EXISTENCE OF BLOWUP SOLUTIONS FOR NONLINEAR PROBLEMS WITH A GRADIENT TERM

FATEN TOUMI

Received 29 July 2005; Revised 7 March 2006; Accepted 25 April 2006

We prove the existence of positive explosive solutions for the equation $\Delta u + \lambda(|x|) |\nabla u(x)| = \varphi(x, u(x))$ in the whole space \mathbb{R}^N $(N \ge 3)$, where $\lambda : [0, \infty) \to [0, \infty)$ is a continuous function and $\varphi : \mathbb{R}^N \times [0, \infty) \to [0, \infty)$ is required to satisfy some hypotheses detailed below. More precisely, we will give a necessary and sufficient condition for the existence of a positive solution that blows up at infinity.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and the main result

Semilinear elliptic problems involving gradient term with boundary blowup interested many authors. Namely, Bandle and Giarrusso [1] developed existence and asymptotic behaviour results for large solutions of

$$\Delta u + \left| \nabla u(x) \right|^a = f(u) \tag{1.1}$$

in a bounded domain.

In the case $f(u) = p(x)u^{\gamma}$, a > 0, and $\gamma > \max(1, a)$, Lair and Wood [7] dealt with the above equation in bounded domain and the whole space. They proved the existence of entire large solution under the condition $\int_0^\infty r \max_{|x|=r} p(x)dr < \infty$ when the domain is \mathbb{R}^N .

Recall that *u* is a large solution on a bounded domain Ω in \mathbb{R}^N , if $u(x) \to +\infty$ as $\operatorname{dist}(x,\partial\Omega) \to 0$, and *u* is called an entire large solution if *u* is defined on \mathbb{R}^N and $\lim_{|x|\to+\infty} u(x) = +\infty$.

Ghergu et al. [3] considered more general equation

$$\Delta u + q(x) \left| \nabla u(x) \right|^a = p(x) f(u), \tag{1.2}$$

where $0 \le a \le 2$, *p* and *q* are Hölder continuous functions on $(0, \infty)$. We note that the Keller-Osserman condition on *f* (see [6, 8]) remains the key condition for the existence for their works.

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 80605, Pages 1–11 DOI 10.1155/IJMMS/2006/80605

In the present paper, we are interested in the study of nonlinear elliptic problems with boundary blowup, of the type

$$\Delta u + \lambda(|x|) |\nabla u(x)| = \varphi(x, u(x)), \quad \text{in } \mathbb{R}^N,$$
$$u \ge 0, \qquad u \ne 0, \qquad (P)$$
$$\lim_{|x| \to +\infty} u(x) = +\infty,$$

where $\lambda : [0, \infty) \to [0, \infty)$ is a continuous function and φ satisfies the following hypotheses.

- $(H_1) \varphi : \mathbb{R}^N \times [0, \infty) \to [0, \infty)$ is measurable, continuous with respect to the second variable.
- (H₂) There exist nonnegative functions p, q, and f satisfying for each $x \in \mathbb{R}^N$ and $t \ge 0$,

$$p(|x|)f(t) \le \varphi(x,t) \le q(|x|)f(t), \tag{1.3}$$

where f is required to satisfy.

(H₃) $f \in \mathcal{C}^{1}([0,\infty))$ such that $f' \ge 0, f(0) = 0, f > 0$ on $(0,\infty),$

$$\int_{1}^{\infty} \frac{1}{f(\zeta)} d\zeta = +\infty, \qquad (1.4)$$

and *p*, *q* are allowed to verify.

(H₄) $p,q:(0,\infty) \rightarrow [0,\infty)$ are continuous functions satisfying

$$\int_{0}^{1} s(1-s)q(s)ds < +\infty.$$
 (1.5)

Clearly, we see by (1.3) that the function p also satisfies (1.5). In the sequel, we put

$$h(r) = \int_0^r \frac{1}{K(t)} \left(\int_0^t K(s)q(s)ds \right) dt, \quad \text{for } \mathbf{r} \in [0,\infty),$$
(1.6)

where $K(t) := t^{N-1} \exp(\int_0^t \lambda(s) ds)$, for each t > 0, and we define the function F on $[1, \infty)$ by

$$F(t) = \int_{1}^{t} \frac{1}{f(\zeta)} d\zeta.$$
(1.7)

From the hypotheses adopted on f, we note that the function F is a bijection from $[1, \infty)$ to $[0, \infty)$.

Our main result is the following.

THEOREM 1.1. Assume that $(H_1)-(H_4)$ hold. Moreover, assume that

$$\int_{0}^{\infty} \frac{1}{K(t)} \left(\int_{0}^{t} K(s)(q-p)(s)f \circ F^{-1}(2h(s))ds \right) dt < +\infty.$$
(1.8)

Then problem (P) has a positive entire solution if and only if

$$\int_{1}^{\infty} \frac{1}{K(t)} \left(\int_{0}^{t} K(s) p(s) ds \right) dt = +\infty.$$
(1.9)

Example 1.2. Let $\alpha \ge 0$ and $\beta \in [0,1]$. Assume that for $t \ge 0$, $f(t) = (1+t)^{\beta} \ln(1+t)$ and $p(t) = 1/t^{\alpha}$. Then the following problem:

$$\Delta u + \frac{1}{1+|x|} |\nabla u(x)| = \frac{(1+u(x))^{\beta}}{|x|^{\alpha}} \ln(1+u(x)), \quad \text{in } \mathbb{R}^{N},$$
$$u \ge 0, \qquad u \ne 0,$$
$$\lim_{|x| \to \infty} u(x) = +\infty$$
(1.10)

has an explosive solution if and only if $0 \le \alpha < 2$.

Motivation for the present contribution stems from the one of Ghergu and Rădulescu [4] who considered the following problem:

$$\Delta u + |\nabla u(x)| = p(x)f(u), \quad \text{in } \Omega,$$

$$u \ge 0, \quad \text{in } \Omega,$$

(1.11)

where Ω is either a smooth bounded domain or the whole space and f is a nondecreasing function satisfying $f \in \mathscr{C}_{loc}^{0,\alpha}(0,\infty)$, f(0) = 0, f > 0 on $(0,\infty)$, and $\Lambda = \sup_{x \ge 1} f(x)/x < \infty$. The authors studied the existence and nonexistence of explosive solutions under the assumption that

$$\int_0^\infty r \left(\max_{|x|=r} p(x) - \min_{|x|=r} p(x) \right) \Psi(r) dr < +\infty, \tag{1.12}$$

where $\Psi(r) = \exp(\Lambda/(N-2)\int_0^\infty r \min_{|x|=r} p(x)dr)$. More precisely, they showed in the case of $\Omega = \mathbb{R}^N$ that the above problem has positive solution if and only if

$$\int_{1}^{\infty} e^{-t} t^{1-N} \left(\int_{0}^{t} e^{s} s^{N-1} \min_{|x|=s} p(x) ds \right) dt = +\infty.$$
(1.13)

We remark that the condition (1.4) adopted on *f* includes the sublinear case, $\sup_{x\geq 1} f(x)/x < \infty$, studied by Ghergu and Rădulescu [4].

The outline of the paper is as follows. In Section 2, we will give some auxiliary results. The comparison result obtained in Section 2, Theorem 2.6, is used in Section 3 to prove the main result of this work.

2. Auxiliary results

In this section, we suppose that (A, p) satisfies

(H₅) *A* is a nonnegative continuous function on $[0, \infty)$, positive and differentiable on $(0, \infty)$, and $p: (0, \infty) \rightarrow [0, \infty)$ is continuous function satisfying

$$\int_{0}^{1} A(s)p(s)ds < +\infty, \qquad \int_{0}^{1} \frac{1}{A(t)} \left(\int_{0}^{t} A(s)p(s)ds \right) dt < +\infty.$$
(2.1)

For any given continuous function ψ on $(0, \infty)$, we put

$$h_{\psi}(r) = \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s)\psi(s)ds \right) dt, \quad \text{for } \mathbf{r} \in [0,\infty).$$
(2.2)

We consider the following problem:

$$\frac{1}{A}(Au')' = p(t)f(u), \quad \text{in } (0,\infty),$$

$$Au'(0) := \lim_{t \to 0^+} A(t)u'(t) = 0, \qquad u(0) = \alpha \ge 1.$$
(2.3)

We state the following.

THEOREM 2.1. Under the hypotheses (H_3) and (H_5) , the problem (2.3) has a positive solution $u \in \mathcal{C}([0,\infty)) \cap \mathcal{C}^1((0,\infty))$. Further, on $[0,\infty)$,

$$\alpha + f(\alpha)h_p(r) \le u(r) \le F^{-1}(F(\alpha) + h_p(r)).$$
(2.4)

Proof. Let $(u_k)_{k\geq 0}$ be the sequence of functions defined on $[0,\infty)$ by $u_0(r) = \alpha$ and

$$u_{k+1}(r) = \alpha + \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s) p(s) f(u_k(s)) ds \right) dt, \quad \forall k \in \mathbb{N}.$$

$$(2.5)$$

Clearly, we have for each $k \in \mathbb{N}$, $t \to u_k(t)$ is a nondecreasing function on $[0, +\infty)$. By induction, we prove that $(u_k)_{k\geq 0}$ is a nondecreasing sequence.

Since the function *f* is nondecreasing, we obtain by (2.5) that for each $k \ge 0$,

$$u'_{k}(t) \le f(u_{k}(t)) \frac{1}{A(t)} \int_{0}^{t} A(s) p(s) ds, \quad t \ge 0.$$
 (2.6)

That is,

$$\frac{u'_k(t)}{f(u_k(t))} \le \frac{1}{A(t)} \int_0^t A(s) p(s) ds, \quad t \ge 0.$$
(2.7)

Then

$$\int_{0}^{r} \frac{u'_{k}(t)}{f(u_{k}(t))} dt \leq \int_{0}^{r} \frac{1}{A(t)} \left(\int_{0}^{t} A(s) p(s) ds \right) dt, \quad r \geq 0.$$
(2.8)

It follows that for each $r \ge 0$,

$$F(u_k(r)) - F(\alpha) = \int_{\alpha}^{u_k(r)} \frac{1}{f(\zeta)} d\zeta \le h_p(r).$$
(2.9)

So

$$u_k(r) \le F^{-1}(F(\alpha) + h_p(r)), \quad r \ge 0.$$
 (2.10)

Then the sequence $(u_k)_{k\geq 0}$ converges and the function $u = \sup_{k\in\mathbb{N}} u_k$ is finite and satisfies for each $r \geq 0$,

$$u(r) = \alpha + \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s) p(s) f(u(s)) ds \right) dt.$$
(2.11)

So, $u \in \mathscr{C}([0,\infty)) \cap \mathscr{C}^1((0,\infty))$. Thus *u* is a solution of the problem (2.3). Moreover, from the monotonicity of *f* and (2.10), we obtain (2.4).

Remark 2.2. The solution of problem (2.3) satisfying (2.4) is bounded if and only if

$$\int_0^{+\infty} \frac{1}{A(t)} \left(\int_0^t A(s) p(s) ds \right) dt < +\infty.$$
(2.12)

Example 2.3. Let $A(t) = t^{\delta}$ for $t \in [0, \infty)$, where $\delta \ge 0$. Assume that for t > 0, $p(t) = 1/t^{\mu}(1+t)^{\nu-\mu}$, with $\mu < \min(2, 1+\delta)$ and $\nu \in \mathbb{R}$. Let $a, b \ge 0$ such that a+b > 0, $\beta \ge 0$, and $0 \le \alpha \le 1$, set $f(t) = (at^{\alpha} + b)\ln(1 + t^{\beta})$ for $t \in [0, \infty)$, then the problem

$$\frac{1}{A}(Au')' = \frac{1}{t^{\mu}(1+t)^{\nu-\mu}}f(u(t)), \quad \text{in } [0,\infty),$$

$$Au'(0) = 0, \qquad u(0) = u_0 \ge 1$$
(2.13)

has a positive solution $u \in \mathscr{C}([0,\infty)) \cap \mathscr{C}^{\infty}((0,\infty))$. Moreover *u* is bounded if and only if $\delta > 1$ and $\mu < 2 < \nu$.

COROLLARY 2.4. Assume (H_3) and (H_5) hold. Assume moreover that (H_6) holds, for all c > 0, there exists k > 0 such that for all $x, y \in [0,c], |f(x) - f(y)| \le k|x - y|$. Then the problem (2.3) has a unique positive solution $u \in \mathcal{C}([0,\infty)) \cap \mathcal{C}^1((0,\infty))$ satisfying (2.4).

Proof. Existence follows from Theorem 2.1.

Now, let us prove the uniqueness. Let *u* and *v* be positive solutions of the problem (2.3). Then for each a > 0 and $r \in [0, a]$, we have

$$|u(r) - v(r)| \le \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s) p(s) | f(u(s)) - f(v(s)) | ds \right) dt.$$
(2.14)

Since *u* and *v* are continuous, it follows that there exists c > 0 such that $u(r), v(r) \in [0, c]$ for each $r \in [0, a]$.

So, by hypothesis (H_6) and Fubini theorem, we obtain that

$$|u(r) - v(r)| \le k \int_0^r \left[A(s)p(s) \left(\int_s^a \frac{1}{A(t)} dt \right) \right] |u(s) - v(s)| ds.$$
 (2.15)

By Gronwall's lemma, we deduce that u(r) = v(r) on [0, a]. This completes the proof.

COROLLARY 2.5. Let $\lambda : [0, \infty) \to [0, \infty)$ be a continuous function and suppose that f and (A, p) satisfy, respectively, (H_3) and (H_5) . Then the problem

$$\frac{1}{A}(Au')' + \lambda(u)(u')^2 = p(t)f(u), \quad in \ (0, \infty),$$

$$Au'(0) = 0, \qquad u(0) = \alpha \ge 1$$
(2.16)

has a positive solution $u \in \mathcal{C}([0,\infty)) \cap \mathcal{C}^1((0,\infty))$ *.*

Proof. Let $\rho : [0, \infty) \to [0, \infty)$ be the function defined by $\rho(t) = \int_0^t \exp(\int_0^{\xi} \lambda(s) ds) d\xi$. It is clear that ρ is a bijection from $[0, \infty)$ to itself. Put $\nu = \rho(u)$. Then ν satisfies the following problem:

$$\frac{1}{A}(Av')' = p(t)g(v), \quad \text{in } (0,\infty),$$

$$Av'(0) = 0, \qquad v(0) = \rho(\alpha) \ge 1,$$
(2.17)

where the function *g* is defined on $[0, \infty)$ by $g \circ \rho = \rho' f$. Clearly, *g* satisfies (H₃). Hence by Theorem 2.1, the above problem has a solution *v* belonging to $\mathscr{C}([0, \infty)) \cap \mathscr{C}^1((0, \infty))$. Therefore, $u = \rho^{-1}(v)$ is a solution of the problem (2.16). This completes the proof. \Box

Now, we will give a comparison result. For this aim, we suppose in what follows that

- (i) (A, p) and (B, q) satisfy (H_5) , $p \le q$, and B/A is nondecreasing function,
- (ii) f and g satisfy (H₃) with $0 \le g \le f$.

For each $c \ge 1$, we define on $[0, +\infty)$ the function

$$m_c(r) := G^{-1}(G(c) + h_q(r)), \qquad (2.18)$$

where h_q is the function defined by (2.2) and G^{-1} is the inverse of the function $G(t) = \int_1^t 1/g(\zeta) d\zeta$.

THEOREM 2.6. Assume that the assumptions (i) and (ii) are satisfied. Then for any $\beta \ge 1$ satisfying

$$\int_0^\infty \frac{1}{B(t)} \left(\int_0^t B(s)(q-p)(s)g(m_\beta(s))ds \right) dt < +\infty,$$
(2.19)

there exists $\alpha > \beta$ such that problems

$$\frac{1}{A}(Av')' = p(t)f(v), \quad in [0, \infty),$$

$$Av'(0) = 0, \quad v(0) = \alpha > 1,$$

$$\frac{1}{B}(Bw')' = q(t)g(w), \quad in [0, \infty),$$

$$Aw'(0) = 0, \quad w(0) = \beta \ge 1$$
(2.20)

have positive continuous solutions satisfying

$$v \ge w, \quad in \ [0, \infty). \tag{2.21}$$

Proof. By Theorem 2.1, for any $\alpha > \beta \ge 1$, problems (2.20) have positive solutions *v* and *w* satisfying the integral equations

$$v(r) = \alpha + \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s)p(s)f(v(s))ds \right) dt, \quad r \ge 0,$$

$$w(r) = \beta + \int_0^r \frac{1}{B(t)} \left(\int_0^t B(s)q(s)g(w(s))ds \right) dt, \quad r \ge 0.$$
(2.22)

Let $\alpha > \beta \ge 1$. We intend to show that if the constant α is sufficiently large, more precisely

$$\alpha > \beta + \left(\int_0^\infty \left(\int_0^t \frac{B(s)}{B(t)}(q-p)(s)g(m_\beta(s))ds\right)dt\right),\tag{2.23}$$

then we have

$$v(r) \ge w(r), \quad r \ge 0. \tag{2.24}$$

Using (ii) and the fact that B/A and f are nondecreasing functions on $[0, \infty)$, we obtain

$$w(r) = \beta + \int_0^r \left(\int_0^t \frac{B(s)}{B(t)} q(s)g(w(s))ds \right) dt$$

$$\leq \beta + \int_0^r \frac{1}{B(t)} \left(\int_0^t B(s)(q-p)(s)g(w(s))ds \right) dt$$

$$+ \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s)p(s)f(w(s))ds \right) dt.$$
 (2.25)

On the other hand, by (2.4), we have

$$w(r) \le G^{-1} \left(G(\beta) + \int_0^r \frac{1}{A(t)} \left(\int_0^t A(s)q(s)ds \right) dt \right) = m_\beta(r).$$
(2.26)

By (2.19) and (2.23), we obtain

$$w(r) - \int_0^r \left(\int_0^t \frac{A(s)}{A(t)} p(s) f(w(s)) ds \right) dt$$

$$\leq \beta + \int_0^r \left(\int_0^t \frac{B(s)}{B(t)} (q-p)(s) g(m_\beta(s)) ds \right) dt$$

$$< \alpha = v(r) - \int_0^r \frac{1}{A(t)} \left(\int_0^t \frac{A(s)}{A(t)} p(s) f(v(s)) ds \right) dt.$$
(2.27)

Then using a standard comparison theorem [9, Theorem VI, page 17], we obtain (2.21).

3. Proof of the main result

Proof of Theorem 1.1. Recall that for each t > 0, $K(t) := t^{N-1} \exp(\int_0^t \lambda(s) ds)$.

Necessity. We will proceed by contradiction. Suppose that (1.9) fails and let u be an entire large solution of problem (P). Let

$$\nu(x) := \int_{1}^{u(x)+1} \frac{1}{f(\zeta)} d\zeta.$$
 (3.1)

Define the spherical mean of v by

$$\overline{\nu}(r) := \frac{1}{w_N r^{N-1}} \int_{|x|=r} \nu(x) d\sigma_x, \tag{3.2}$$

where w_N denotes the surface of the unit sphere in \mathbb{R}^N .

Since *u* is a positive entire large solution of (*P*), it follows by (1.4) that *v* is positive and $\lim_{|x|\to\infty} v(x) = +\infty$.

By [2, Section 1, Proposition 6], we obtain

$$\Delta \overline{\nu} = \overline{\nu}^{\prime\prime} + \frac{N-1}{r} \overline{\nu}^{\prime} = \overline{\Delta \nu}.$$
(3.3)

So

$$\Delta \overline{\nu} + \lambda (|x|) \nabla \overline{\nu} \le \frac{1}{w_N r^{N-1}} \int_{|x|=r} \Delta \nu(x) + \lambda (|x|) |\nabla \nu(x)| d\sigma_x.$$
(3.4)

By computation, we have on the ball

$$\Delta v(x) + \lambda(|x|) |\nabla v(x)| = \frac{1}{f(u(x)+1)} \Delta u(x) + \left(\frac{1}{f}\right)' (u(x)+1) |\nabla u(x)|^{2} + \frac{1}{f(u(x)+1)} \lambda(|x|) |\nabla u(x)|.$$
(3.5)

Faten Toumi 9

Using the fact that $f' \ge 0$, we obtain

$$\Delta \overline{\nu} + \lambda(|x|) \nabla \overline{\nu} \leq \frac{1}{w_N r^{N-1}} \int_{|x|=r} \frac{1}{f(u(x)+1)} (\Delta u(x) + \lambda(|x|) |\nabla u(x)|) d\sigma_x$$

$$\leq \frac{1}{w_N r^{N-1}} \int_{|x|=r} \frac{1}{f(u(x)+1)} p(|x|) f(u(x)) d\sigma_x \leq p(r).$$
(3.6)

That is,

$$\overline{\nu}^{\prime\prime} + \frac{N-1}{r}\overline{\nu}^{\prime} + \lambda(r)\overline{\nu}^{\prime} \le p(r).$$
(3.7)

Then

$$\left(r^{N-1}\exp\left(\int_{0}^{r}\lambda(s)ds\right)\overline{v}'\right)' \leq r^{N-1}\exp\left(\int_{0}^{r}\lambda(s)ds\right)p(r).$$
(3.8)

Integrating (3.8) yields for each $r \ge r_0 > 0$, $\overline{\nu}(r) \le \overline{\nu}(r_0) + \int_0^r 1/K(t)(\int_0^t K(s)p(s)ds)dt$. Thus $\overline{\nu}$ is bounded, contradiction. It follows that (*P*) has no positive large solution.

Sufficiency. Suppose that (1.9) holds. We will use the comparison result given by Theorem 2.6 for $A(t) = B(t) = K(t) = t^{N-1} \exp(\int_0^t \lambda(s) ds)$, *p*, *q*, and *f* satisfying, respectively, (H₄) and (H₃).

Let $\beta \ge 1$. Put for $r \ge 0$,

$$m_{\beta}(r) := F^{-1}(F(\beta) + h(r)), \qquad (3.9)$$

where h is the function defined by (1.6).

First, we claim that

$$\int_0^\infty \frac{1}{K(t)} \left(\int_0^t K(s)(q-p)(s) f(m_\beta(s)) ds \right) dt < +\infty.$$
(3.10)

In fact, by (1.3) and (1.9), there exists $0 < r_0 < +\infty$ such that

$$F(\beta) < \int_0^{r_0} \frac{1}{K(t)} \left(\int_0^t K(s)q(s)ds \right) dt = h(r_0).$$
(3.11)

Then

$$\int_{0}^{r_{0}} \frac{1}{K(t)} \left(\int_{0}^{t} K(s)(q-p)(s) f(m_{\beta}(s)) ds \right) dt$$

$$< \int_{0}^{r_{0}} \frac{1}{K(t)} \left(\int_{0}^{t} K(s)(q-p)(s) f \circ F^{-1}(2h(r_{0})) ds \right) dt \qquad (3.12)$$

$$< f \circ F^{-1}(2h(r_{0})) \int_{0}^{r_{0}} \frac{1}{K(t)} \left(\int_{0}^{t} K(s)q(s) ds \right) dt < +\infty.$$

On the other hand, by (1.8), we obtain

$$\int_{r_0}^{\infty} \frac{1}{K(t)} \left(\int_0^t K(s)(q-p)(s)f(m_{\beta}(s))ds \right) dt$$

$$< \int_{r_0}^{\infty} \frac{1}{K(t)} \left(\int_0^t K(s)(q-p)(s)f \circ F^{-1}(2h(s))ds \right) dt < +\infty.$$
(3.13)

This yields (3.10).

Thus by Theorem 2.6, there exists $\alpha > \beta$ such that the problems

$$\frac{1}{K}(Kv')' = p(t)f(v), \quad \text{in } [0, \infty),
Kv'(0) = 0, \quad v(0) = \alpha > 1,
\frac{1}{K}(Kw')' = q(t)f(w), \quad \text{in } [0, \infty),
Kw'(0) = 0, \quad w(0) = \beta \ge 1$$
(3.14)

have positive solutions satisfying $v \ge w$ in $[0, \infty)$.

Now, for all $k \ge 0$, we consider the problem

$$\Delta u_k + \lambda(|x|) |\nabla u_k(x)| = \varphi(x, u_k(x)), \quad \text{in } B(0, k),$$

$$u_k(x) = \nu(k), \quad \text{on } \partial B(0, k).$$
(P_k)

It is clear that w and v are positive sub- and supersolutions of (P_k) . Then the problem (P_k) has at least a positive solution u_k and

$$w(|x|) \le u_k(x) \le v(|x|), \quad \text{in } B(0,k), \ \forall k \ge 1.$$
 (3.15)

Now, by [5, Theorem 14.3], the sequence $(\nabla u_k)_k$ is bounded on every compact set in \mathbb{R}^N . Consequently, the sequence $(u_k)_k$ is bounded and equicontinuous on each compact of \mathbb{R}^N . Therefore, by Ascoli-Arzèla theorem, the sequence $(u_k)_k$ has a uniformly convergent, subsequence $(u_k^1)_k$ in $\mathcal{C}(\overline{B(0,1)})$. Setting $u^1 = \lim_{k \to +\infty} u_k^1$. Then $(\varphi(\cdot, u_k^1))_k$ converges uniformly to $\varphi(\cdot, u^1)$ and so $(\Delta u_k^1 + \lambda(|x|) |\nabla u_k^1(x)|)_k$ converges uniformly to $\varphi(\cdot, u^1)$ on B(0, 1).

Then, using the fact that $(\Delta + \lambda \nabla)$ is a closed operator, we conclude that u^1 satisfies (*P*) in *B*(0,1).

Similarly, the sequence $(u_k^1)_k$ has a uniformly convergent sequence $(u_k^2)_k$ on B(0,2) and let $u^2 = \lim_{k \to +\infty} u_k^2$. Using the same arguments as above, we claim that u^2 satisfies (*P*) in B(0,2). Further, we have $u^2 = u^1$ on B(0,1).

Repeating this procedure, we construct a sequence $(u^n)_n$ satisfying (P) in B(0,n) and $u^{n+1} = u^n$ on B(0,n), for all *n*. The sequence $(u^n)_n$ converges in $L^{\infty}_{loc}(\mathbb{R}^N)$ to the function *u* given by $u(x) = u^n(x)$ on B(0,n).

Using (3.15), we obtain $w \le u^n \le v$ in B(0, n), for all $n \ge 1$. Letting *n* to $+\infty$, it follows that $w \le u \le v$ in \mathbb{R}^N and *u* satisfies the equation

$$\Delta u + \lambda(|x|) |\nabla u(x)| = \varphi(x, u(x)), \quad \text{in } \mathbb{R}^N.$$
(3.16)

By (1.9) and Remark 2.2, we obtain $\lim_{|x|\to\infty} w(x) = +\infty$.

Consequently, u is a positive entire large solution of problem (P).

Acknowledgments

I express my sincere gratitude to Professor Habib Mâagli for his guidance and the useful discussions. Thanks go to the referees for valuable comments and useful remarks on the paper.

References

- [1] C. Bandle and E. Giarrusso, *Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms*, Advances in Differential Equations 1 (1989), 133–150.
- [2] R. Dautray, J.-L. Lions, et al., Analyse mathématique et calcul numérique pour les sciences et les techniques. Vol. 2: L'opérateur de Laplace, Coll. C.E.A, Masson, Paris, 1987.
- [3] M. Ghergu, C. Niculescu, and V. Rădulescu, *Explosive solutions of elliptic equations with absorption and non-linear gradient term*, Proceedings of the Indian Academy of Sciences. Mathematical Sciences 112 (2002), no. 3, 441–451.
- [4] M. Ghergu and V. Rădulescu, *Nonradial blow-up solutions of sublinear elliptic equations with gradient term*, Communications on Pure and Applied Analysis **3** (2004), no. 3, 465–474.
- [5] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer, Berlin, 1977.
- [6] J. B. Keller, *On solutions of* $\Delta u = f(u)$, Communications on Pure and Applied Mathematics **10** (1957), 503–510.
- [7] A. V. Lair and A. W. Wood, *Large solutions of semilinear elliptic equations with nonlinear gradient terms*, International Journal of Mathematics and Mathematical Sciences 22 (1999), no. 4, 869–883.
- [8] R. Osserman, On the inequality $\Delta u \ge f(u)$, Pacific Journal of Mathematics 7 (1957), 1641– 1647.
- [9] W. Walter, *Differential and Integral Inequalities*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer, New York, 1970.

Faten Toumi: Département des Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia *E-mail address*: faten.toumi@fsb.rnu.tn