ON WEIGHTED INEQUALITIES FOR CERTAIN FRACTIONAL INTEGRAL OPERATORS

R. K. RAINA

Received 31 December 2005; Revised 8 May 2006; Accepted 9 May 2006

This paper considers the modified fractional integral operators involving the Gauss hypergeometric function and obtains weighted inequalities for these operators. Multidimensional fractional integral operators involving the H -function are also introduced.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and preliminaries

Tuan and Saigo [7] introduced the multidimensional modified fractional integrals of or$\operatorname{der} \alpha(\operatorname{Re}(\alpha)>0)$ by

$$
\begin{align*}
& X_{+; n}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha+1)} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{\mathbf{n}}}\left[\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}-1\right]_{+}^{\alpha} f(t) d t, \\
& X_{-; n}^{\alpha} f(x)=\frac{(-1)^{n}}{\Gamma(\alpha+1)} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{\mathbf{n}}}\left[1-\max \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right]_{+}^{\alpha} f(t) d t, \tag{1.1}
\end{align*}
$$

where $\mathbb{R}_{+}^{\mathbf{n}}=\left\{\left(t_{1}, \ldots, t_{n}\right) \mid t_{i}>0(i=1, \ldots, n)\right\}, \varphi_{+}(x)$ is a real-valued function defined in terms of the function $\varphi(x)$ by

$$
\varphi_{+}(x)= \begin{cases}\varphi(x), & \varphi(x)>0 \tag{1.2}\\ 0, & \varphi(x) \leq 0\end{cases}
$$

and $\mathbf{D}^{\mathbf{n}}$ denotes the derivative operator $\partial^{n} / \partial x_{1}, \ldots, \partial x_{n}$.
The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville and Weyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function ${ }_{2} F_{1}(\alpha, \beta ; \gamma ; x)$, the following generalizations of the multidimensional modified integral operators (1.1) of order $\alpha(\operatorname{Re}(\alpha)>0)$
were studied in [6]:

$$
\begin{align*}
S_{+; n}^{\alpha, \beta, \gamma} f(x)= & \frac{1}{\Gamma(\alpha+1)} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{n}}\left[\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}-1\right]_{+}^{\alpha} \tag{1.3}\\
& \cdot \cdot_{2} F_{1}\left(\alpha+\beta, \alpha+\eta ; 1+\alpha ; 1-\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right) f(t) d t, \\
S_{-; n}^{\alpha, \beta, \gamma} f(x)= & \frac{(-1)^{n}}{\Gamma(\alpha+1)} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{n}}\left[1-\max \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right]_{+}^{\alpha} \tag{1.4}\\
& \cdot 2 F_{1}\left(\alpha+\beta,-\eta ; 1+\alpha ; 1-\max \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right) f(t) d t .
\end{align*}
$$

For $\beta=-\alpha$, the operators (1.3) and (1.4) reduce to the modified integral operators defined in (1.1), respectively. In [8], the integral operators $X_{+; n}^{\alpha} f(x)$ and $X_{-; n}^{\alpha} f(x)$ defined on the space $\mathcal{M}_{\gamma}\left(\mathbb{R}_{+}^{\mathbf{n}}\right)$ are shown to satisfy some $L_{p}-L_{q}$ weighted inequalities. The space $\mathcal{M}_{\gamma}\left(\mathbb{R}_{+}^{\mathbf{n}}\right)$ represents the space of functions f which are defined on $\mathbb{R}_{+}^{\mathbf{n}}$, and are entire functions of exponential type (see [7]). The present paper is devoted to finding inequalities for the generalized multidimensional modified integral operators (1.3) and (1.4) by making use of the inequality stated in [8] (which was established with the aid of Pitt's inequality). Multidimensional operators have also been studied in [3, 4].

2. Inequalities for operators (1.3) and (1.4)

If $(\mathscr{K} f)(x)$ denotes the integral operator

$$
\begin{equation*}
(\mathscr{K} f)(x)=\int_{\mathbb{R}_{+}^{\boldsymbol{n}}} k(x y) f(y) d y, \tag{2.1}
\end{equation*}
$$

then following [8], we have

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} k(x y) f(y) d y=\frac{1}{(2 \pi i)^{n}} \int_{(1 / 2)} k^{*}(s) f^{*}(1-s) x^{-s} d s \tag{2.2}
\end{equation*}
$$

where the integral over (1/2) stands for the multiple integral

$$
\begin{equation*}
\int_{(1 / 2)}=\int_{1 / 2-i \infty}^{1 / 2+i \infty} \cdots \int_{1 / 2-i \infty}^{1 / 2+i \infty} \tag{2.3}
\end{equation*}
$$

and $k^{*}(s)$ and $f^{*}(1-s)$ are the Mellin transforms of the functions $k(y)$ and $f(y)$, respectively. It is proved in [8] that if

$$
\begin{equation*}
\left|k^{*}(s)\right| \leq C|s|^{-\alpha}\left(s \in\left(\frac{1}{2}\right), \alpha \geq 0\right) \tag{2.4}
\end{equation*}
$$

then there holds the inequality

$$
\begin{equation*}
\left\||\log y-t|^{-b} y^{1 / 2-1 / r}(\mathscr{K} f)(y)\right\|_{L_{r}\left(\mathbb{R}_{+}^{n}\right)} \leq C\left\||\log y-t|^{d} y^{1 / 2-1 / q} f(y)\right\|_{L_{q}\left(\mathbb{R}^{n}\right)}, \tag{2.5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\left\||\log y-t|^{-b} y^{1 / 2-1 / r}(\mathscr{K} f)(y)\right\|_{L_{r}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)} \leq C\left\||\log y-t|^{a-b+n(1 / r-1 / q)} y^{1 / 2-1 / q} f(y)\right\|_{L_{q}\left(\mathbb{R}^{\mathrm{n}}\right)} \tag{2.6}
\end{equation*}
$$

for all $t \in \mathbb{R}_{+}^{\mathrm{n}}$, provided that

$$
\left[\begin{array}{c}
\max \left\{\frac{2}{r}, \frac{\alpha}{n}+\frac{1}{r}\right\}-1 \leq \frac{b}{n} \leq \min \left\{0, \frac{\alpha}{n}-\frac{1}{q}, \frac{\alpha}{n}+\frac{1}{q}-1\right\}+\frac{1}{r}, \tag{2.7}\\
\max \left\{0, n\left(\frac{1}{r}+\frac{1}{q}-1\right)\right\} \leq \alpha \leq n, 1<q \leq r<\infty
\end{array}\right]
$$

In the paper [6], it was established that if

$$
\begin{equation*}
\operatorname{Re}(\alpha)>0, \quad \operatorname{Re}\left(h_{j}\right)<\frac{1}{2} \quad(j=1, \ldots, n), \quad \sum_{j=1}^{n} \operatorname{Re}\left(h_{j}\right)<\frac{n}{2}+\min \{\operatorname{Re}(\beta), \operatorname{Re}(\eta)\} \tag{2.8}
\end{equation*}
$$

then the operator $x^{h} S_{+; n}^{\alpha, \beta, \gamma} x^{-h} f(x)$ is a homeomorphism of the space $\mathcal{M}_{1 / 2}\left(\mathbb{R}_{+}^{\mathbf{n}}\right)$ onto itself, and

$$
\begin{align*}
& x^{h} S_{+; n}^{\alpha, \beta, \gamma} x^{-h} f(x) \\
& \quad=\frac{1}{(2 \pi i)^{n}} \int_{(1 / 2)} \frac{\Gamma\left(\beta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right) \Gamma\left(\eta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right)}{\Gamma\left(n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right) \Gamma\left(\alpha+\beta+\eta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right)} f^{*}(s) x^{-s} d s . \tag{2.9}
\end{align*}
$$

We note that

$$
\begin{equation*}
\frac{\Gamma\left(\beta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right) \Gamma\left(\eta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right)}{\Gamma\left(n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right) \Gamma\left(\alpha+\beta+\eta+n-\sum_{j=1}^{n} h_{j}-\sum_{j=1}^{n} s_{j}\right)}=O\left(|s|^{-\alpha}\right) \tag{2.10}
\end{equation*}
$$

so we can apply the inequality (2.6) to the multidimensional operator defined by (2.9), which leads to

$$
\begin{align*}
& \left\||\log y-t|^{-b} y^{1 / 2-1 / r+h} S_{+; n}^{\alpha, \beta, \gamma} y^{-h} f(y)\right\|_{L_{r}\left(\mathbb{R}_{+}^{\mathbf{n}}\right)} \tag{2.11}\\
& \quad \leq C| | \log y-\left.t\right|^{a-b+n(1 / r-1 / q)} y^{1 / 2-1 / q} f(y) \|_{L_{q}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)}
\end{align*}
$$

valid for all $t \in \mathbb{R}_{+}^{\mathbf{n}}$, provided that the constraints (2.7) and (2.8) are satisfied. On the other hand, (see [6]) if

$$
\begin{equation*}
\operatorname{Re}(\alpha)>0, \quad \operatorname{Re}\left(h_{j}\right)>\frac{1}{2} \quad(j=1, \ldots, n), \quad \sum_{j=1}^{n} \operatorname{Re}\left(h_{j}\right)>\frac{n}{2}+\operatorname{Re}(\beta-\eta)-1 \tag{2.12}
\end{equation*}
$$

then the operator $x^{h} S_{-; n}^{\alpha, \beta, \gamma} x^{-h} f(x)$ is a homeomorphism of the space $\mathcal{M}_{1 / 2}\left(\mathbb{R}_{+}^{\mathbf{n}}\right)$ onto itself, and we obtain

$$
\begin{align*}
& x^{h} S_{-; n}^{\alpha, \beta, \gamma} x^{-h} f(x) \\
& =\frac{1}{(2 \pi i)^{n}} \int_{(1 / 2)} \frac{\Gamma\left(1-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right) \Gamma\left(1-\beta+\eta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right)}{\Gamma\left(1-\beta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right) \Gamma\left(1+\alpha+\eta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right)} \\
& \quad \times f^{*}(s) x^{-s} d s . \tag{2.13}
\end{align*}
$$

By noting the estimate that

$$
\begin{equation*}
\frac{\Gamma\left(1-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right) \Gamma\left(1-\beta+\eta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right)}{\Gamma\left(1-\beta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right) \Gamma\left(1+\alpha+\eta-n+\sum_{j=1}^{n} h_{j}+\sum_{j=1}^{n} s_{j}\right)}=O\left(|s|^{-\alpha}\right), \tag{2.14}
\end{equation*}
$$

we again apply the inequality (2.6) to the multidimensional operator defined by (2.13) to get

$$
\begin{align*}
& \left\||\log y-t|^{-b} y^{1 / 2-1 / r+h} S_{-; n}^{\alpha, \beta, \gamma} y^{-h} f(y)\right\|_{L_{r}\left(\mathbb{R}_{+}^{n}\right)} \tag{2.15}\\
& \quad \leq C\left\|| | \log y-\left.t\right|^{a-b+n(1 / r-1 / q)} y^{1 / 2-1 / q} f(y)\right\|_{L_{q}\left(\mathbb{R}_{+}^{n}\right)},
\end{align*}
$$

valid for all $t \in \mathbb{R}_{+}^{\mathbf{n}}$, provided that the constraints (2.7) and (2.12) are satisfied.

3. Classes of multidimensional operators

We introduce the following classes of multidimensional modified fractional integral operators involving the well-known H -function [2, Section 8.3] (see also [1, page 343]) defined by

$$
\begin{align*}
& =\mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{\mathbf{n}}} H_{P, Q}^{M, N}\left[\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\} \left\lvert\, \begin{array}{c}
\left(\begin{array}{c}
\left(a_{P}, \alpha_{P}\right) \\
\left(b_{Q}, \beta_{Q}\right)
\end{array}\right]
\end{array}\right.\right] f(t) d t, \tag{3.1}
\end{align*}
$$

$$
\begin{align*}
& =(-1)^{n} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{n}} H_{P, Q}^{M, N}\left[\max \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\} \left\lvert\, \begin{array}{l}
\left(\begin{array}{l}
\left(a_{P}, \alpha_{p}\right) \\
\left(b_{Q}, \beta_{Q}\right)
\end{array}\right]
\end{array}\right.\right] f(t) d t, \tag{3.2}
\end{align*}
$$

where we assume that the parameters of the H -function involved in (3.1) and (3.2) satisfy the existence conditions as given in [2].

The special cases of the operators of interest in this paper are the operators which emerge from (3.1) and (3.2) in the case when $N=0, P=M, Q=M$, and the parameters $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{m}=1$, and $\beta_{1}=\beta_{2}=\cdots=\beta_{m}=1$. Thus, we have the following multidimensional fractional integral operators (defined in terms of Meijer's G-function)
(see [6]):

$$
\begin{align*}
\left(\mathbf{G}_{+; \mathbf{n}}^{\left(\mathbf{a}_{\mathbf{m}}\right) ;\left(\mathbf{b}_{\mathbf{m}}\right)} \mathbf{f}\right)(x) & =\left(\mathbf{G}_{+; \mathbf{n}}^{\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{m}}\right) ;\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathbf{m}}\right)} \mathbf{f}\right)(x) \\
& =\mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{n}} G_{m, m}^{m, 0}\left[\left.\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right|_{\left(b_{m}\right)} ^{\left(a_{m}\right)}\right] f(t) d t, \tag{3.3}\\
\left(\mathbf{G}_{-; \mathbf{n}}^{\left(a_{\mathbf{n}}\right) ;\left(\mathbf{b}_{\mathbf{m}}\right)} \mathbf{f}\right)(x) & =\left(\mathbf{G}_{+; \mathbf{n}}^{\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{m}}\right) ;\left(\mathbf{b}_{\mathbf{l}}, \ldots, \mathbf{b}_{\mathbf{m}}\right)} \mathbf{f}\right)(x) \\
& =(-1)^{n} \mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{\mathbf{n}}} G_{m, m}^{m, 0}\left[\left.\max \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right|_{\left(b_{m}\right)} ^{\left(a_{m}\right)}\right] f(t) d t .
\end{align*}
$$

By setting the parameters

$$
\begin{equation*}
m=2, \quad a_{1}=1-\beta, \quad a_{2}=1-\eta, \quad b_{1}=1-\alpha-\beta-\eta, \quad b_{2}=0 \tag{3.4}
\end{equation*}
$$

in (3.1), and

$$
\begin{equation*}
m=2, \quad a_{1}=1-\beta, \quad a_{2}=1+\alpha+\eta, \quad b_{1}=1-\beta+\eta, \quad b_{2}=0, \tag{3.5}
\end{equation*}
$$

in (3.2), and noting the relation (see [1, equation (1.1.18), page 18])

$$
\begin{align*}
G_{2,2}^{2,0}\left[\left.\sigma\right|_{b_{1}, b_{2}} ^{a_{1}, a_{2}}\right]= & \frac{\sigma^{b_{2}}(1-\sigma)^{a_{1}+a_{2}-b_{1}-b_{2}-1}}{\Gamma\left(a_{1}+a_{2}-b_{1}-b_{2}\right)} \tag{3.6}\\
& \cdot{ }_{2} F_{1}\left(a_{2}-b_{1}, a_{1}-b_{1} ; a_{1}+a_{2}-b_{1}-b_{2} ; 1-\sigma\right) \quad(\sigma<1)
\end{align*}
$$

we observe the following relationships:

$$
\begin{gather*}
\left(\mathbf{G}_{+; \mathbf{n}}^{(1-\beta, 1-\eta) ;(1-\alpha-\beta-\eta, \mathbf{0})} \mathbf{f}\right)(x)=(-1)^{\alpha} S_{+; n}^{\alpha, \beta, \gamma} f(x), \\
\left(\mathbf{G}_{-; \mathbf{n}}^{(1-\beta, 1+\alpha+\eta) ;(\mathbf{1}-\beta+\eta, \mathbf{0})} \mathbf{f}\right)(x)=S_{-; n}^{\alpha, \beta, \gamma} f(x), \tag{3.7}
\end{gather*}
$$

in terms of the multidimensional modified fractional integral operators (1.3) and (1.4).
We state below two useful lemmas concerning the multidimensional Mellin transform of the functions $f\left(\max \left[x_{1}, \ldots, x_{n}\right]\right)$ and $f\left(\min \left[x_{1}, \ldots, x_{n}\right]\right)$ (see $[3,6]$).

Lemma 3.1. Let $\operatorname{Re}\left(s_{j}\right)>0(j=1, \ldots, n)$ and let $\tau^{s \cdot 1-1} f(\tau) \in L_{1}\left(\mathbb{R}_{+}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{\mathfrak{n}}} x^{s-1} f\left(\max \left[x_{1}, \ldots, x_{n}\right]\right) d x=\frac{|s|}{s^{1}} f^{*}(|s|), \tag{3.8}
\end{equation*}
$$

where s^{1} denotes the product s_{1}, \ldots, s_{n}, and $|s|=s_{1}+\cdots+s_{n}$.
Lemma 3.2. Let $\operatorname{Re}\left(s_{j}\right)<0(j=1, \ldots, n)$ and let $\tau^{s \cdot 1-1} f(\tau) \in L_{1}\left(\mathbb{R}_{+}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} x^{s-1} f\left(\min \left[x_{1}, \ldots, x_{n}\right]\right) d x=(-1)^{n-1} \frac{|s|}{s^{1}} f^{*}(|s|) . \tag{3.9}
\end{equation*}
$$

Making use of (3.1), we have

$$
\begin{align*}
& \left(\mathbf{H}_{\mathbf{P}, \mathbf{Q},+; \mathbf{n}}^{\mathbf{M}, \mathbf{N}} \left\lvert\, \begin{array}{c}
\left(\mathbf{b}_{\mathbf{Q}}, \beta_{Q}\right)
\end{array} \mathbf{x}^{-\mathbf{s}, \alpha_{\mathrm{P}}}\right.\right)(x)=\mathbf{D}^{\mathbf{n}} \int_{\mathbb{R}_{+}^{\mathbf{n}}} H_{P, \mathrm{Q}}^{M, N}\left[\left.\min \left\{\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right\}\right|_{\left(b_{Q}, \beta_{Q}\right)} ^{\left(a_{P}, \alpha_{P}\right)}\right] t^{-s} d t \\
& =\mathbf{D}^{\mathbf{n}} x^{1-s} \int_{\mathbb{R}^{n}} t^{s-2} H_{P, Q}^{M, N}\left[\left.\min \left\{t_{1}, \ldots, t_{n}\right\}\right|_{\left(b_{Q}, \beta_{Q}\right)} ^{\left(a_{P}, \alpha_{P}\right)}\right] d t . \tag{3.10}
\end{align*}
$$

Applying now (3.9) of Lemma 3.2, and the following result giving the Mellin transform of the H -function [1, equation (E.20), page 348], namely,

$$
\begin{align*}
\left\{H_{P, Q}^{M, N}\left[\left.x\right|_{\left(b_{Q}, \beta_{Q}\right)} ^{\left(a_{P}, \alpha_{P}\right)}\right]\right\}^{*}(s)= & \frac{\prod_{j=1}^{M} \Gamma\left(b_{j}+\beta_{j} s\right) \prod_{i=1}^{N} \Gamma\left(1-a_{i}-\alpha_{i} s\right)}{\prod_{i=N+1}^{P} \Gamma\left(a_{i}+\alpha_{i} s\right) \prod_{j=M+1}^{Q} \Gamma\left(1-b_{j}-\beta_{j} s\right)} \\
& \times\left(-\min _{1 \leq j \leq M}\left[\frac{\operatorname{Re}\left(b_{j}\right)}{\beta_{j}}\right]<\operatorname{Re}(s)<\min _{1 \leq i \leq N}\left[\frac{1-\operatorname{Re}\left(a_{i}\right)}{\alpha_{i}}\right]\right), \tag{3.11}
\end{align*}
$$

we obtain

$$
\begin{align*}
& \left(\left.\mathbf{H}_{\mathbf{P}, \mathbf{Q},+; \mathbf{n}}^{\mathrm{M}, \mathbf{N}}\right|_{\left(\mathbf{b}_{\mathbf{Q}}, \beta_{\mathbf{Q}}\right)} ^{\left(\mathrm{ap}_{\mathrm{P}}, \alpha_{\mathrm{P}}\right.} \mathbf{x}^{-\mathbf{s}}\right)(x) \\
& =\frac{\Gamma(1+n-|s|) \prod_{j=1}^{M} \Gamma\left(b_{j}+\beta_{j}(|s|-n)\right) \prod_{i=1}^{N} \Gamma\left(1-a_{i}-\alpha_{i}(|s|-n)\right)}{\Gamma(n-|s|) \prod_{i=N+1}^{P} \Gamma\left(a_{i}+\alpha_{i}(|s|-n)\right) \prod_{j=M+1}^{Q} \Gamma\left(1-b_{j}-\beta_{j}(|s|-n)\right)} x^{-s} . \tag{3.12}
\end{align*}
$$

Similarly, by using the multidimensional operator (3.2), we obtain

$$
\begin{align*}
& \left(\mathbf{H}_{\mathbf{P}, \mathbf{Q},-; \mathbf{n}}^{\mathbf{M}, \mathbf{N}} \mid\right. \\
& \left.\quad \begin{array}{l}
\left(\begin{array}{l}
\left(\mathbf{a}_{\mathbf{P}}, \alpha_{\mathbf{P}}\right)
\end{array} \mathbf{\beta}_{\mathbf{Q}}\right) \\
\mathbf{x}^{-\mathbf{s}}
\end{array}\right)(x) \tag{3.13}\\
& \quad=\frac{(-1)^{n} \Gamma(1-n+|s|) \prod_{j=1}^{M} \Gamma\left(b_{j}+\beta_{j}(|s|-n)\right) \prod_{i=1}^{N} \Gamma\left(1-a_{i}-\alpha_{i}(|s|-n)\right)}{\Gamma(-n+|s|) \prod_{i=N+1}^{P} \Gamma\left(a_{i}+\alpha_{i}(|s|-n)\right) \prod_{j=M+1}^{Q} \Gamma\left(1-b_{j}-\beta_{j}(|s|-n)\right)} x^{-s} .
\end{align*}
$$

The result (3.13) on specializing the parameters in accordance with (3.5) yields the formula [7, equation (3.6), page 148] involving the multidimensional modified integral operator (1.4). Similarly, we can deduce a result from (3.12) which involves the multidimensional modified integral operator (1.3).

Acknowledgments

The author is thankful to the referees for suggestions. The present investigation was supported by All India Council for Technical Education (AICTE), Government of India, New Delhi.

References

[1] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics Series, vol. 301, Longman Scientific \& Technical, Harlow, 1994.
[2] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 3, More Special Functions, Gordon and Breach, New York, 1990.
[3] R. K. Raina, A note on multidimensional modified fractional calculus operators, Proceedings of the Indian Academy of Sciences. Mathematical Sciences 106 (1996), no. 2, 155-162.
[4] R. K. Raina and P. Kr. Chhajed, A note on multidimensional fractional calculus operators involving Gauss hypergeometric functions, Kyungpook Mathematical Journal 45 (2005), no. 1, 1-11.
[5] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[6] V. K. Tuan, R. K. Raina, and M. Saigo, Multidimensional fractional calculus operators, International Journal of Mathematical and Statistical Sciences 5 (1996), no. 2, 141-160.
[7] V. K. Tuan and M. Saigo, Multidimensional modified fractional calculus operators involving the Gauss hypergeometric function, Mathematische Nachrichten 161 (1993), 253-270.
[8] \qquad , Modified fractional integral operators in L_{p} space with power-logarithmic weight, Mathematica Japonica 49 (1999), no. 1, 145-150.
R. K. Raina: Department of Mathematics, College of Technology and Engineering, MP University of Agriculture and Technology, Udaipur 313 001, Rajasthan, India E-mail address: rainark_7@hotmail.com

