

∣

∣v0
∣

∣

2− εM(Ω)
∥

∥v0
∥

∥

2
.

(3.53)
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(iv) Analysis of −2
∫ T

0 Im(tr(C)v,Cy0 ·∇v)dt.

−2
∫ T

0
Im

(

tr(C)v,Cy0 ·∇v
)

dt ≥−2
∫ T

0

∣

∣ tr(C)v
∣

∣

∣

∣Cy0
∣

∣|∇v|dt

≥−
(

M(T ,Ω)
)2

ε
∣

∣v0
∣

∣

2− ε∥∥v0
∥

∥

2
.

(3.54)

(v) Analysis of −∫ T
0 Im(Cy ·∇v, tr(C)v)dt.

−
∫ T

0
Im

(

Cy ·∇v, (trC)v
)

dt

≥−
∫ T

0
|Cy|‖v‖∣∣(trC)v

∣

∣dt ≥−
∫ T

0
M(Ω,T)

∥

∥v(t)
∥

∥

∣

∣v(t)
∣

∣dt

≥−M(

Ω,T ,α1
)∥

∥v0
∥

∥

∣

∣v0
∣

∣≥−
(

M
(

Ω,T ,α1
))2

2ε
∣

∣v0
∣

∣

2− ε
2

∥

∥v0
∥

∥

2
.

(3.55)

We also have

(

v,Cm(y) ·∇v)∣∣T0 =
(

v(T),Cm(y) ·∇v(T)
)− (

v0,Cm(y) ·∇v0
)

, (3.56)

therefore, from Young’s inequality, it follows that

(

v,Cm(y) ·∇v)∣∣T0 ≥
(

M(Ω,α1)
)2

2ε
∣

∣v0
∣

∣

2− ε
2

∥

∥v0
∥

∥

2
. (3.57)

Substituting (3.50), (3.53), (3.54), (3.55), and (3.57) in (3.32) we obtain, after some
computations, that the weak solution of (2.2) satisfies (3.33).
Step 2. We prove in this step that if v is a weak solution of (2.2) then there exists a constant
λ > 0 such that

λ
∣

∣v0
∣

∣

2 ≤
∫ T

0

∫

Γ(y0)

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt. (3.58)

In fact, we argue by contradiction. Suppose (3.58) is false. Considering v0 ∈ H1
0 (Ω),

there exists a sequence (vμ) of strong solutions of (2.2), vμ(0)= v0μ, such that

∫ T

0

∫

Γ
(

y0

)

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt ≤ 1
μ

∣

∣v0μ
∣

∣

2
, (3.59)

and we can suppose |v0μ| = 1. Then, from (3.59), we obtain

lim
μ→∞

∫ T

0

∫

Γ
(

y0

)

(

Cm(y) · ν
)

∣

∣

∣

∣

∂v

∂ν

∣

∣

∣

∣

2

dΓdt = 0 (3.60)

strongly.
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In Step 1 we proved that

C1
∣

∣v0μ
∣

∣

2
+

∫ T

0

∫

Γ
(

y0

)

(

Cm(y) · ν
)

∣

∣

∣

∣

∂vμ
∂ν

∣

∣

∣

∣

2

dΓdt ≥ C2
∥

∥v0μ
∥

∥

2
. (3.61)

The left-hand side of (3.61) is bounded, then it follows that (v0μ) is bounded inH1
0 (Ω).

Since the embedding of H1
0 (Ω) in L2(Ω) is compact, it follows that we can extract a sub-

sequence, still represented by (v0μ), such that

lim
μ→∞v0μ = v0 strongly in L2(Ω). (3.62)

Since |v0μ| = 1, it follows that

∣

∣v0
∣

∣= 1. (3.63)

We also have

∣

∣vμ(t)− vη(t)
∣

∣≤ C(T)
∣

∣v0μ− v0η
∣

∣, (3.64)

which implies that

limμ→∞vμ = v in C0([0,T];L2(Ω)
)

. (3.65)

Integrating by parts for ξ ∈ L∞(0,T ;H1
0 (Ω)∩H2(Ω)) and ξ′ ∈ L∞(0,T ;L2(Ω)), with

ξ(0)= ξ(T)= 0, we obtain

∫

Q
vμ

(− ξ′ − iΔξ − (Cy ·∇ξ)
)

dydt = 0. (3.66)

When μ→∞ in (3.66) we have

∣

∣

∣

∣

∣

∣

∣

∫

Q
v
(

ξ′ + iΔξ + (Cy ·∇ξ)
)

dydt = 0,

v(0g)= v0.
(3.67)

We transform (3.67) into a noncylindrical problem on ̂Q by the mapping y = K−1(t)x,
x ∈ ̂Q. Consider θ(x, t)= v(K−1(t)x, t), where v is the weak solution, then θ ∈ C0([0,T];
H1

0 (Ω)).
Represent by ̂G a bounded convex set ofRn such that its closure contains ̂Q and ̂Σ(y0).

Let � be ̂G∩ ̂Q �=∅ and let ˜θ(x, t) equal to θ(x, t) on ̂Q and zero outside. We prove that

˜θ′ − iΔ˜θ = 0 in the sense of �′( ̂G). (3.68)

By definition, ˜θ = 0 on ̂G \ ̂Q, then ˜θ = 0 on ̂G by Holmgren’s theorem. Therefore, θ =
˜θ = 0 on ̂Q and then v = 0. This is a contradiction because |v0| = 1. �
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4. Ultra weak solutions or solutions by transposition

Let us consider the following nonhomogeneous mixed problem:

∣

∣

∣

∣

∣

∣

∣

∣

Lv = 0 on Q,

v =w on Σ,

v(0)= v0 in Ω,

(4.1)

where Lv = v′ − iΔv+Cy ·∇v was defined in Section 2.
We are looking for a concept of a solution for (4.1). Let us suppose w ∈ L2(Σ), v0 ∈

H−1(Ω) and consider a function θ = θ(y, t) such that θ = 0 on Σ and θ(T)= θ(y,T)= 0
for y ∈Ω. Multiplying both sides of (4.1) 1 by θ and integrating on Q, we obtain

∫ T

0

∫

Ω
(v′ − iΔv+Cy ·∇v)θdydt = 0. (4.2)

We have the following.
(i)

∫ T

0

∫

Ω
v′θdydt =

∫ T

0
(v′,θ)dt = (

v(T),θ(T)
)− (

v(0),θ(0)
)−

∫ T

0
(v,θ′)dt (4.3)

or

∫ T

0

∫

Ω
v′θdydt =−(

v(0),θ(0)
)−

∫ T

0

∫

Ω
vθ′dydt. (4.4)

(ii) −∫ T
0

∫

Ω iΔvθdydt.
By Green’s formula,

−
∫

Ω
Δvθdy =

∫

Ω
∇v∇θdy−

∫

Γ

∂v

∂ν
θdΓ,

−
∫

Ω
vΔθdy =

∫

Ω
∇v∇θdy−

∫

Γ
v
∂θ

∂ν
dΓ.

(4.5)

Observe that by hypothesis θ = 0 on Σ. Then,

−i
∫ T

0

∫

Ω
Δvθdydt =−i

∫ T

0

∫

Ω
vΔθdydt+ i

∫ T

0

∫

Γ
v
∂θ

∂ν
dΓdt. (4.6)

(iii)
∫ T

0

∫

ΩCy ·∇vθdydt.
By Gauss’ lemma we have

∫

Ω

∂

∂yl

(

vclk ykθ
)

dy = 0, (4.7)

because θ = 0 on Σ.
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From (4.7), it follows that

∫

Ω

∂v

∂yl
clk ykθdy +

∫

Ω
vclkδ

k
l θ dy +

∫

Ω
vclk yk

∂θ

∂yl
dy = 0 (4.8)

or

∫ T

0

∫

Ω
Cy ·∇vθdydt =−

∫ T

0

∫

Ω
tr

(

C(t)
)

vθdydt−
∫ T

0

∫

Ω
vCy ·∇θdydt. (4.9)

Adding (4.4), (4.6), and (4.9) and observing (4.2), we get

−(

v0,θ(0)
)

+
∫ T

0

∫

Γ
v
∂θ

∂ν
dΓdt+

∫

Q
v
(− θ′ − iΔθ− tr(C(t)

)

θ−Cy ·∇θ)dydt = 0.

(4.10)

Hence,

−
∫

Q
v
(

θ′ − iΔθ + tr(C)θ +Cy ·∇θ)dydt = (

v0,θ
(

0
))− i

∫ T

0

∫

Γ
v
∂θ

∂ν
dΓdt. (4.11)

Now, we formulate the concept of solution by transposition or ultra weak solution for
the problem (4.1).

Given f ∈ L1(0,T ;H1
0 (Ω)), let θ be the weak solution of the following backward mixed

problem

∣

∣

∣

∣

∣

∣

∣

∣

L∗θ =− f in Q,

θ = 0 on Σ,

θ(T)= 0 on Ω,

(4.12)

where L∗θ = θ′ − iΔθ + tr(C)θ +Cy ·∇θ according to Section 2.

Reversing time in (4.12) and defining ̂θ(y, t) = θ(y,T − t), ̂f (y, t) = f (y,T − t), and
̂C(t)=−C(T − t), we obtain

̂θ′ + iΔ̂θ + tr( ̂C)̂θ + ̂Cy ·∇̂θ = ̂f . (4.13)

Then, we obtain from (4.12) the equivalent problem

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

̂θ′ − iΔ̂θ + tr( ̂C)̂θ + ̂Cy ·∇̂θ = ̂f in Q,

̂θ = 0 on Σ,

̂θ(0)= 0 on Ω,

(4.14)

which, by Section 2, Theorem 2.1, has only one weak solution ̂θ. Therefore, we have the
following definition.
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Definition 4.1. For v0 ∈H−1(Ω) andw ∈ L2(Σ), the solution by transposition of the prob-
lem (4.1) is called the unique function v ∈ L∞(0,T ;H−1(Ω)) such that

∫ T

0

〈

v(t), f (t)
〉

H−1(Ω)×H1
0 (Ω)dt =

〈

v0,θ(0)
〉−

∫

Σ
wi
∂θ

∂ν
dΓdt (4.15)

for all f ∈ L1(0,T ;H1
0 (Ω)), where θ is the weak solution of (4.12).

Theorem 4.2. Given v0 ∈H−1(Ω) and w ∈ L2(Σ), there exists only one ultra weak solution
v ∈ L∞(0,T ;H−1(Ω)) of the nonhomogeneous boundary value problem (4.1).

Proof. The existence is a consequence of Riesz representation theorem for continuous
linear functional on L1(0,T ;H1

0 (Ω)).
For the uniqueness, suppose we have two ultra weak solutions v and v̂ corresponding

to v0 and f . Then, by definition of ultra weak solution, we have

〈

v− v̂, f
〉= 0, (4.16)

where 〈·,·〉 is the duality between L∞(0,T ;H−1(Ω)) and L1(0,T ;H1
0

(

Ω)). Then, by Hahn-
Banach theorem, we have v− v̂ = 0. �

5. Exact controllability

In this section, at first, we solve the problem of the exact controllability for the nonho-
mogeneous boundary value problem on the cylinder Q:

∣

∣

∣

∣

∣

∣

∣

∣

v′ − iΔv+Cy ·∇v = 0 on Q,

v =w on Σ,

v(0)= v0 in Ω.

(5.1)

Later, we obtain the exact controllability result for the nonhomogeneous mixed prob-
lem (1.5) on the noncylindrical domain ̂Q.

The problem of exact controllability for (5.1) can be formulated as follows: given T >
0, find a Hilbert space H such that for each initial data v0 ∈H , there exists a control w
belonging to a space of controls on Σ such that the corresponding solution v(y, t,w) of
(5.1) verifies the condition

v
(

y,T ,w
)= 0 ∀y ∈Ω. (5.2)

Theorem 5.1. Let Ω be a regular, bounded open set of Rn and suppose that (H1) and (H2)
hold. If T > 0, then, for each v0 ∈ H−1(Ω), there exists a control w ∈ L2(Σ) such that v,
solution of problem (5.1), satisfies the condition

v(y,T ,w)= 0 ∀y ∈Ω. (5.3)

Proof. In order to prove the exact controllability for (5.1), we employ HUM (hilbert
uniqueness method) idealized by Lions [8]. We describe the method by steps.
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Step 1. Given φ0 ∈�(Ω), let us consider the adjoint problem

∣

∣

∣

∣

∣

∣

∣

∣

φ′ − iΔφ+Cy ·∇φ+ tr(C)φ = 0 in Q,

φ= 0 on Σ,

φ(0)= φ0 in Ω.

(5.4)

We know by Section 1 that (5.4) has a strong solution. By the direct inequality, we
obtain

∂φ

∂ν
∈ L2(Σ). (5.5)

Step 2. We solve the nonhomogeneous backward problem

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ′ − iΔψ +Cy ·∇ψ = 0 in Q,

ψ =
⎧

⎪

⎨

⎪

⎩

−i ∂φ
∂ν

on Σ
(

y0
)

,

0 in Σ�Σ
(

y0
)

,

ψ(T)= 0.

(5.6)

Note that (5.6) is a nonhomogeneous backward problem of the type studied in
Section 4. To obtain, from (5.6), the system (4.1) of Section 4, it is sufficient to consider
the change of variable T − t in place of t.

The operator Λ. From the solution ψ of (5.6), we define the application

Λ
{

φ0
}= ψ(0). (5.7)

Observe that, from φ0 ∈�(Ω), we obtain the solution φ of (5.4) with regularity (5.5)
for the normal derivative. Then, the problem (5.6) is well posed, from which we define Λ.
Step 3. Multiplying both sides of (5.6) by φ, the solution of (5.4), and integrating on Q
we obtain

0= 〈Lψ,φ〉 = 〈

ψ,L∗φ
〉

+
〈

ψ(T),φ(T)
〉− 〈

ψ(0),φ(0)
〉

+ i
∫ T

0

∫

Γ
ψ
∂φ

∂ν
dΓdt. (5.8)

That is,

0=−〈

ψ(0),φ0
〉

+
∫ T

0

∫

Γ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

2

dΓdt. (5.9)

Therefore,

〈

ψ(0),φ0
〉=

∫ T

0

∫

Γ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

2

dΓdt. (5.10)

Substituting (5.7) in (5.10), we obtain

〈

Λ
{

φ0
}

,φ0
〉=

∫ T

0

∫

Γ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

2

dΓdt. (5.11)
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If we consider φ0, ζ0 ∈ �(Ω) and we represent by φ and ζ the corresponding weak
solution of (5.4), we obtain, by the same argument used to obtain (5.10), that

〈

Λ
{

φ0
}

,ζ0
〉=

∫ T

0

∫

Γ

∂φ

∂ν

∂ζ

∂ν
dΓdt. (5.12)

We define in �(Ω) the quadratic form

∥

∥φ0
∥

∥

2
F =

∫ T

0

∫

Γ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

2

dΓdt. (5.13)

Remark 5.2. It follows from the direct inequality that the quadratic form defined above
is a norm in �(Ω), induced by the inner product

(φ,ζ)F =
∫ T

0

∫

Γ

∂φ

∂ν

∂ζ

∂ν
dΓdt (5.14)

defined in �(Ω)×�(Ω).

Let us represent by F the completion of �(Ω) with the Hilbertian norm (5.13).
It follows from the remark above and (5.11) that

〈

Λ
{

φ0
}

,ζ0
〉= (

φ0,ζ0
)

. (5.15)

Then, b(φ0,ζ0)= 〈

Λ{φ0},ζ0〉 is a sesquilinear form, Hermitian, and strictly positive in
�(Ω)×�(Ω). Its continuity follows from Schwarz inequality. In fact,

∣

∣b
(

φ0,ζ0
)∣

∣= ∣

∣

〈

Λ
{

φ0
}

,ζ0
〉∣

∣≤ ∥

∥φ0
∥

∥

F

∥

∥ζ0
∥

∥

F . (5.16)

It follows that b(φ0,ζ0) has a unique extension by closure, to the completion F of �(Ω).
Let us still represent by b(φ0,ζ0) this extension. It is sesquilinear, Hermitian, and strictly
positive in F. Then, by Lax-Milgram’s lemma, given v0 ∈ F′, dual of F, there exists a
unique φ0 ∈ F such that

〈

Λ
{

φ0
}

,ζ0
〉= b(φ0,ζ0

)= 〈

v0,ζ0
〉 ∀ζ0 ∈ F. (5.17)

This means that, given v0 ∈ F′, there exists a unique φ0 ∈ F such that

Λ
{

φ0
}= v0 in F′. (5.18)

But, by (5.7), we have Λ{φ0} = ψ(0), which implies that the ultra weak solution ψ of
the backward problem (5.6) satisfies the initial condition ψ(0)= v0. It follows, by unique-
ness, that ψ = v and then v(T)= 0, which is the condition (5.2).

We need only to characterize, in terms of space of functions on Ω, the completion F
of �(Ω) with respect to the norm ‖ · ‖F given by (5.13).

In fact, from inverse and direct inequalities, we have

C0
∥

∥φ0
∥

∥

2 ≤
∫ T

0

∫

Γ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

2

dΓdt ≤ C1
∥

∥φ0
∥

∥

2
, (5.19)
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which implies that the norm ‖·‖F in �(Ω), defined in (5.13), is equivalent to the norm
H1

0 (Ω). Therefore, F =H1
0 (Ω) and F′ =H−1(Ω). �

The proof of Theorem 1.1 follows from the previous theorem and the diffeomorphism
τ defined in Section 1.

Appendix

The objective of this appendix is to prove an identity in order to modify the surface inte-
gral

∫

Γ
ν j · cjk(t)yk

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ (A.1)

that appears in the second estimate.
In fact, let us consider the approximate equation

(

v′m(t),wj
)

+ i
((

vm(t),wj
))

+
(

C(t)y ·∇vm(t),wj
)

+ tr
(

C(t)
)(

vm(t),wj
)= (

f
(

t),wj
)

.
(A.2)

Let us consider L2(Ω) = Vm ⊕V⊥
m and Pm the orthogonal projection from L2(Ω) on

Vm. We know that
(i) Pm is bounded, self-adjoint;

(ii) Pmw =w for all w ∈Vm;
(iii) Pmw =

∑m
j=1(w,wj)wj for each w ∈ L2(Ω).

Multiplying both sides of the approximate equation (A.2) by wj and adding for 1 ≤
j ≤m, we obtain that

v′m− iΔvm +Pm
[

C(t)y ·∇vm
]

+ tr
(

C(t)
)

vm = Pm f . (A.3)

Taking the inner product of both sides of (A.3) with C(t)y ·∇vm, we obtain

(

v′m,C(t)y ·∇vm
)− i(Δvm,C(t)y ·∇vm

)

+
(

Pm
[

C(t)y ·∇vm
]

,C(t)y ·∇vm
)

+ tr
(

C(t)
)(

vm(t),C(t)y ·∇vm
)= (

Pm f ,C(t)y ·∇vm
)

.
(A.4)

Note that P2
m = Pm, then (Pm[C(t)y · ∇vm],C(t)y · ∇vm) = |Pm[C(t)y · ∇vm]|2 is real.

Taking the double of the imaginary parts of both sides of (A.5), we have

2Im
(

v′m,C(t)y ·∇vm
)− 2Im i

(

Δvm,C(t)y ·∇vm
)

+ 2tr
(

C(t)
)

Im
(

vm(t),C(t)y ·∇vm
)= 2Im

(

Pm f ,C(t)y ·∇vm
)

.
(A.5)

Observing that Im(iz)= Rez, we modify (A.5), obtaining

2Im
(

v′m,C(t)y ·∇vm
)− 2Re

(

Δvm,C(t)y ·∇vm
)

+ 2tr
(

C(t)
)

Im
(

vm(t),C(t)y ·∇vm
)= 2Im

(

Pm f ,C(t)y ·∇vm
)

.
(A.6)

(i) Analysis of 2Im
(

v′m,C(t)y ·∇vm).
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We have

d

dt

(

vm,C(t)y ·∇vm
)= (

v′m,C(t)y ·∇vm
)

+
(

vm,C′(t)y ·∇vm
)

+
(

vm,C(t)y ·∇v′m
)

.

(A.7)

By Gauss’ lemma,

∫

Ω

∂

∂yl

(

vmClk ykv′m
)

dy = 0, (A.8)

that is,

∫

Ω

∂vm
∂yl

Clk ykv′mdy +
∫

Ω
vmClkδ

k
l v
′
mdy +

∫

Ω
vmClk yk

∂v′m
∂yl

dy = 0. (A.9)

Therefore, from (A.9), we get

−(

vm,C(t)y ·∇v′m
)= tr(C)

(

vm,v′m
)

+
(

C(t)y ·∇vm,v′m
)

. (A.10)

Substituting (A.10) in (A.7), we obtain

(

v′m,C(t)y ·∇vm
)− (

C(t)y ·∇vm,v′m
)

= d

dt

(

vm,C(t)y ·∇vm
)− (

vm,C′(t)y ·∇vm
)

+ tr(C)
(

vm,v′m
)

.
(A.11)

Note that z− z = 2iImz and −i(z− z)= 2Imz, which implies

2Im
(

v′m,C(t)y ·∇vm
)=−i d

dt

(

vm,C(t)y ·∇vm
)

+ i
(

vm,C′(t)y ·∇vm
)− i tr(C)

(

vm,v′m
)

.

(A.12)

Taking the real parts of both sides in the last equality, we obtain

2Im
(

v′m,C(t)y ·∇vm
)= Im

d

dt

(

vm,C(t)y ·∇vm
)

− Im
(

vm,C′(t)y ·∇vm
)

+ Imtr(C)
(

vm,v′m
)

.
(A.13)

From the projection (A.3), we have

−v′m =−iΔvm +Pm
[

C(t)y ·∇vm
]

+ tr
(

C(t)
)

vm−Pm f . (A.14)

Taking the inner product of both sides of (A.14) with vm and taking the imaginary
parts of both sides, we obtain

Im
(− v′m,vm

)=−Im i
(

Δvm,vm
)

+ Im
(

Pm
[

C(t)y ·∇vm,vm
])− Im

(

Pm f ,vm
)

.
(A.15)

Observe that (Pm[C(t)y · ∇vm],vm) = (C(t)y · ∇vm,vm), because Pm is self-adjoint
and Pmvm = vm.
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Therefore, from (A.15), it follows that

Im
(− v′m,vm

)=−Re
(

Δvm,vm
)

+ Im
(

C(t)y ·∇vm,vm
)− Im

(

Pm f ,vm
)

. (A.16)

From (A.16), we obtain

tr
(

C(t)
)

Im
(

vm,v′m
)= tr

(

C(t)
)∥

∥vm
∥

∥

2
+ tr

(

C(t)
)

Im
(

C(t)y ·∇vm,vm
)

− tr
(

C(t)
)

Im
(

Pm f ,vm
)

.
(A.17)

We modify (A.13), by means of (A.17) and obtain

2Im
(

v′m,C(t)y ·∇vm
)= Im

d

dt

(

vm,C(t)y ·∇vm
)− Im

(

vm,C′(t)y ·∇vm
)

+ tr
(

C(t)
)∥

∥vm
∥

∥

2
+ tr

(

C(t)
)

Im
(

(t)y ·∇vm,vm
)

− tr
(

C(t)
)

Im
(

Pm f ,vm
)

.

(A.18)

From the second estimate, we have

2Re
(∇vm(t) ·C(t)y,−Δvm(t)

)= 2Re
(∇vm(t) ·C(t)y,∇vm(t)

)

− tr
(

C(t)
)∥

∥vm(t)
∥

∥

2−
∫

Γ
C(t)y · ν

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ.
(A.19)

Substituting (A.18) and (A.19) in (A.6), it follows that

−
∫

Γ
C(t)y · ν

∣

∣

∣

∣

∂vm
∂ν

∣

∣

∣

∣

2

dΓ+ 2Re
(∇vm(t) ·C(t)y,∇vm(t)

)− tr
(

C(t)
)∥

∥vm(t)
∥

∥

2

= 2Im
(

Pm f ,∇vm(t) ·C(t)y
)

+ tr
(

C(t)
)

Im
(

Pm f ,vm
)

− tr
(

C(t)
)

Im
(

vm(t),C(t)y ·∇vm
)− tr(C(t)

)∥

∥vm
∥

∥

2

− d

dt
Im

(

vm,C(t)y ·∇vm
)

+ Im
(

vm,C′(t)y ·∇vm
)

.

(A.20)
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Contrôlabilité Exacte, Research in Applied Mathematics, vol. 8, Masson, Paris, 1988.
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G. O. Antunes: Instituto de Matemática e Estatı́stica, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro 20550-900, Brazil
E-mail address: gladson@uerj.br
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