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1. Introduction

Let Δ be the open unit disk in the complex plane C. By Hol(Δ,C) we denote the set of all
holomorphic functions in Δ.

Definition 1.1. A univalent function h on Δ is called spirallike (resp., starlike) on Δ if for
some μ∈ Cwith Reμ > 0 (resp., μ∈Rwith μ > 0) and for each t ≥ 0, the element e−μth(z)
belongs to h(Δ) whenever z ∈ Δ.

It is clear that 0∈ h(Δ). Moreover,
(i) if 0 ∈ h(Δ), then h is called spirallike (resp., starlike) with respect to an interior

point;
(ii) if 0 �∈ h(Δ), then h is called spirallike (resp., starlike) with respect to a bound-

ary point. In this case, there is a boundary point (say, z = 1) such that h(1) :=
∠ limz→1h(z)= 0 (see, e.g., [1, 6]); by symbol ∠ lim, we denote the angular (non-
tangential) limit of a function at a boundary point of Δ.

The class of spirallike (starlike) functions with respect to a boundary point normalized
by the conditions h(1)= 0 and h(0)= 1 will be denoted by Spiral [1] (resp., Star [1]).

It was proved in [1, 7] that for any function h ∈ Spiral [1], the limit of the so-called
Visser-Ostrowski quotient

∠ lim
z→1

(z− 1)h′(z)
h(z)

= μ (1.1)

exists with μ∈Ω, where Ω= {λ : |λ− 1| ≤ 1, λ �= 0}.

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 81615, Pages 1–13
DOI 10.1155/IJMMS/2006/81615
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For given μ ∈ Ω, we denote the class of spirallike functions which satisfy (1.1) by
Spiralμ[1]. If the number μ is real, that is, 0 < μ≤ 2, then the function h is, in fact, starlike,
see [1]. If this is the case, we write h∈ Starμ[1].

It turns out that the number μ can be used for some geometric characteristic of the
image h(Δ). Namely, it was shown in [7] that if μ is real, then the smallest wedge with
vertex at the origin which contains h(Δ) is exactly of angle μπ.

In this paper, we establish an angle distortion theorem for a class of unbounded starlike
and spirallike functions which gives us both covering and growth estimates.

2. Starlike and spirallike functions

Definition 2.1 (see [17]). Say that a univalent function h belongs to the class Spiralμ,ν[1,
−1] if it is of the class Spiralμ[1] and satisfies the conditions

∠ lim
z→−1

h(z)=∞,

∠ lim
z→−1

h′(z)(z+ 1)
h(z)

= ν �= 0.
(2.1)

It was shown in [17] that if μ is a real number (i.e., 0 < μ≤ 2), then so is ν, and −μ≤
ν < 0. Since in this case h is starlike, we will write h∈ Starμ,ν[1,−1]. First we consider this
class.

Theorem 2.2. (i) If h∈ Starμ[1], then the wedge

W∗ =
{
w ∈ C :

∣∣argw− θ∗
∣∣ < μπ

2

}
, (2.2)

where θ∗ := limx→1− argh(x), is the smallest one which contains the image h(Δ).
(ii) If h∈ Starμ,ν[1,−1], then the wedge

W∗ =
{
w ∈ C :

∣∣argw− θ∗
∣∣ < |ν|π

2

}
, (2.3)

where

θ∗ := lim
x→−1+

argh(x), (2.4)

is contained in h(Δ), and there is no wedge W �=W∗ with W∗ ⊂W ⊂ h(Δ).
Conversely, if h ∈ Starμ[1] and the image h(Δ) contains some open wedge, then there

are ν (−μ ≤ ν < 0) and an automorphism Ψ of the open unit disk Δ such that function
(1/h(Ψ(0)))h◦Ψ belongs to Starμ,ν[1,−1] (see Figure 2.1).

To prove this theorem, we need an integral representation for the classes Starμ[1] and
Starμ,ν[1,−1]. By δ(τ) we denote the Dirac δ-function (measure) at the point τ.



M. Elin and D. Shoikhet 3

μπ

�vπ

Figure 2.1. Angle distortion.

Lemma 2.3. Let 0 < μ≤ 2. A function h∈Hol(Δ,C) is of the class Starμ[1] if and only if it
admits the following representation:

h(z)= (1− z)μ(1 + z)κ exp
[
− (μ+ κ)

∮
∂Δ

log
(
1− zζ̄

)
dσ(ζ)

]
(2.5)

with some probability measure dσ on the unit circle which is mutually singular relative to
both δ(1) and δ(−1) and with some κ, −μ≤ κ≤ 0. Furthermore, h∈ Starμ,ν[1,−1] if and
only if (2.5) holds with κ= ν < 0.

Proof. It was shown in [1] that any function h ∈ Spiral[1] does satisfy a generalized
Robertson’s inequality (see [15])

Re
[

2zh′(z)
λh(z)

+
1 + z

1− z

]
> 0 (2.6)

with some λ, Reλ > 0. Moreover, h∈ Spiralμ[1] if and only if (2.6) holds for λ= Rμ, R≥
1, where μ is defined by (1.1) (see [1]).

As mentioned, if number λ in (2.6) (hence, μ in (1.1)) is real, then h is actually starlike.
So, let h∈ Starμ[1], 0 < μ≤ 2. By the Riesz-Herglotz representation, we have

2zh′(z)
h(z)

= μ
∮
∂Δ

(
1 + zζ̄

1− zζ̄
− 1 + z

1− z

)
dσ̃(ζ) (2.7)

with some probability measure dσ̃ . Integrating this equality, we get

h(z)= (1− z)μ exp
[
−μ

∮
∂Δ

log
(
1− zζ̄

)
dσ̃(ζ)

]
. (2.8)

Decompose dσ̃ relative to the Dirac measure δ(1), that is,

dσ̃ = aδ(1) +dσ1, (2.9)

where δ(1) and dσ1 are mutually singular positive measures and 0≤ a≤ 1. If a �= 0, then
substituting (2.9) into (2.8) and differentiating this equality, we get that inequality (2.6)
holds with λ= μ(1− a) which is smaller than μ. This contradiction shows that a= 0, that
is, the measures dσ̃ and δ(1) are mutually singular.
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Also one can write

dσ̃ = bδ(−1) + (1− b)dσ , 0≤ b ≤ 1, (2.10)

where the probability measures dσ and δ(−1) are mutually singular. Using this decom-
position, we rewrite (2.8) as follows:

h(z)= (1− z)μ(1 + z)−bμ exp
[
− (1− b)μ

∮
∂Δ

log
(
1− zζ̄

)
dσ(ζ)

]
. (2.11)

This formula coincides with (2.5) for κ=−bμ.
To continue, we evaluate the limit of the Visser-Ostrowski quotient at the point z =−1:

∠ lim
z→−1

h′(z)(z+ 1)
h(z)

=∠ lim
z→−1

(z+ 1)
[ −μ

1− z
− bμ

1 + z
− (1− b)μ

∮
∂Δ

ζ̄

1− zζ̄
dσ(ζ)

]

=−bμ− (1− b)μ∠ lim
z→−1

∮
∂Δ

ζ̄(1 + z)

1− zζ̄
dσ(ζ).

(2.12)

Since
∣∣∣∣ ζ̄(1 + z)

1− zζ̄

∣∣∣∣≤ |1 + z|
1−|z| , (2.13)

we see that the integrand in the last expression of (2.12) is bounded on each nontan-
gential approach region Γα = {w : |1 + z|/(1−|z|) < α}, α > 1, at the point z =−1. Since
the measures dσ and δ(−1) are mutually singular, we conclude by Lebesgue’s bounded
convergence theorem that the last integral in (2.12) is equal to zero, so

∠ lim
z→−1

h′(z)(z+ 1)
h(z)

=−bμ(= κ). (2.14)

Hence h∈ Starμ,ν[1,−1] if and only if b �= 0 and then ν= κ. �

Proof of Theorem 2.2. Assertion (i) was proved in [9]. Now we prove assertion (ii).
First we show that the image h(Δ) contains the wedge W∗ defined by (2.3). Since

∠ limz→−1h(z)=∞, for each δ ∈ (0,π/2) and each R > 0, there exists r0 > 0 such that for
all r ∈ (0,r0),

∣∣h(z)
∣∣ > R (2.15)

whenever

z ∈Dr,δ := {z ∈ Δ : |1 + z| ≤ r,
∣∣arg(1 + z)

∣∣≤ δ
}
. (2.16)

Setting κ= ν in (2.5), we obtain by Lebesgue’s bounded convergence theorem that the
following limit exists:

lim
z→−1

arg
h(z)

(1 + z)ν
=−(μ+ ν) lim

z→−1

∮
∂Δ

arg
(
1− zζ̄

)
dσ(ζ). (2.17)
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On the other hand, by formula (2.5), we have

θ∗ = lim
x→−1+

argh(x)=−(μ+ ν) lim
x→−1

∮
∂Δ

arg
(
1− xζ̄

)
dσ(ζ). (2.18)

Therefore,

lim
z→−1

arg
h(z)

(1 + z)ν
= θ∗. (2.19)

Thus, decreasing r (if it is necessary), we have

θ∗ − ε < arg
h(z)

(1 + z)ν
< θ∗ + ε (2.20)

for all z ∈Dr,δ . So, if z belongs to the arc

Γ := {z ∈ Δ : |1 + z| = r,
∣∣arg(1 + z)

∣∣≤ δ
}⊂Dr,δ , (2.21)

that is, z =−1 + reit, |t| ≤ δ, then

θ∗ − ε− t|ν| < argh(z) < θ∗ + ε− t|ν|. (2.22)

In particular,

argh
(− 1 + reiδ

)
< θ∗ + ε− δ|ν|,

argh
(− 1 + re−iδ

)
> θ∗ − ε+ δ|ν|.

(2.23)

Therefore the curve h(Γ) lies outside the disk |z| ≤ R and joins two points having
arguments less than θ∗ + ε− δ|ν| and greater than θ∗ − ε + δ|ν|, respectively. Since h is
starlike, we see that h(Δ) contains the sector

{
w ∈ C : |w| < R,

∣∣argw− θ∗
∣∣ < δ|ν|− ε

}
. (2.24)

As R and ε are arbitrary, one concludes that

{
w ∈ C :

∣∣argw− θ∗
∣∣ < δ|ν|}⊂ h(Δ). (2.25)

Letting δ→ π/2, we obtain that W∗ ⊂ h(Δ).
Now, since h is a starlike function, argh(eiϕ) is an increasing function in ϕ ∈ (0,2π).

So the limits

lim
ϕ→π±

argh
(
eiϕ
)

(2.26)

exist. In addition, one can find two sequences ϕn,+ → π+ and ϕn,− → π− such that the
values h(eiϕn,±) are finite. Once again, by Lemma 2.3, we get

lim
n→∞argh

(
eiϕn,+

)− argh
(
eiϕn,−

)= lim
n→∞ν

(
arg
(
1 + eiϕn,+

)− arg
(
1 + eiϕn,−

))= |ν|π.
(2.27)
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Therefore the image contains no wedge W of angle larger than |ν|π with W∗ ⊂W ⊂
h(Δ).

To prove the converse assertion, suppose that the open wedge

W = {w ∈ C : |argw−α| < β
}

(2.28)

lies in h(Δ). Then the curve � := h−1({w : argw = α}) lies in Δ and joins the point 1
with another boundary point η. Denote by Ψ an automorphism of Δ such that Ψ(1)= 1
and Ψ(−1)= η. Define h1 ∈Hol(Δ,C) by h1 = (1/h(Ψ(0)))h ◦Ψ. It is clear that h1(Δ)=
(1/h(Ψ(0)))h(Δ). Consequently, h1 is a starlike function with respect to a boundary point,
and W1 ⊂ h1(Δ), where

W1 =
{
w ∈ C :

∣∣argw−α1
∣∣ < β

}
, α1 = α− argh

(
Ψ(0)

)
. (2.29)

A simple calculation shows that h1 ∈ Starμ[1] and ∠ limz→−1h1(z) = ∞. We now show
that h1 ∈ Starμ,ν[1,−1] for ν=−2β/π < 0.

Since W1 cannot be extended to a larger wedge lying in h1(Δ), for each ε > 0 there are
boundary points of the image h1(Δ) belonging to

{
w : α1−β− ε < argw ≤ α1−β

}
,{

w : α1 +β ≤ argw ≤ α1 +β+ ε
}
.

(2.30)

Let {φ+
n} be a decreasing sequence such that φ+

n → argη, the values h1(eiφ
+
n ) exist, and

α1 + β ≤ argh1(eiφ
+
n ) < α1 + β + 1/n. Similarly, let {φ−n } be an increasing sequence such

that φ−n → argη, the values h1(eiφ
−
n ) exist, and α1−β− 1/n < argh1(eiφ

−
n )≤ α1−β.

By Lemma 2.3, we have

argh1(z)= μarg(1− z) + κarg(1 + z)− (μ+ κ)
∮
∂Δ

arg
(
1− zζ̄

)
dσ(ζ), (2.31)

where the measure dσ is singular relative to δ(−1) and −μ≤ κ≤ 0.
Consider the expression argh1(eiφ

+
n )− argh1(ieφ

−
n ) which tends to 2β:

argh1
(
eiφ

+
n
)− argh1

(
eiφ

−
n
)= μ

[
arg
(
1− eiφ

+
n
)− arg

(
1− eiφ

−
n
)]

+ κ
[

arg
(
1 + eiφ

+
n
)− arg

(
1 + eiφ

−
n
)]

− (μ+ κ)
[∮

∂Δ
arg

1− eiφ
+
n

1− eiφ−n
dσ(ζ)

]
.

(2.32)

The first summand tends to zero while the second one tends to −κπ. The third sum-
mand also tends to zero because the integrand is a bounded function which tends to zero
for each ζ ∈ ∂Δ, ζ �= 1. Hence by Lebesgue’s bounded convergence theorem, the integral
in (2.32) goes to 0.

Then we obtain 2β=−κπ, or κ=−2β/π < 0. Again by Lemma 2.3, we get h1∈Starμ,κ[1,
−1]. The proof is complete. �

We now observe by [1] (see also [5]) that each spirallike function h∈ Spiral[1]=⋃μ∈Ω
Spiralμ[1], Ω = {λ : |λ− 1| ≤ 1, λ �= 0}, is a complex power of a starlike function with
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respect to a boundary point. Therefore, one can apply Theorem 2.2 to give geometric
characteristics for images of functions of the class Spiralμ,ν[1,−1] with complexes μ and
ν. More precisely, let gλ,θ be a univalent function on Δ defined by

gλ,θ(z)= eiθλ
(

1− z

1 + z

)λ
, λ∈Ω, θ ∈R. (2.33)

It is clear that gλ,θ ∈ Spiralλ,−λ[1,−1]. The set �Wλ,θ := gλ,θ(Δ) is called a canonical spiral
wedge with vertex at the origin.

An immediate consequence of Theorem 2.2 and [1, Theorem 1] is the following asser-
tion.

Theorem 2.4. (i) If h∈ Spiralμ[1], then the canonical spiral wedge ˜Wλ,θ∗ , where

θ∗ := lim
r→1−

argh1/μ(r), (2.34)

is the smallest one which contains the image h(Δ).

(ii) If h∈ Spiralμ,ν[1,−1], then the canonical spiral wedge ˜Wλ,θ∗ , where

θ∗ := lim
r→1−

argh1/μ(−r), (2.35)

is contained in h(Δ), and there is no canonical spiral wedge W̃ �= ˜Wλ,θ∗ with ˜Wλ,θ∗ ⊂ W̃ ⊂
h(Δ).

Conversely, if h ∈ Spiralμ[1] and the image h(Δ) contains some canonical spiral wedge,
then there are ν (ν=−rμ, 0 < r ≤ 1) and an automorphism Ψ of the open unit disk Δ such
that (1/h(Ψ(0)))h◦Ψ∈ Spiralμ,ν[1,−1].

3. Functions convex in one direction

The class of functions we consider here has been studied by several mathematicians (see,
e.g., Ciozda [3, 4], Hengartner and Schober [11], Lecko [12]) as a subclass of functions
defined by Robertson in [14].

Definition 3.1. Say that a univalent function h∈Hol(Δ,C) normalized by

h(0)= 0 (3.1)

is convex in the positive direction of the real axis if for each z ∈ Δ and t > 0,

h(z) + t ∈ h(Δ), lim
t→∞h

−1(h(z) + t
)= 1. (3.2)

The class of those functions is denoted by Σ[1].

Here we find the maximal width size of the image for functions of this class using an
angular limit characteristic of functions under consideration. In other words, given such
a function, we find the minimal horizontal strip which contains its image. The following
question is also natural but more complicated: characterize those functions convex in the
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positive direction of the real axis whose images contain a whole (two-sided) strip and
find the size (width) of this strip. We solve this problem for functions having maximal
horizontal strips of finite size. The problem is still open for the general case.

To proceed, we need the following lemma.

Lemma 3.2 (cf. [3, 4, 11]). Let h be a univalent function normalized by (3.1). Then h∈ Σ[1]
if and only if

Re
(
(1− z)2h′(z)

)≥ 0. (3.3)

Proof. Let h ∈ Σ[1]. By Definition 3.1, for each t ≥ 0, the holomorphic function Ft de-
fined by

Ft(z)= h−1(h(z) + t
)

(3.4)

maps the unit disk into itself. It is easy to verify that the family � = {Ft}t≥0 forms a
continuous semigroup of holomorphic self-mappings of the unit disk.

Differentiating this semigroup at t = 0+, we get

f (z) :=−∂Ft(z)
∂t

∣∣∣∣
t=0+

=− 1
h′(z)

, (3.5)

where f is the so-called infinitesimal generator f of � (see, e.g., [16]). By (3.2) the point
τ = 1 is the Denjoy-Wolff point of � (see, e.g., [2, 16]). Therefore, its generator can be
represented by the Berkson-Porta formula (see [2]):

f (z)=−(1− z)2p(z), where Re p(z)≥ 0. (3.6)

Comparing (3.5) and (3.6) proves inequality (3.3).
Conversely, suppose now that h satisfies (3.3). Then the function p(z)= 1/(1− z)2h′(z)

has a nonnegative real part.
If p(z)= ib, b ∈R, then h(z)= ib/(1− z) belongs to the class Σ[1].
If Re p(z) > 0, z ∈ Δ, then by a result of Berkson and Porta (see [2]), the function f de-

fined by (3.6) is the generator of a semigroup �= {Ft}t≥0 of holomorphic self-mappings
of the unit disk. This semigroup can be defined by the Cauchy problem:

∂Ft(z)
∂t

+ f
(
Ft(z)

)= 0,

F0(z)= z, z ∈D.

(3.7)

Substituting here f (z)
(=−(1− z)2p(z)

)=−1/h′(z), we get

h′
(
Ft(z)

)∂Ft(z)
∂t

= 1. (3.8)

Integrating the latter expression on the interval [0, t], we get

h
(
Ft(z)

)= h(z) + t (i.e., h(z) + t ∈ h(Δ)). (3.9)
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Since � has a Denjoy-Wolff point at 1, it follows that

lim
t→∞h

−1(h(z) + t
)(= lim

t→∞Ft(z)
)
= 1. (3.10)

This completes our proof. �

Lemma 3.3. Let h∈ Σ[1]. Then the limit

∠ lim
z→1

(1− z)h′(z)= μ (3.11)

is either a positive real number or infinity.

Proof. By Lemma 3.2, the function

p(z)= 1
(1− z)2h′(z)

(3.12)

is either of positive real part or an imaginary constant. In the latter case, p(z)= ib, b∈R,
and the assertion is evident. Otherwise, one can write

1
(1− z)h′(z)

= (1− z)p(z). (3.13)

It was proved in [8] (see also [17]) that for any function p with positive real part, the
angular limit ∠ limz→1(1− z)p(z) exists and is a nonnegative real number. This proves
our assertion. �

Definition 3.4. Say that a univalent function h belongs to the class Σμ[1] with μ, 0 < μ≤
∞, if it is of the class Σ[1] and the limit (3.11) is equal to μ.

Thus by Lemma 3.3, we have Σ[1]=⋃0<μ≤∞Σμ[1].

Example 3.5. The function

h1(z)= log
1 + z

1− z
(3.14)

belongs to Σ1[1], while the function

h2(z)= z

1− z
(3.15)

belongs to Σ∞[1].

Definition 3.6. Say that a univalent function h belongs to the class Σμ,ν[1,−1] if it is of the
class Σμ[1] and satisfies the conditions

∠ lim
z→−1

Reh(z)=−∞,

∠ lim
z→−1

(z+ 1)h′(z)= ν.
(3.16)
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Theorem 3.7. (i) If h∈ Σμ[1], μ∈ (0,∞), then the horizontal strip

S∗ =
{
z :
∣∣Imz− a∗

∣∣ < πμ

2

}
with a∗ = lim

r→1−
Imh(r) (3.17)

is the smallest one which contains the image h(Δ). If h∈ Σ∞[1], then there is no horizontal
strip of finite width containing h(Δ).

(ii) If h∈ Σμ,ν[1,−1], μ∈ (0,∞), then the horizontal strip

S∗ =
{
z :
∣∣Imz− a∗

∣∣ < πν

2

}
with a∗ = lim

r→1−
Imh(−r) (3.18)

is contained in h(Δ), and there is no strip S �= S∗ with S∗ ⊂ S ⊂ h(Δ). Consequently, ν ∈
(0,μ].

Conversely, if h∈ Σμ[1], μ∈ (0,∞), and the image h(Δ) contains some open horizontal
strip, then there are ν (0 < ν≤ μ) and an automorphism Ψ of the open unit disk Δ such that
h(Ψ(·))−h(Ψ(0)) belongs to Σμ,ν[1,−1] (see Figure 3.1).

Proof. (i) Suppose that h∈ Σμ[1], μ∈ (0,∞), that is, the limit (3.11) is finite. By Lemma
3.2, the function p(z) = (1− z)2h′(z) is of nonnegative real part. Hence, there exists a
self-mapping ω(z) such that

(1− z)2h′(z)= 4μ
1−ω(z)
1 +ω(z)

. (3.19)

Thus

1−ω(z)
1− z

= 1 +ω(z)
4

(1− z)h′(z)
μ

. (3.20)

Since the right-hand side of this equality is bounded on each nontangential approach
region at the point z = 1, one concludes that ∠ limz→1ω(z)= 1. Now we calculate

∠ lim
z→1

1−ω(z)
1− z

=∠ lim
z→1

1 +ω(z)
4

(1− z)h′(z)
μ

= 1
2
∈ (0,1). (3.21)

Consider the function

g(z)= exp
[
− 1
μ
h(z)

]
. (3.22)

It satisfies

−g′(z)
g(z)

(1− z)2 = 4
1−ω(z)
1 +ω(z)

. (3.23)

So, by a result of Lecko and Lyzzaik [13], the function g is univalent and starlike with
respect to a boundary point. Since

∠ lim
z→1

(z− 1)g′(z)
g(z)

= 1, (3.24)
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Figure 3.1. Width distortion.

we see that g ∈ Starλ[1] with λ = 1. By Theorem 2.2, the smallest wedge which contains
the image g(Δ) is defined by (2.2):

W∗ =
{
w ∈ C :

∣∣argw− θ+
∣∣ < π

2

}
, (3.25)

where

θ∗ = lim
r→1−

argg(r)= lim
r→1−

− Imh(r)
μ

. (3.26)

Therefore the smallest horizontal strip which contains the image of function h(z) =
−μ log g(z) is defined by (3.17).

Suppose now that h ∈ Σ[1] and its image is contained in a horizontal strip of finite
width πμ (0 < μ <∞). In this case, the function g defined by (3.22) is univalent and star-
like with respect to a boundary point. Moreover, since the minimal strip which contains
the image h(Δ) is of width πμ, the minimal wedge containing g(Δ) is of angle π. Once
again by Theorem 2.2, g ∈ Starλ[1] with λ= 1; hence it satisfies the Visser-Ostrowski con-
dition

∠ lim
z→1

(z− 1)g′(z)
g(z)

= 1. (3.27)

Since

(z− 1)g′(z)
g(z)

= (1− z)h′(z)
μ

(3.28)

and 0 < μ <∞, we have that h∈ Σμ[1].
(ii) As above, define a starlike function g by (3.22). It is clear that limr→1− g(−r)=∞.

Since g is univalent, we conclude that ∠ limz→−1 g(z)=∞. Furthermore,

∠ lim
z→−1

(z+ 1)g′(z)
g(z)

=∠ lim
z→−1

−(z+ 1)h′(z)
μ

=− ν

μ
. (3.29)

So, g ∈ Star1,−ν/μ[1,−1]. As we mentioned above, in this case −1 ≤ −ν/μ ≤ 0, that is,
ν∈ [0,μ]. By Theorem 2.2, the wedge

W∗ =
{
w :
∣∣argw− θ∗

∣∣ < νπ

2μ

}
with θ∗ = lim

r→1−
argg(−r) (3.30)
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is contained in g(Δ), and there is no wedge W �=W∗ with W∗ ⊂W ⊂ g(Δ). Since h(z)=
−μ log g(z), we have that the limit a∗ = limx→−1+ Imh(x)=−μθ∗ exists. In addition, the
strip S∗ defined by (3.18) is contained in h(Δ), and there is no strip S �= S∗ with S∗ ⊂ S⊂
h(Δ).

Conversely, suppose that h ∈ Σμ[1] and its image h(Δ) contains an open strip. Then
the function g defined by (3.22) belongs to Starμ[1] and its image g(Δ) contains an open
wedge. By Theorem 2.2, we conclude that there are a negative number ν and an automor-
phism Ψ such that the function g1 := (1/g(Ψ(0)))g ◦Ψ belongs to Starμ,ν[1,−1]. In this
case,

h
(
Ψ(z)

)−h
(
Ψ(0)

)=−μ log g1(z)∈ Σμ,ν[1,−1]. (3.31)

This completes our proof. �

Remark 3.8. Unfortunately, the problem of finding a maximal strip which is contained in
the image h(Δ) is still open when h∈ Σ∞[1].

This problem is a key to solve the following important problem in the theory of semi-
groups of parabolic type.

Given a semigroup �= {Ft}t�0 of holomorphic self-mappings of Δ, find an open sub-
set Ω∈ Δ such that �⊂ Aut(Ω).

If �= {Ft}t�0 has a Denjoy-Wolff point τ ∈ ∂Δ of parabolic type, that is, F′t (τ)= 1 for
all t ≥ 0, then there is a solution of Abel’s functional equation

h
(
Ft(z)

)= h(z) + t (3.32)

(see, e.g., [10]) which is of the class Σ∞[1]. If � = {Ft}t�0 has a repelling boundary fixed
point, then this problem is equivalent to the existence of an open strip which is contained
in h(Δ).
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