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We prove that if A is a C-algebra, then for each a ∈ A, Aa = {x ∈ A/x ≤ a} is itself a
C-algebra and is isomorphic to the quotient algebra A/θa of A where θa = {(x, y) ∈
A×A/a∧ x = a∧ y}. If A is C-algebra with T , we prove that for every a ∈ B(A), the
centre of A, A is isomorphic to Aa×Aa′ and that if A is isomorphic A1×A2, then there
exists a∈ B(A) such that A1 is isomorphic Aa and A2 is isomorphic to Aa′ . Using this de-
composition theorem, we prove that if a,b ∈ B(A) with a∧ b = F, then Aa is isomorphic
to Ab if and only if there exists an isomorphism φ on A such that φ (a)= b.
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Introduction

In [1], Guzmán and Squier introduced the variety of C-algebras as a class of algebras
of type (2, 2, 1) satisfying certain identities and proved that this variety is generated by
the 3-element algebra C = {T ,F,U} which is the algebraic semantic of the three valued
conditional logic. In [3] Swamy et al. introduced the concept of the centre B(A) = {x ∈
A/x∨ x′ = T} of a C-algebra A with T and proved that B(A) is a Boolean algebra with
induced operations and is equivalent to the Boolean Centre of A. In [2], Rao and Sun-
darayya defined a partial ordering on a C-algebra A and the properties of A as a poset are
studied.

In this paper, we prove that if A is a C-algebra, then for each x ∈ A, Ax = {s∈ A/s≤ x}
is itself a C-algebra and is isomorphic to the quotient algebra A/θx, where θx = {(s, t) ∈
A×A/x∧ s= x∧ t}. If A is a C-algebra with T then, for every a∈ B(A), A is isomorphic
to Aa ×Aa′ and conversely if A is isomorphic to A1 ×A2, then there exists an element
a∈ B(A) such that A1 is isomorphic to Aa and A2 is isomorphic to Aa′ . Using the above
decomposition theorem we prove that for any a,b ∈ B(A) with a∧ b = F, Aa is isomor-
phic to Ab if and only if there exists an isomorphism on A which sends a to b.

1. Preliminaries

First, we recall the definition of a C-algebra and some results, which will be used in the
later text.
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2 Decompositions of a C-algebra

By a C-algebra we mean an algebra of type (2,2,1) with operations ∧,∨, and ′ satisfy-
ing the following properties:

(a) x′′ = x;
(b) (x∧ y)′ = x′ ∨ y′;
(c) (x∧ y)∧ z = x∧ (y∧ z);
(d) x∧ (y∨ z)= (x∧ y)∨ (x∧ z);
(e) (x∨ y)∧ z = (x∧ z)∨ (x′ ∧ y∧ z);
(f) x∨ (x∧ y)= x;
(g) (x∧ y)∨ (y∧ x)= (y∧ x)∨ (x∧ y).

Clearly, every Boolean algebra is a C-algebra. The set {T ,F,U} is a C-algebra with oper-
ations ∧, ∨, and ′ given by

∧ T F U
T T F U
F F F F
U U U U

∨ T F U
T T T T
F T F U
U U U U

X X′

T F
F T
U U

We denote this three-element C-algebra by C and the two-element C-algebra (Boolean
algebra) {T ,F} by B. It can be observed that the identities (a), (b) imply that the variety
of all C-algebras satisfies the dual statements of (b) to (g). In general ∧ and ∨ are not
commutative in C and the ordinary right distributive law of ∧ over ∨ fails in C.

The following properties of a C-algebra can be verified directly [1, 3]:
(i) x∧ x = x;

(ii) x∧ y = x∧ (x′ ∨ y)= (x′ ∨ y)∧ x;
(iii) x∨ (x′ ∧ x)= (x′ ∧ x)∨ x = x;
(iv) (x∨ x′)∧ y = (x∧ y)∨ (x′ ∧ y);
(v) x∨ x′ = x′ ∨ x;

(vi) x∨ y∨ x = x∨ y;
(vii) x∧ x′ ∧ y = x∧ x′.
If a C-algebra A has an identity for ∧, then it is unique and we denote it by T . In this

case, we say that A is a C-algebra with T . If we write F for T′, then F is the identity for ∨.
In a C-algebra, we have the following [1, 3]:

(viii) x∨ y = F if and only if x = y = F;
(ix) if x∨ y = T , then x∨ x′ = T ;
(x) x∨T = x∨ x′;

(xi) T ∨ x = T and F ∧ x = F;
(xii) for a∈A, a′ = a if and only if a is left zero of both ∧ and ∨.
If there exists an element x in A such that x′ = x, then it is unique and we denote it by

U (U is called the uncertain element of A). An element x ∈ A is called a central element
of A if x∨ x′ = T . The set {x ∈ A/x∨ x′ = T} of all central elements of A is called the
centre of A and is denoted by B(A). The set B(A) of all central elements of A is a Boolean
algebra with respect to the operations ∨, ∧, and ′ (of A) restricted to B(A) [3].
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For x ∈ A define the relation θx on A by θx = {(p,q)∈A×A/x∧ p = x∧ q} then θx is
a congruence relation on A and θx ∩ θx′ = θx∨x′ [1].

The relation≤ defined on a C-algebra A by x ≤ y if y∧ x = x is a partial ordering on A
in which, for every x ∈A, the supremum of {x,x′} = x∨ x′, and the infimum of {x,x′} =
x∧ x′ [2]. If A is a C-algebra with T , x ∈ B(A) and y ∈ A are such that x∧ y = y ∧ x,
then x∨ y is the lub of {x, y} and in this case y∨ x need not be the lub of x and y. For
example, in the algebra C, T ∈ B(C) and T ∧U =U ∧T but U ∨T =U is not the lub of
{U ,T}. If x ≤ y, then y∧ x = x and hence x∧ y = x∧ y∧ x = x∧ x = x. Therefore x ≤ y
if and only if y∧ x = x = x∧ y.

2. The C-algebra Ax

Recall that for every Boolean algebra B and a∈ B the set (a]= {x ∈ B/x ≤ a}([a)= {x ∈
B/a≤ x}) is a Boolean algebra under the induced operations∧ and∨where complemen-
tation is defined by x∗ = a∧ x′(x∗ = a∨ x′).

In this section, we prove that if A is a C-algebra and x ∈ A, then Ax = {s ∈ A/s ≤ x}
is a C-algebra with T(= x) under the induced operations and that Ax is isomorphic to a
quotient algebra of A.

Theorem 2.1. Let A be a C-algebra, x ∈ A, and Ax = {s∈ A/s≤ x}. Then 〈Ax,∧,∨,∗〉 is
a C-algebra with T where ∧ and ∨ are the operations in A restricted to Ax, s∗ is defined by
x∧ s′, and “x” is the identity for ∧.

Proof. Clearly Ax is closed under ∧ and ∨. If s ∈ Ax, then x∧ s∗ = x∧ (x∧ s′) = (x∧
x)∧ s′ = x∧ s′ = s∗. So that s∗ ∈ Ax and s∗∗ = (s∗)∗ = (x∧ s′)∗ = x∧ (x∧ s′)′ = x∧
(x′ ∨ s)= x∧ s= s (since s≤ x).

Now, for s, t ∈ Ax, (s∧ t)∗ = x∧ (s∧ t)′ = x∧ (s′ ∨ t′)= (x∧ s′)∨ (x∧ t′)= s∗ ∨ t∗.
Finally, for s, t,u∈Ax,

(s∨ t)∧u= x∧ ((s∨ t)∧u
)= x∧ ((s∧u)∨ (s′ ∧ t∧u)

)

= ((x∧ s)∧ (x∧u)
)∨ (x∧ s′ ∧ t∧u)

= (s∧u)∨ (s∗ ∧ t∧u
)
.

(2.1)

The remaining identities hold in Ax since they hold in A.
Hence 〈Ax, ∧, ∨, ∗〉 is a C-algebra with “x” as the identity for ∧. �

Observe that Ax is itself a C-algebra but it is not a subalgebra of A because the unary
operation ∗ is not the restriction of ′ to Ax. Now, we give some properties of Ax.

Theorem 2.2. Let A be a C-algebra. Then the following hold:
(i) Ax = {x∧ s/s∈A};

(ii) Ax =Ay if and only if x = y;
(iii) Ax ∩Ay ⊆ Ax∧y ;
(iv) Ax ∩Ax′ = Ax∧x′ ;
(v) (Ax)x∧y = Ax∧y .
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Proof. (i), (ii), and (iii) can be verified routinely. We prove (iv) as follows. Let s∈ Ax∧x′ ,
then (x ∧ x′)∧ s = s and hence x ∧ s = x ∧ (x ∧ x′ ∧ s) = x ∧ x′ ∧ s = s. Also we have
x′ ∧ s= x′ ∧ (x∧ x′ ∧ s)= s, since x∧ x′ = x′ ∧ x. Now we prove (v),

(
Ax
)
x∧y =

{
x∧ y∧ t/t ∈Ax

} (
by (i)

)

= {x∧ y∧ x∧ s /s∈ A
}

= {x∧ y∧ s /s∈A
}= Ax∧y.

(2.2)

�

Let A1, A2 be two C-algebras with T1 and T2. Then a mapping f : A1 → A2 that pre-
serves ∧, ∨, ′ and carries T1 to T2 is called a T-preserving C-algebra homomorphism. In
future, we deal with C-algebras with T only and hence by a C-algebra homomorphism
we mean a T-preserving C-algebra homomorphism. The following lemma can be verified
routinely.

Lemma 2.3. Let f : A1 → A2 be a C-algebra homomorphism where A1, A2 are C-algebras
with T1 and T2. Then

(i) if A1 has the uncertain element U , then f (U) is the uncertain element of A2;
(ii) if a∈ B(A1), then f (a)∈ B(A2). The converse holds if f is one-one.

Now we prove the following.

Theorem 2.4. Let A be a C-algebra with T and x ∈ A, then the mapping αx: A→ Ax

defined by αx(s) = x∧ s for all s ∈ A is a homomorphism of A onto Ax with kernel θx and
hence A/θx ∼=Ax.

Proof. For s∈A, x∧ s≤ x and hence x∧ s∈Ax. Let s, t ∈A, then

αx(s∧ t)= x∧ s∧ t = x∧ s∧ x∧ t = αx(s)∧αx(t),

αx(s′)= x∧ s′ = x∧ (x′ ∨ s′)
(
by (ii) in the preliminaries

)

= x∧ (x∧ s)′ = (x∧ s)∗ = (αx(s)
)∗
.

(2.3)

Clearly, αx(s∨ t)= αx(s)∨αx(t) and αx(T)= a. Hence αx is a C-algebra homomorphism.
Now, for s ∈ Ax, we have αx(s) = s. Therefore αx is onto homomorphism. Hence by the
fundamental theorem of homomorphismA/Kerαx ∼= Ax and Ker αx = {(s, t)∈A×A/αx(s)
= αx(t)} = {(s, t)∈A×A/x∧ s= x∧ t} = θx. Thus A/θx ∼= Ax. �

3. Decompositions of A

If B is a Boolean algebra and a∈ B, then we know that B is isomorphic to (a]× [a). In this
section we prove similar decompositions for a C-algebra. If A is a C-algebra with T and
a ∈ B(A), then we prove that A is isomorphic to AaxAa′ and conversely. We also prove
that if a,b ∈ B(A) and a∧ b = F, then Aa is isomorphic to Ab if and only if there is an
automorphism on A that carries a to b. First we prove the following.
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Lemma 3.1. Let A be a C-algebra with T , a∈ B(A) and x, y ∈ A. Then

a∨ x = a∨ y, a′ ∨ x = a′ ∨ y⇐⇒ x = y. (3.1)

Proof. Let a∈ B(A) and x, y ∈A. Assume that a∨ x = a∨ y and a′ ∨ x = a′ ∨ y. Then

x = F ∨ x = (a∧ a′)∨ x = (a∨ x)∧ (a′ ∨ x)

= (a∨ y)∧ (a′ ∨ y)= (a∧ a′)∨ y = F ∨ y = y.
(3.2)

The converse is trivial �

Note that Lemma 3.1 fails if a /∈ B(A). For example, in the C-algebra C, we have U /∈
B(C),U ∨T =U ∨F =U ,and U ′ ∨T =U ′ ∨F =U , but T �= F.

Now we prove the following decomposition theorem.

Theorem 3.2. If A is a C-algebra with T and a∈ B(A), then A∼=Aa×Aa′ .

Proof. Define α : A→ Aa×Aa′ by

α(x)= (αa(x),αa′(x)
) ∀x ∈ A. (3.3)

Then, by Theorem 2.4, α is well defined and α is a homomorphism.
Now, α(x) = α(y) ⇒ a∧ x = a∧ y and a′ ∧ x = a′ ∧ y. Hence x = y (by the dual

of Lemma 3.1). Finally, we prove α is onto. Let (x, y)∈ Aa×Aa′ . Then x ≤ a and y ≤ a′.
So that a∧ x = x and a′ ∧ y = y.

Thus, a′ ∧ x = a′ ∧ a∧ x = F and a∧ y = a∧ a′ ∧ y = F.
Now,

x∨ y ∈A, α(x∨ y)= (αa(x∨ y),αa′(x∨ y)
)

= (a∧ (x∨ y),a′ ∧ (x∨ y)
)

= ((a∧ x)∨ (a∧ y),(a′ ∧ x)∨ (a′ ∧ y)
)

= (x∨F,F ∨ y)= (x, y).

(3.4)

Hence α is an isomorphism. �

Now we prove the converse of the above theorem in the following sense.

Theorem 3.3. Let A, A1, A2 be C-algebras with T such that A∼= A1×A2. Then there exists
an element a∈ B(A) such that

A1
∼= Aa, A2

∼=Aa′ . (3.5)
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Proof. Let φ : A→ A1×A2 be an isomorphism and a= φ−1(T1,F2) (when T1, T2 denote
the ∧-identities of A1, A2, resp.)

Now (T1,F2)∈ B(A1)×B(A2)= B(A1×A2) and hence a∈ B(A).
Define f : A1 → Aa by f (x1)= φ−1(x1,F2) for all x1 ∈ A1.
Now

a∧φ−1(x1,F2
)= φ−1(T1,F2

)∧φ−1(x1,F2
)

= φ−1(x1,F2
)

(since φ−1 is a homomorphism).
(3.6)

Therefore φ−1(x1,F2)∈Aa. Thus f is well defined.
It can be routinely verified that f preserves ∧, ∨ and that f is one-one.
Now we prove that f preserves the unary operation ′.
Let x1 ∈ A1, then

f
(
x′1
)= φ−1(x′1,F2

)= φ−1(T1∧ x′1,F2∧T2
)

= φ−1(T1,F2
)∧φ−1(x′1,T2

) (
since φ−1 is homomorphism

)

= a∧ (φ−1(x1,F2
))′ = a∧ f

(
x1
)′ = ( f (x1

))∗
.

(3.7)

Finally, we prove f is onto.
Let x ∈Aa. Then φ(x)= (x1,x2) for some x1 ∈A1, x2 ∈ A2.
Now

(
x1,x2

)= φ(x)= φ(a∧ x)= φ(a)∧φ(x)

= (T1,F2
)∧ (x1,x2

)= (x1,F2
)
.

(3.8)

Thus x2 = F2 and f (x1)= φ−1(x1,F2)= φ−1(x1,x2)= x.
Hence f is onto. Thus A1

∼= Aa. Similarly A2
∼=Aa′ . �

Finally, for a,b ∈ B(A) with a∧ b = F, we derive a necessary and sufficient condition
for Aa to be isomorphic to Ab. First we prove the following lemmas.

Lemma 3.4. If A is a C-algebra with T , a∈ B(A), x ∈ Aa, and y ∈Aa′ , then x∨ y = y∨ x.

Proof. Let x ∈Aa, y ∈ Aa′ . Then x ≤ a and y ≤ a′. Hence a∧ y = F = a′ ∧ x. Now

a∧ (x∨ y)= (a∧ x)∨ (a∧ y)= x∨F = x,

a∧ (y∨ x)= (a∧ y)∨ (a∧ x)= F ∨ x = x.
(3.9)
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Therefore, a∧ (x∨ y)= a∧ (y∨ x). Similarly a′ ∧ (x∨ y)= a′ ∧ (y∨ x).
By the dual of Lemma 3.1,

x∨ y = y∨ x. (3.10)

�

Lemma 3.5. Let A be a C-algebra with T . Then, for a,b ∈ B(A), a∧ b ∈ B(Aa).

Proof. Clearly a∧ b≤ a. Now

(a∧ b)∨ (a∧ b)∗ = (a∧ b)∨ (a∧ (a∧ b)′
)

= (a∧ b)∨ [a∧ (a′ ∨ b′)
]= (a∧ b)∨ (a∧ b′)

= a∧ (b∨ b′)= a∧T = a.

(3.11)

Hence, a∧ b∈ B(Aa). �

Now, we prove the theorem.

Theorem 3.6. Let A be a C-algebra with T and a,b ∈ B(A) such that a∧ b = F. Then Aa

is isomorphic to Ab if and only if there exists an isomorphism α : A→ A such that α(a)= b.

Proof. Let a,b ∈ B(A) with a∧ b= F. Let φ : Aa→ Ab be an isomorphism.
Now a′ ∧ b = (a′ ∧ b)∨ F = (a′ ∧ b)∨ (a∧ b) = (a′ ∨ a)∧ b = b because B(A) is a

Boolean algebra. So that b ∈Aa′ and b∗ = a′ ∧ b′. Similarly, b′ ∧ a= a. Now by Theorems
2.2, 3.2, and Lemma 3.5, we have

(i) A∼= Aa×Aa′ ∼=Aa×Aa′∧b×A(a′∧b)∗ =Aa×Ab×Aa′∧b′

under the isomorphism x
β�→ (a∧ x, b∧ x, (a′ ∧ b′)∧ x);

(ii) A∼= Ab×Ab′ ∼= Ab×Ab′∧a×A(b′∧a)∗ ∼= Ab×Aa×Aa′∧b′

under the isomorphism x
γ�→ (b∧ x, a∧ x, (a′ ∧ b′)∧ x);

(iii) Aa× Ab×Aa′∧b′ ∼= Ab×Aa×Aa′∧b′

under the isomorphism (x, y,z)
δ�→ (φ(x),φ−1(y),z).

Now define α : A→ A by α= γ−1 ◦ δ ◦β . Then α is an isomorphism of A onto A and

α(a)= (γ−1 ◦ δ ◦β)(a)= γ−1(δ(a,F,F)
)

(since b∧ a= F = a∧ a′)

= γ−1(b,F,F)
(
since φ (a)= b, φ(F)= F

)

= b
(
since γ(b)= (b,F,F)

)
.

(3.12)

Hence α is an isomorphism of A such that α(a)= b.
Conversely, suppose that α : A→ A is an isomorphism such that α(a)= b.
Let λ be the restriction of α to Aa. Now we prove that λ is an isomorphism of Aa onto

Ab. For x ∈Aa,

b∧ λ(x)= b∧α(x)= α(a)∧α(x)= α(a∧ x)= α(x)= λ(x). (3.13)
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So that λ(x) ∈ Ab. Hence λ is well defined. Clearly λ is a homomorphism and one-one.
Let x ∈ Ab. Since α is onto, there exists y ∈ A such that α(y) = x. Now a∧ y ∈ Aa and
λ(a∧ y)= α(a∧ y)= α(a)∧α(y)= b∧ x = x (since x ≤ b).

Hence λ is an isomorphism of Aa onto Ab. �
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