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Let (un) be a sequence of real numbers, L an additive limitable method with some prop-
erty, and � and � different spaces of sequences related to each other. We prove that if the
classical control modulo of the oscillatory behavior of (un) in � is a Tauberian condition
for L, then the general control modulo of the oscillatory behavior of integer order m of
(un) in � or � is also a Tauberian condition for L.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, un =O(1) and un = o(1) denote O(1) as n→∞ and o(1) as n→∞, respec-
tively. Let �, �, �, and � denote the space of sequences converging to 0, bounded, slowly
oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of (un) is denoted by ω(0)
n (u)=

nΔun and the general control modulo of the oscillatory behavior of order m of (un) is

defined by ω(m)
n (u)= ω(m−1)

n (u)− σ (1)
n (ω(m−1)(u)), where

Δun =
⎧
⎪⎨

⎪⎩

un−un−1, n≥ 1,

u0, n= 0,
σ (1)
n (u)= 1

n+ 1

n∑

k=0

uk. (1.1)

Tauber [10] proved that if (un) is Abel limitable and

(
ω(0)
n (u)

)∈�, (1.2)

then (un) is convergent. The condition (1.2) on the sequence (un) is called a Taube-
rian condition for Abel limitable method and the resulting theorem is called a Tauberian
theorem.
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Tauber [10] further proved that the condition

(
σ (1)
n

(
ω(0)(u)

))∈� (1.3)

is also a Tauberian condition. It was shown by Littlewood [6] that the condition (1.2)
could be replaced by

(
ω(0)
n (u)

)∈�. (1.4)

Hardy and Littlewood [5] improved Littlewood’s theorem replacing (1.4) by onesided

boundedness of (ω(0)
n (u)).

Stanojević [9] reformulated the definition of slow oscillation given by Schmidt [8] in a
more suitable form and then proved that the conditions (1.2) and (1.3) could be replaced
by

(
ω(0)
n (u)

)∈�, (1.5)
(
σ (1)
n

(
ω(0)(u)

))∈�, (1.6)

respectively.
A generalization of slow oscillation, moderate oscillation, was introduced by Stano-

jević and it was proved by Dik [4] that (1.5) could be replaced by

(
ω(0)
n (u)

)∈�, (1.7)

and (1.6) could not be replaced by

(
σ (1)
n

(
ω(0)(u)

))∈�. (1.8)

Recently, C. anak and Totur [3] have shown that for any nonnegative integer m≥ 1,

(
ω(m)
n (u)

)∈� (1.9)

is a Tauberian condition for Abel limitable method.
Meyer-König and Tietz [7] proved that if (1.2) is a Tauberian conditions for an additive

and regular limitability method, then (1.3) is a Tauberian condition for L. C. anak et al. [1]
extended and generalized Meyer-König and Tietz’s [7] result and obtained the following
theorems for an additive and (C,1) regular method L.

Theorem 1.1. If (ω(0)
n (u))∈� is a Tauberian condition for an additive and (C,1) regular

limitable method L, then (ω(1)
n (u))∈� is a Tauberian condition for L.

Theorem 1.2. If (ω(0)
n (u))∈� is a Tauberian condition for an additive and (C,1) regular

limitable method L, then (ω(1)
n (u))∈� is a Tauberian condition for L.

Let � and � be distinct spaces of sequences related to each other. In this paper, we
prove that if the classical control modulo of the oscillatory behavior of (un) in � is a
Tauberian condition for an additive and (C,1) limitable method L, then the general con-
trol modulo of the oscillatory behavior of integer order m of (un) in � or � is also a
Tauberian condition for L.
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2. Notations and definitions

Throughout this paper, let u= (un) be a sequence of real numbers. For each integer m≥ 0

and for all nonnegative integers n denote σ (m)
n (u) by

σ (m)
n (u)=

⎧
⎪⎪⎨

⎪⎪⎩

1
n+ 1

n∑

k=0

σ (m−1)
k (u)= u0 +

n∑

k=1

V (m−1)
k (Δu)

k
, m≥ 1,

un, m= 0,

(2.1)

where

V (m)
n (Δu)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ (1)
n

(
V (m−1)(Δu)

)
, m≥ 1,

1
n+ 1

n∑

k=0

kΔuk, m= 0.
(2.2)

The identity

un− σ (1)
n (u)=V (0)

n (Δu) (2.3)

is well known and will be extensively used. We define inductively for each integer m≥ 1
and for all nonnegative integers n,

(nΔ)mun = nΔ
(
(nΔ)m−1un

)
, where (nΔ)0un = un. (2.4)

It is proved in [2] that for each integer m≥ 1,

ω(m)
n (u)= (nΔ)mV (m−1)

n (Δu). (2.5)

Definition 2.1. A sequence u = (un) is Abel limitable to s if the limit limx→1−(1 −
x)
∑∞

n=0unx
n = s.

Definition 2.2. A sequence u= (un) is L limitable to s if L− limn un = s.

A limitation method L is called additive if L− limn un = s and L− limn vn = t imply
that L− limn(un + vn) = s+ t. A limitation method L is called regular if the L− limit of
every convergent sequence is equal to its limit. L is called (C,1) regular if L− limn un = s

implies L− limn σ
(1)
n (u)= s. It is clear that every regular limitable method is (C,1) regular.

Definition 2.3. A sequence u = (un) is one-sidedly bounded if for some C ≥ 0 and for
each nonnegative integer n, un ≥−C.

Definition 2.4. A sequence u= (un) is slowly oscillating [9] if

lim
λ→1+

lim
n

max
n+1≤k≤[λn]

∣
∣
∣
∣
∣

k∑

j=n+1

Δuj

∣
∣
∣
∣
∣
= 0, (2.6)

where [λn] denotes the integer part of λn.
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A sequence u= (un)∈� if and only if (V (0)
n (Δu))∈� and (V (0)

n (Δu))∈� (see [4]).
The next definition is a generalization of slow oscillation.

Definition 2.5. A sequence u= (un) is moderately oscillating [9] if for λ > 1,

lim
n

max
n+1≤k≤[λn]

∣
∣
∣
∣
∣

k∑

j=n+1

Δuj

∣
∣
∣
∣
∣
<∞. (2.7)

A sequence (un)∈� if and only if (V (0)
n (Δu))∈� (see [4]).

3. Results and proofs

Theorem 3.1. If (ω(0)
n (u))∈� is a Tauberian condition for L, then for any integer m≥ 1,

(ω(m)
n (u))∈� is also a Tauberian condition for L.

Proof. Assume that (ω(0)
n (u)) ∈ � is a Tauberian condition for L. Let L− limn un = s.

Since L is (C,1) regular, it follows by (2.3) that L− limnV
(0)
n (Δu) = 0. It is obvious that

L− limn un = s implies L− limn(nΔ)m−1V
(m−1)
n (Δu)= 0. Since

(
ω(m)
n (u)

)= (nΔ((nΔ)m−1V
(m−1)
n (Δu)

))∈�, (3.1)

by assumption, we have

(nΔ)m−1V
(m−1)
n (Δu)= o(1). (3.2)

By the same reasoning, we deduce that

(nΔ)m−1V
(m−1)
n (Δu)= nΔ

(
(nΔ)m−2V

(m−1)
n (Δu)

)= o(1) (3.3)

and L− limn(nΔ)m−2V
(m−1)
n (Δu)= 0. Again by assumption, we have

(nΔ)m−2V
(m−1)
n (Δu)= o(1). (3.4)

From the identity

(nΔ)m−1V
(m−1)
n (Δu)= (nΔ)m−2V

(m−2)
n (Δu)− (nΔ)m−2V

(m−1)
n (Δu), (3.5)

(3.2), and (3.4), we have

(nΔ)m−2V
(m−2)
n (Δu)= o(1). (3.6)

Continuing in this vein, we have

nΔV (1)
n (Δu)= o(1). (3.7)

Since L− limnV
(1)
n (Δu)= 0, it follows by (3.7) that

V (1)
n (Δu)= o(1). (3.8)
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From (3.7) and (3.8), we have V (0)
n (Δu) = o(1). L − limn σ

(1)
n (u) = s and V (0)

n (Δu) =
nΔσ (1)

n (u)= o(1) imply that limn σ
(1)
n (u)= s. Hence, by (2.3), (un) converges to s. �

Theorem 3.2. If (ω(0)
n (u))∈� is a Tauberian condition for L, then for any integer m≥ 1,

(ω(m)
n (u))∈� is also a Tauberian condition for L.

Proof. Assume that ω(0)
n (u) = O(1) is a Tauberian condition for L. Let L− limn un = s.

Since L− limn(nΔ)m−1V
(m−1)
n (Δu) = 0 and ω(m)

n (u) = nΔ((nΔ)m−1V
(m−1)
n (Δu)) = O(1),

(nΔ)m−1V
(m−1)
n (Δu) = o(1) by assumption. The rest of the proof is as in the proof of

Theorem 3.1. �

Theorem 3.3. If for some C ≥ 0, ω(0)
n (u)≥−C is a Tauberian condition for L, then for any

integer m≥ 1, ω(m)
n (u)≥−C is also a Tauberian condition for L.

Proof. Assume that ω(0)
n (u) ≥ −C for some C ≥ 0 is a Tauberian condition for L. Let

L− limn un = s. Since L− limn(nΔ)m−1V
(m−1)
n (Δu)= 0 and ω(m)

n (u)= nΔ((nΔ)m−1V
(m−1)
n

(Δu))≥−C, (nΔ)m−1V
(m−1)
n (Δu)= o(1) by assumption. The rest of the proof is as in the

proof of Theorem 3.1. �

We now prove that if (ω(0)
n (u))∈� (or ∈�) is a Tauberian condition for L, then for

any integer m≥ 1, (ω(m)
n (u))∈� (or ∈�) is a Tauberian condition for L, respectively.

Theorem 3.4. If (ω(0)
n (u))∈� is a Tauberian condition for L, then for any integer m≥ 1,

(ω(m)
n (u))∈� is also a Tauberian condition for L.

Proof. It is sufficient to note that ω(m)
n (u) = (nΔ)mV

(m−1)
n (Δu) = V (0)

n (Δω(m−1)(u))

=O(1) implies (ω(m−1)
n (u))∈�. Proof now follows from Theorem 3.1. �

Theorem 3.5. If (ω(0)
n (u))∈� is a Tauberian condition for L, then for any integer m≥ 1,

(ω(m)
n (u))∈� is also a Tauberian condition for L.

Proof. It is sufficient to note that (ω(m)
n (u)) ∈� implies V (0)

n (Δω(m)(u)) = ω(m+1)
n (u) =

O(1). Proof now follows from Theorem 3.4. �

Remark 3.6. Because of the inclusion � ⊂ � ⊂�, the condition “belonging to �” can
be replaced by “belonging to �” or “belonging to �.”

In Theorems 3.1, 3.2, and 3.3, taking m= 1 and replacing � by �, we have [1, Theo-
rems 4.1, 4.2, and 4.4] by C. anak et al.
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Ümıt Totur: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey
E-mail address: utotur@adu.edu.tr

mailto:icanak@adu.edu.tr
mailto:utotur@adu.edu.tr

	1. Introduction
	2. Notations and definitions
	3. Results and proofs
	Acknowledgment
	References

