
EXISTENCE OF BLOWUP SOLUTIONS FOR NONLINEAR
PROBLEMS WITH A GRADIENT TERM

FATEN TOUMI

Received 29 July 2005; Revised 7 March 2006; Accepted 25 April 2006

We prove the existence of positive explosive solutions for the equationΔu+ λ(|x|)|∇u(x)|
= ϕ(x,u(x)) in the whole space RN (N ≥ 3), where λ : [0,∞) → [0,∞) is a continuous
function and ϕ :RN × [0,∞)→ [0,∞) is required to satisfy some hypotheses detailed be-
low. More precisely, we will give a necessary and sufficient condition for the existence of
a positive solution that blows up at infinity.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and the main result

Semilinear elliptic problems involving gradient term with boundary blowup interested
many authors. Namely, Bandle and Giarrusso [1] developed existence and asymptotic
behaviour results for large solutions of

Δu+
∣
∣∇u(x)

∣
∣
a = f (u) (1.1)

in a bounded domain.
In the case f (u)= p(x)uγ, a > 0, and γ > max(1,a), Lair and Wood [7] dealt with the

above equation in bounded domain and the whole space. They proved the existence of
entire large solution under the condition

∫∞
0 rmax|x|=r p(x)dr <∞ when the domain is

RN .
Recall that u is a large solution on a bounded domain Ω in RN , if u(x) → +∞ as

dist(x,∂Ω) → 0, and u is called an entire large solution if u is defined on RN and
lim|x|→+∞u(x)= +∞.

Ghergu et al. [3] considered more general equation

Δu+ q(x)
∣
∣∇u(x)

∣
∣
a = p(x) f (u), (1.2)

where 0 ≤ a ≤ 2, p and q are Hölder continuous functions on (0,∞). We note that the
Keller-Osserman condition on f (see [6, 8]) remains the key condition for the existence
for their works.
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2 Blowup solutions for semilinear problems

In the present paper, we are interested in the study of nonlinear elliptic problems with
boundary blowup, of the type

Δu+ λ
(|x|)∣∣∇u(x)

∣
∣= ϕ(x,u(x)

)

, in RN ,

u≥ 0, u �= 0,

lim
|x|→+∞

u(x)= +∞,

(P)

where λ : [0,∞)→ [0,∞) is a continuous function and ϕ satisfies the following hypothe-
ses.

(H1) ϕ : RN× [0,∞) → [0,∞) is measurable, continuous with respect to the second
variable.

(H2) There exist nonnegative functions p, q, and f satisfying for each x ∈ RN and
t ≥ 0,

p
(|x|) f (t)≤ ϕ(x, t)≤ q(|x|) f (t), (1.3)

where f is required to satisfy.
(H3) f ∈�1([0,∞)) such that f ′ ≥ 0, f (0)= 0, f > 0 on (0,∞),

∫∞

1

1
f (ζ)

dζ = +∞, (1.4)

and p, q are allowed to verify.
(H4) p,q : (0,∞)→ [0,∞) are continuous functions satisfying

∫ 1

0
s(1− s)q(s)ds < +∞. (1.5)

Clearly, we see by (1.3) that the function p also satisfies (1.5).
In the sequel, we put

h(r)=
∫ r

0

1
K(t)

(∫ t

0
K(s)q(s)ds

)

dt, for r ∈ [0,∞), (1.6)

where K(t) := tN−1 exp(
∫ t

0 λ(s)ds), for each t > 0, and we define the function F on [1,∞)
by

F(t)=
∫ t

1

1
f (ζ)

dζ. (1.7)

From the hypotheses adopted on f , we note that the function F is a bijection from [1,∞)
to [0,∞).

Our main result is the following.
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Theorem 1.1. Assume that (H1)–(H4) hold. Moreover, assume that

∫∞

0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f ◦F−1(2h(s)

)

ds
)

dt < +∞. (1.8)

Then problem (P) has a positive entire solution if and only if

∫∞

1

1
K(t)

(∫ t

0
K(s)p(s)ds

)

dt = +∞. (1.9)

Example 1.2. Let α≥ 0 and β ∈ [0,1]. Assume that for t ≥ 0, f (t)= (1 + t)β ln(1 + t) and
p(t)= 1/tα. Then the following problem:

Δu+
1

1 + |x|
∣
∣∇u(x)

∣
∣=

(

1 +u(x)
)β

|x|α ln
(

1 +u(x)
)

, in RN ,

u≥ 0, u �= 0,

lim
|x|→+∞

u(x)= +∞
(1.10)

has an explosive solution if and only if 0≤ α < 2.

Motivation for the present contribution stems from the one of Ghergu and Rădulescu
[4] who considered the following problem:

Δu+
∣
∣∇u(x)

∣
∣= p(x) f (u), in Ω,

u≥ 0, in Ω,
(1.11)

where Ω is either a smooth bounded domain or the whole space and f is a nondecreasing
function satisfying f ∈�0,α

loc(0,∞), f (0)=0, f > 0 on (0,∞), and Λ= supx≥1 f (x)/x <∞.
The authors studied the existence and nonexistence of explosive solutions under the as-
sumption that

∫∞

0
r

(

max
|x|=r

p(x)−min
|x|=r

p(x)

)

Ψ(r)dr < +∞, (1.12)

where Ψ(r) = exp(Λ/(N − 2)
∫∞

0 rmin|x|=r p(x)dr). More precisely, they showed in the
case of Ω=RN that the above problem has positive solution if and only if

∫∞

1
e−tt1−N

(∫ t

0
essN−1 min

|x|=s
p(x)ds

)

dt = +∞. (1.13)

We remark that the condition (1.4) adopted on f includes the sublinear case, supx≥1 f (x)/
x <∞, studied by Ghergu and Rădulescu [4].



4 Blowup solutions for semilinear problems

The outline of the paper is as follows. In Section 2, we will give some auxiliary results.
The comparison result obtained in Section 2, Theorem 2.6, is used in Section 3 to prove
the main result of this work.

2. Auxiliary results

In this section, we suppose that (A, p) satisfies
(H5) A is a nonnegative continuous function on [0,∞), positive and differentiable on

(0,∞), and p : (0,∞)→ [0,∞) is continuous function satisfying

∫ 1

0
A(s)p(s)ds < +∞,

∫ 1

0

1
A(t)

(∫ t

0
A(s)p(s)ds

)

dt < +∞. (2.1)

For any given continuous function ψ on (0,∞), we put

hψ(r)=
∫ r

0

1
A(t)

(∫ t

0
A(s)ψ(s)ds

)

dt, for r ∈ [0,∞). (2.2)

We consider the following problem:

1
A

(Au′)′ = p(t) f (u), in (0,∞),

Au′(0) := lim
t→0+

A(t)u′(t)= 0, u(0)= α≥ 1.
(2.3)

We state the following.

Theorem 2.1. Under the hypotheses (H3) and (H5), the problem (2.3) has a positive solu-
tion u∈�([0,∞))∩�1((0,∞)). Further, on [0,∞),

α+ f (α)hp(r)≤ u(r)≤ F−1(F(α) +hp(r)
)

. (2.4)

Proof. Let (uk)k≥0 be the sequence of functions defined on [0,∞) by u0(r)= α and

uk+1(r)= α+
∫ r

0

1
A(t)

(∫ t

0
A(s)p(s) f

(

uk(s)
)

ds
)

dt, ∀k ∈N. (2.5)

Clearly, we have for each k ∈N, t→ uk(t) is a nondecreasing function on [0,+∞).
By induction, we prove that (uk)k≥0 is a nondecreasing sequence.
Since the function f is nondecreasing, we obtain by (2.5) that for each k ≥ 0,

u′k(t)≤ f
(

uk(t)
) 1
A(t)

∫ t

0
A(s)p(s)ds, t ≥ 0. (2.6)

That is,

u′k(t)

f
(

uk(t)
) ≤ 1

A(t)

∫ t

0
A(s)p(s)ds, t ≥ 0. (2.7)
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Then
∫ r

0

u′k(t)

f
(

uk(t)
)dt ≤

∫ r

0

1
A(t)

(∫ t

0
A(s)p(s)ds

)

dt, r ≥ 0. (2.8)

It follows that for each r ≥ 0,

F
(

uk(r)
)−F(α)=

∫ uk(r)

α

1
f (ζ)

dζ ≤ hp(r). (2.9)

So

uk(r)≤ F−1(F(α) +hp(r)
)

, r ≥ 0. (2.10)

Then the sequence (uk)k≥0 converges and the function u= supk∈Nuk is finite and satisfies
for each r ≥ 0,

u(r)= α+
∫ r

0

1
A(t)

(∫ t

0
A(s)p(s) f

(

u(s)
)

ds
)

dt. (2.11)

So, u∈�([0,∞))∩�1((0,∞)). Thus u is a solution of the problem (2.3). Moreover, from
the monotonicity of f and (2.10), we obtain (2.4). �

Remark 2.2. The solution of problem (2.3) satisfying (2.4) is bounded if and only if

∫ +∞

0

1
A(t)

(∫ t

0
A(s)p(s)ds

)

dt < +∞. (2.12)

Example 2.3. Let A(t) = tδ for t ∈ [0,∞), where δ ≥ 0. Assume that for t > 0, p(t) =
1/tμ(1 + t)ν−μ, with μ < min(2,1 + δ) and ν ∈ R. Let a,b ≥ 0 such that a+ b > 0, β ≥ 0,
and 0≤ α≤ 1, set f (t)= (atα + b) ln(1 + tβ) for t ∈ [0,∞), then the problem

1
A

(Au′)′ = 1
tμ(1 + t)ν−μ f

(

u(t)
)

, in [0,∞),

Au′(0)= 0, u(0)= u0 ≥ 1
(2.13)

has a positive solution u∈�([0,∞))∩�∞((0,∞)). Moreover u is bounded if and only if
δ > 1 and μ < 2 < ν.

Corollary 2.4. Assume (H3) and (H5) hold. Assume moreover that (H6) holds, for all
c > 0, there exists k > 0 such that for all x, y ∈ [0,c],| f (x)− f (y)| ≤ k|x− y|. Then the
problem (2.3) has a unique positive solution u∈�([0,∞))∩�1((0,∞)) satisfying (2.4).

Proof. Existence follows from Theorem 2.1.
Now, let us prove the uniqueness. Let u and v be positive solutions of the problem

(2.3). Then for each a > 0 and r ∈ [0,a], we have

∣
∣u(r)− v(r)

∣
∣≤

∫ r

0

1
A(t)

(∫ t

0
A(s)p(s)

∣
∣ f
(

u(s)
)− f

(

v(s)
)∣
∣ds
)

dt. (2.14)
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Since u and v are continuous, it follows that there exists c > 0 such that u(r),v(r)∈ [0,c]
for each r ∈ [0,a].

So, by hypothesis (H6) and Fubini theorem, we obtain that

∣
∣u(r)− v(r)

∣
∣≤ k

∫ r

0

[

A(s)p(s)

(∫ a

s

1
A(t)

dt

)]

∣
∣u(s)− v(s)

∣
∣ds. (2.15)

By Gronwall’s lemma, we deduce that u(r)= v(r) on [0,a]. This completes the proof.
�

Corollary 2.5. Let λ : [0,∞)→ [0,∞) be a continuous function and suppose that f and
(A, p) satisfy, respectively, (H3) and (H5). Then the problem

1
A

(Au′)′ + λ(u)(u′)2 = p(t) f (u), in (0,∞),

Au′(0)= 0, u(0)= α≥ 1
(2.16)

has a positive solution u∈�([0,∞))∩�1((0,∞)).

Proof. Let ρ : [0,∞)→ [0,∞) be the function defined by ρ(t) = ∫ t0 exp(
∫ ξ

0 λ(s)ds)dξ. It is
clear that ρ is a bijection from [0,∞) to itself. Put v = ρ(u). Then v satisfies the following
problem:

1
A

(Av′)′ = p(t)g(v), in (0,∞),

Av′(0)= 0, v(0)= ρ(α)≥ 1,
(2.17)

where the function g is defined on [0,∞) by g ◦ ρ = ρ′ f . Clearly, g satisfies (H3). Hence
by Theorem 2.1, the above problem has a solution v belonging to �([0,∞))∩�1((0,∞)).
Therefore, u= ρ−1(v) is a solution of the problem (2.16). This completes the proof. �

Now, we will give a comparison result. For this aim, we suppose in what follows that
(i) (A, p) and (B,q) satisfy (H5), p ≤ q, and B/A is nondecreasing function,

(ii) f and g satisfy (H3) with 0≤ g ≤ f .
For each c ≥ 1, we define on [0,+∞) the function

mc(r) :=G−1(G(c) +hq(r)
)

, (2.18)

where hq is the function defined by (2.2) and G−1 is the inverse of the function G(t) =
∫ t

1 1/g(ζ)dζ .

Theorem 2.6. Assume that the assumptions (i) and (ii) are satisfied. Then for any β ≥ 1
satisfying

∫∞

0

1
B(t)

(∫ t

0
B(s)(q− p)(s)g

(

mβ(s)
)

ds
)

dt < +∞, (2.19)
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there exists α > β such that problems

1
A

(Av′)′ = p(t) f (v), in [0,∞),

Av′(0)= 0, v(0)= α > 1,

1
B

(Bw′)′ = q(t)g(w), in [0,∞),

Aw′(0)= 0, w(0)= β ≥ 1

(2.20)

have positive continuous solutions satisfying

v ≥w, in [0,∞). (2.21)

Proof. By Theorem 2.1, for any α > β ≥ 1, problems (2.20) have positive solutions v and
w satisfying the integral equations

v(r)= α+
∫ r

0

1
A(t)

(∫ t

0
A(s)p(s) f

(

v(s)
)

ds
)

dt, r ≥ 0,

w(r)= β+
∫ r

0

1
B(t)

(∫ t

0
B(s)q(s)g

(

w(s)
)

ds
)

dt, r ≥ 0.

(2.22)

Let α > β ≥ 1. We intend to show that if the constant α is sufficiently large, more precisely

α > β+
(∫∞

0

(∫ t

0

B(s)
B(t)

(q− p)(s)g
(

mβ(s)
)

ds
)

dt
)

, (2.23)

then we have

v(r)≥w(r), r ≥ 0. (2.24)

Using (ii) and the fact that B/A and f are nondecreasing functions on [0,∞), we obtain

w(r)= β+
∫ r

0

(∫ t

0

B(s)
B(t)

q(s)g
(

w(s)
)

ds

)

dt

≤ β+
∫ r

0

1
B(t)

(∫ t

0
B(s)(q− p)(s)g

(

w(s)
)

ds
)

dt

+
∫ r

0

1
A(t)

(∫ t

0
A(s)p(s) f

(

w(s)
)

ds
)

dt.

(2.25)

On the other hand, by (2.4), we have

w(r)≤G−1
(

G(β) +
∫ r

0

1
A(t)

(∫ t

0
A(s)q(s)ds

)

dt
)

=mβ(r). (2.26)
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By (2.19) and (2.23), we obtain

w(r)−
∫ r

0

(∫ t

0

A(s)
A(t)

p(s) f
(

w(s)
)

ds
)

dt

≤ β+
∫ r

0

(∫ t

0

B(s)
B(t)

(q− p)(s)g
(

mβ(s)
)

ds
)

dt

< α= v(r)−
∫ r

0

1
A(t)

(∫ t

0

A(s)
A(t)

p(s) f
(

v(s)
)

ds
)

dt.

(2.27)

Then using a standard comparison theorem [9, Theorem VI, page 17], we obtain (2.21).
�

3. Proof of the main result

Proof of Theorem 1.1. Recall that for each t > 0, K(t) := tN−1 exp(
∫ t

0 λ(s)ds).

Necessity. We will proceed by contradiction. Suppose that (1.9) fails and let u be an entire
large solution of problem (P). Let

v(x) :=
∫ u(x)+1

1

1
f (ζ)

dζ. (3.1)

Define the spherical mean of v by

v(r) := 1
wN rN−1

∫

|x|=r
v(x)dσx, (3.2)

where wN denotes the surface of the unit sphere in RN .
Since u is a positive entire large solution of (P), it follows by (1.4) that v is positive and

lim|x|→∞ v(x)= +∞.
By [2, Section 1, Proposition 6], we obtain

Δv = v′′ +
N − 1
r

v′ = Δv. (3.3)

So

Δv+ λ
(|x|)∇v ≤ 1

wNrN−1

∫

|x|=r
Δv(x) + λ

(|x|)∣∣∇v(x)
∣
∣dσx. (3.4)

By computation, we have on the ball

Δv(x) + λ
(|x|)∣∣∇v(x)

∣
∣= 1

f
(

u(x) + 1
)Δu(x) +

(

1
f

)′
(

u(x) + 1
)∣
∣∇u(x)

∣
∣

2

+
1

f
(

u(x) + 1
)λ
(|x|)∣∣∇u(x)

∣
∣.

(3.5)
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Using the fact that f ′ ≥ 0, we obtain

Δv+ λ
(|x|)∇v ≤ 1

wNrN−1

∫

|x|=r
1

f
(

u(x) + 1
)
(

Δu(x) + λ
(|x|)∣∣∇u(x)

∣
∣
)

dσx

≤ 1
wNrN−1

∫

|x|=r
1

f
(

u(x) + 1
) p
(|x|) f (u(x)

)

dσx ≤ p(r).

(3.6)

That is,

v′′ +
N − 1
r

v′ + λ(r)v′ ≤ p(r). (3.7)

Then

(

rN−1 exp
(∫ r

0
λ(s)ds

)

v′
)′
≤ rN−1 exp

(∫ r

0
λ(s)ds

)

p(r). (3.8)

Integrating (3.8) yields for each r ≥ r0 > 0, v(r) ≤ v(r0) +
∫ r

0 1/K(t)(
∫ t

0 K(s)p(s)ds)dt.
Thus v is bounded, contradiction. It follows that (P) has no positive large solution.

Sufficiency. Suppose that (1.9) holds. We will use the comparison result given by Theo-
rem 2.6 for A(t) = B(t) = K(t) = tN−1 exp(

∫ t
0 λ(s)ds), p, q, and f satisfying, respectively,

(H4) and (H3).
Let β ≥ 1. Put for r ≥ 0,

mβ(r) := F−1(F(β) +h(r)
)

, (3.9)

where h is the function defined by (1.6).
First, we claim that

∫∞

0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f

(

mβ(s)
)

ds
)

dt < +∞. (3.10)

In fact, by (1.3) and (1.9), there exists 0 < r0 < +∞ such that

F(β) <
∫ r0

0

1
K(t)

(∫ t

0
K(s)q(s)ds

)

dt = h(r0). (3.11)

Then

∫ r0

0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f

(

mβ(s)
)

ds
)

dt

<
∫ r0

0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f ◦F−1(2h

(

r0
))

ds
)

dt

< f ◦F−1(2h
(

r0
))
∫ r0

0

1
K(t)

(∫ t

0
K(s)q(s)ds

)

dt < +∞.

(3.12)
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On the other hand, by (1.8), we obtain

∫∞

r0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f

(

mβ(s)
)

ds
)

dt

<
∫∞

r0

1
K(t)

(∫ t

0
K(s)(q− p)(s) f ◦F−1(2h(s)

)

ds
)

dt < +∞.
(3.13)

This yields (3.10).
Thus by Theorem 2.6, there exists α > β such that the problems

1
K

(Kv′)′ = p(t) f (v), in [0,∞),

Kv′(0)= 0, v(0)= α > 1,

1
K

(Kw′)′ = q(t) f (w), in [0,∞),

Kw′(0)= 0, w(0)= β ≥ 1

(3.14)

have positive solutions satisfying v ≥w in [0,∞).
Now, for all k ≥ 0, we consider the problem

Δuk + λ
(|x|)∣∣∇uk(x)

∣
∣= ϕ(x,uk(x)

)

, in B(0,k),

uk(x)= v(k), on ∂B(0,k).
(Pk)

It is clear that w and v are positive sub- and supersolutions of (Pk). Then the problem
(Pk) has at least a positive solution uk and

w
(|x|)≤ uk(x)≤ v(|x|), in B(0,k), ∀k ≥ 1. (3.15)

Now, by [5, Theorem 14.3], the sequence (∇uk)k is bounded on every compact set in
RN . Consequently, the sequence (uk)k is bounded and equicontinuous on each com-
pact of RN . Therefore, by Ascoli-Arzèla theorem, the sequence (uk)k has a uniformly
convergent, subsequence (u1

k)k in �(B(0,1)). Setting u1 = limk→+∞u1
k. Then (ϕ(·,u1

k))k
converges uniformly to ϕ(·,u1) and so (Δu1

k + λ(|x|)|∇u1
k(x)|)k converges uniformly to

ϕ(·,u1) on B(0,1).
Then, using the fact that (Δ+ λ∇) is a closed operator, we conclude that u1 satisfies

(P) in B(0,1).
Similarly, the sequence (u1

k)k has a uniformly convergent sequence (u2
k)k on B(0,2) and

let u2 = limk→+∞u2
k. Using the same arguments as above, we claim that u2 satisfies (P) in

B(0,2). Further, we have u2 = u1 on B(0,1).
Repeating this procedure, we construct a sequence (un)n satisfying (P) in B(0,n) and

un+1 = un on B(0,n), for all n. The sequence (un)n converges in L∞loc(RN ) to the function
u given by u(x)= un(x) on B(0,n).
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Using (3.15), we obtain w ≤ un ≤ v in B(0,n), for all n≥ 1. Letting n to +∞, it follows
that w ≤ u≤ v in RN and u satisfies the equation

Δu+ λ
(|x|)∣∣∇u(x)

∣
∣= ϕ(x,u(x)

)

, in RN . (3.16)

By (1.9) and Remark 2.2, we obtain lim|x|→∞w(x)= +∞.
Consequently, u is a positive entire large solution of problem (P). �
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[3] M. Ghergu, C. Niculescu, and V. Rădulescu, Explosive solutions of elliptic equations with absorp-
tion and non-linear gradient term, Proceedings of the Indian Academy of Sciences. Mathematical
Sciences 112 (2002), no. 3, 441–451.
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