TAUBERIAN CONDITIONS FOR A GENERAL LIMITABLE METHOD

İBRAHİM ÇANAK AND ÜMİT TOTUR

Received 16 July 2006; Revised 21 August 2006; Accepted 21 August 2006

Let (u_n) be a sequence of real numbers, *L* an additive limitable method with some property, and \mathcal{U} and \mathcal{V} different spaces of sequences related to each other. We prove that if the classical control modulo of the oscillatory behavior of (u_n) in \mathcal{U} is a Tauberian condition for *L*, then the general control modulo of the oscillatory behavior of integer order *m* of (u_n) in \mathcal{U} or \mathcal{V} is also a Tauberian condition for *L*.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In this paper, $u_n = O(1)$ and $u_n = o(1)$ denote O(1) as $n \to \infty$ and o(1) as $n \to \infty$, respectively. Let $\mathcal{N}, \mathcal{B}, \mathcal{G}$, and \mathcal{M} denote the space of sequences converging to 0, bounded, slowly oscillating, and moderately oscillating, respectively.

The classical control modulo of the oscillatory behavior of (u_n) is denoted by $\omega_n^{(0)}(u) = n\Delta u_n$ and the general control modulo of the oscillatory behavior of order *m* of (u_n) is defined by $\omega_n^{(m)}(u) = \omega_n^{(m-1)}(u) - \sigma_n^{(1)}(\omega^{(m-1)}(u))$, where

$$\Delta u_n = \begin{cases} u_n - u_{n-1}, & n \ge 1, \\ u_0, & n = 0, \end{cases} \qquad \sigma_n^{(1)}(u) = \frac{1}{n+1} \sum_{k=0}^n u_k. \tag{1.1}$$

Tauber [10] proved that if (u_n) is Abel limitable and

$$\left(\omega_n^{(0)}(u)\right) \in \mathcal{N},\tag{1.2}$$

then (u_n) is convergent. The condition (1.2) on the sequence (u_n) is called a Tauberian condition for Abel limitable method and the resulting theorem is called a Tauberian theorem.

Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2006, Article ID 82342, Pages 1–6 DOI 10.1155/IJMMS/2006/82342

2 Tauberian conditions for a general limitable method

Tauber [10] further proved that the condition

$$\left(\sigma_n^{(1)}(\omega^{(0)}(u))\right) \in \mathcal{N} \tag{1.3}$$

is also a Tauberian condition. It was shown by Littlewood [6] that the condition (1.2) could be replaced by

$$\left(\omega_n^{(0)}(u)\right) \in \mathcal{B}.\tag{1.4}$$

Hardy and Littlewood [5] improved Littlewood's theorem replacing (1.4) by onesided boundedness of $(\omega_n^{(0)}(u))$.

Stanojević [9] reformulated the definition of slow oscillation given by Schmidt [8] in a more suitable form and then proved that the conditions (1.2) and (1.3) could be replaced by

$$\left(\omega_n^{(0)}(u)\right) \in \mathcal{G},\tag{1.5}$$

$$\left(\sigma_n^{(1)}(\omega^{(0)}(u))\right) \in \mathcal{G},\tag{1.6}$$

respectively.

A generalization of slow oscillation, moderate oscillation, was introduced by Stanojević and it was proved by Dik [4] that (1.5) could be replaced by

$$\left(\omega_n^{(0)}(u)\right) \in \mathcal{M},\tag{1.7}$$

and (1.6) could not be replaced by

$$\left(\sigma_n^{(1)}(\omega^{(0)}(u))\right) \in \mathcal{M}.\tag{1.8}$$

Recently, Canak and Totur [3] have shown that for any nonnegative integer $m \ge 1$,

$$\left(\omega_n^{(m)}(u)\right) \in \mathcal{M} \tag{1.9}$$

is a Tauberian condition for Abel limitable method.

Meyer-König and Tietz [7] proved that if (1.2) is a Tauberian conditions for an additive and regular limitability method, then (1.3) is a Tauberian condition for *L*. Çanak et al. [1] extended and generalized Meyer-König and Tietz's [7] result and obtained the following theorems for an additive and (C, 1) regular method *L*.

THEOREM 1.1. If $(\omega_n^{(0)}(u)) \in \mathcal{G}$ is a Tauberian condition for an additive and (C, 1) regular limitable method L, then $(\omega_n^{(1)}(u)) \in \mathcal{G}$ is a Tauberian condition for L.

THEOREM 1.2. If $(\omega_n^{(0)}(u)) \in \mathcal{B}$ is a Tauberian condition for an additive and (C, 1) regular limitable method L, then $(\omega_n^{(1)}(u)) \in \mathcal{B}$ is a Tauberian condition for L.

Let \mathcal{U} and \mathcal{V} be distinct spaces of sequences related to each other. In this paper, we prove that if the classical control modulo of the oscillatory behavior of (u_n) in \mathcal{U} is a Tauberian condition for an additive and (C,1) limitable method L, then the general control modulo of the oscillatory behavior of integer order m of (u_n) in \mathcal{U} or \mathcal{V} is also a Tauberian condition for L.

2. Notations and definitions

Throughout this paper, let $u = (u_n)$ be a sequence of real numbers. For each integer $m \ge 0$ and for all nonnegative integers n denote $\sigma_n^{(m)}(u)$ by

$$\sigma_n^{(m)}(u) = \begin{cases} \frac{1}{n+1} \sum_{k=0}^n \sigma_k^{(m-1)}(u) = u_0 + \sum_{k=1}^n \frac{V_k^{(m-1)}(\Delta u)}{k}, & m \ge 1, \\ u_n, & m = 0, \end{cases}$$
(2.1)

where

$$V_n^{(m)}(\Delta u) = \begin{cases} \sigma_n^{(1)} (V^{(m-1)}(\Delta u)), & m \ge 1, \\ \frac{1}{n+1} \sum_{k=0}^n k \Delta u_k, & m = 0. \end{cases}$$
(2.2)

The identity

$$u_n - \sigma_n^{(1)}(u) = V_n^{(0)}(\Delta u)$$
(2.3)

is well known and will be extensively used. We define inductively for each integer $m \ge 1$ and for all nonnegative integers n,

$$(n\Delta)_m u_n = n\Delta((n\Delta)_{m-1}u_n), \text{ where } (n\Delta)_0 u_n = u_n.$$
 (2.4)

It is proved in [2] that for each integer $m \ge 1$,

$$\omega_n^{(m)}(u) = (n\Delta)_m V_n^{(m-1)}(\Delta u).$$
(2.5)

Definition 2.1. A sequence $u = (u_n)$ is Abel limitable to s if the limit $\lim_{x\to 1^-} (1 - x) \sum_{n=0}^{\infty} u_n x^n = s$.

Definition 2.2. A sequence $u = (u_n)$ is L limitable to s if $L - \lim_n u_n = s$.

A limitation method *L* is called additive if $L - \lim_n u_n = s$ and $L - \lim_n v_n = t$ imply that $L - \lim_n (u_n + v_n) = s + t$. A limitation method *L* is called regular if the *L* - limit of every convergent sequence is equal to its limit. *L* is called (*C*, 1) regular if $L - \lim_n u_n = s$ implies $L - \lim_n \sigma_n^{(1)}(u) = s$. It is clear that every regular limitable method is (*C*, 1) regular.

Definition 2.3. A sequence $u = (u_n)$ is one-sidedly bounded if for some $C \ge 0$ and for each nonnegative integer n, $u_n \ge -C$.

Definition 2.4. A sequence $u = (u_n)$ is slowly oscillating [9] if

$$\lim_{\lambda \to 1^+} \overline{\lim_{n}} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^k \Delta u_j \right| = 0,$$
(2.6)

where $[\lambda n]$ denotes the integer part of λn .

4 Tauberian conditions for a general limitable method

A sequence $u = (u_n) \in \mathcal{G}$ if and only if $(V_n^{(0)}(\Delta u)) \in \mathcal{G}$ and $(V_n^{(0)}(\Delta u)) \in \mathfrak{B}$ (see [4]). The next definition is a generalization of slow oscillation.

Definition 2.5. A sequence $u = (u_n)$ is moderately oscillating [9] if for $\lambda > 1$,

$$\overline{\lim_{n}} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^{k} \Delta u_{j} \right| < \infty.$$
(2.7)

A sequence $(u_n) \in \mathcal{M}$ if and only if $(V_n^{(0)}(\Delta u)) \in \mathcal{B}$ (see [4]).

3. Results and proofs

THEOREM 3.1. If $(\omega_n^{(0)}(u)) \in \mathcal{M}$ is a Tauberian condition for L, then for any integer $m \ge 1$, $(\omega_n^{(m)}(u)) \in \mathcal{M}$ is also a Tauberian condition for L.

Proof. Assume that $(\omega_n^{(0)}(u)) \in \mathcal{M}$ is a Tauberian condition for *L*. Let $L - \lim_n u_n = s$. Since *L* is (C, 1) regular, it follows by (2.3) that $L - \lim_n V_n^{(0)}(\Delta u) = 0$. It is obvious that $L - \lim_n u_n = s$ implies $L - \lim_n (n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = 0$. Since

$$\left(\omega_n^{(m)}(u)\right) = \left(n\Delta\left((n\Delta)_{m-1}V_n^{(m-1)}(\Delta u)\right)\right) \in \mathcal{M},\tag{3.1}$$

by assumption, we have

$$(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = o(1).$$
(3.2)

By the same reasoning, we deduce that

$$(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = n\Delta((n\Delta)_{m-2}V_n^{(m-1)}(\Delta u)) = o(1)$$
(3.3)

and $L - \lim_{n \to \infty} (n\Delta)_{m-2} V_n^{(m-1)}(\Delta u) = 0$. Again by assumption, we have

$$(n\Delta)_{m-2}V_n^{(m-1)}(\Delta u) = o(1).$$
(3.4)

From the identity

$$(n\Delta)_{m-1}V_n^{(m-1)}(\Delta u) = (n\Delta)_{m-2}V_n^{(m-2)}(\Delta u) - (n\Delta)_{m-2}V_n^{(m-1)}(\Delta u),$$
(3.5)

(3.2), and (3.4), we have

$$(n\Delta)_{m-2}V_n^{(m-2)}(\Delta u) = o(1).$$
(3.6)

Continuing in this vein, we have

$$n\Delta V_n^{(1)}(\Delta u) = o(1).$$
 (3.7)

Since $L - \lim_{n} V_n^{(1)}(\Delta u) = 0$, it follows by (3.7) that

$$V_n^{(1)}(\Delta u) = o(1). \tag{3.8}$$

From (3.7) and (3.8), we have $V_n^{(0)}(\Delta u) = o(1)$. $L - \lim_n \sigma_n^{(1)}(u) = s$ and $V_n^{(0)}(\Delta u) = n\Delta\sigma_n^{(1)}(u) = o(1)$ imply that $\lim_n \sigma_n^{(1)}(u) = s$. Hence, by (2.3), (u_n) converges to s.

THEOREM 3.2. If $(\omega_n^{(0)}(u)) \in \mathfrak{B}$ is a Tauberian condition for L, then for any integer $m \ge 1$, $(\omega_n^{(m)}(u)) \in \mathfrak{B}$ is also a Tauberian condition for L.

Proof. Assume that $\omega_n^{(0)}(u) = O(1)$ is a Tauberian condition for *L*. Let $L - \lim_n u_n = s$. Since $L - \lim_n (n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = 0$ and $\omega_n^{(m)}(u) = n\Delta((n\Delta)_{m-1} V_n^{(m-1)}(\Delta u)) = O(1)$, $(n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = o(1)$ by assumption. The rest of the proof is as in the proof of Theorem 3.1.

THEOREM 3.3. If for some $C \ge 0$, $\omega_n^{(0)}(u) \ge -C$ is a Tauberian condition for L, then for any integer $m \ge 1$, $\omega_n^{(m)}(u) \ge -C$ is also a Tauberian condition for L.

Proof. Assume that $\omega_n^{(0)}(u) \ge -C$ for some $C \ge 0$ is a Tauberian condition for *L*. Let $L - \lim_n u_n = s$. Since $L - \lim_n (n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = 0$ and $\omega_n^{(m)}(u) = n\Delta((n\Delta)_{m-1} V_n^{(m-1)}(\Delta u)) \ge -C$, $(n\Delta)_{m-1} V_n^{(m-1)}(\Delta u) = o(1)$ by assumption. The rest of the proof is as in the proof of Theorem 3.1.

We now prove that if $(\omega_n^{(0)}(u)) \in \mathcal{M}$ (or $\in \mathcal{B}$) is a Tauberian condition for *L*, then for any integer $m \ge 1$, $(\omega_n^{(m)}(u)) \in \mathcal{B}$ (or $\in \mathcal{M}$) is a Tauberian condition for *L*, respectively.

THEOREM 3.4. If $(\omega_n^{(0)}(u)) \in \mathcal{M}$ is a Tauberian condition for L, then for any integer $m \ge 1$, $(\omega_n^{(m)}(u)) \in \mathcal{B}$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $\omega_n^{(m)}(u) = (n\Delta)_m V_n^{(m-1)}(\Delta u) = V_n^{(0)}(\Delta \omega^{(m-1)}(u))$ = O(1) implies $(\omega_n^{(m-1)}(u)) \in \mathcal{M}$. Proof now follows from Theorem 3.1.

THEOREM 3.5. If $(\omega_n^{(0)}(u)) \in \mathfrak{B}$ is a Tauberian condition for L, then for any integer $m \ge 1$, $(\omega_n^{(m)}(u)) \in \mathcal{M}$ is also a Tauberian condition for L.

Proof. It is sufficient to note that $(\omega_n^{(m)}(u)) \in \mathcal{M}$ implies $V_n^{(0)}(\Delta \omega^{(m)}(u)) = \omega_n^{(m+1)}(u) = O(1)$. Proof now follows from Theorem 3.4.

Remark 3.6. Because of the inclusion $\mathcal{N} \subset \mathcal{G} \subset \mathcal{M}$, the condition "belonging to \mathcal{M} " can be replaced by "belonging to \mathcal{G} " or "belonging to \mathcal{N} ."

In Theorems 3.1, 3.2, and 3.3, taking m = 1 and replacing \mathcal{M} by \mathcal{G} , we have [1, Theorems 4.1, 4.2, and 4.4] by Canak et al.

Acknowledgment

This research was supported by Adnan Menderes University under Grant FEF-06011.

References

- I. Çanak, M. Dik, and F. Dik, On a Theorem of W. Meyer-König and H. Tietz, International Journal of Mathematics and Mathematical Sciences 2005 (2005), no. 15, 2491–2496.
- [2] İ. Çanak and Ü. Totur, A Tauberian theorem with a generalized one-sided condition, preprint, 2005.

- 6 Tauberian conditions for a general limitable method
- [3] _____, Tauberian theorems for Abel limitable sequences with controlled oscillatory behavior, preprint, 2006.
- [4] M. Dik, *Tauberian theorems for sequences with moderately oscillatory control modulo*, Mathematica Moravica 5 (2001), 57–94.
- [5] G. H. Hardy and J. E. Littlewood, *Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive*, Proceedings of the London Mathematical Society 2 (1914), no. 13, 174–191.
- [6] J. E. Littlewood, *The converse of Abel's theorem on power series*, Proceedings of the London Mathematical Society 2 (1911), no. 9, 434–448.
- [7] W. Meyer-König and H. Tietz, On Tauberian conditions of type o, Bulletin of the American Mathematical Society 73 (1967), 926–927.
- [8] R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Mathematische Zeitschrift 22 (1925), no. 1, 89–152.
- [9] Č. V. Stanojević, Analysis of Divergence: Control and Management of Divergent Processes, edited by İ. Çanak, Graduate Research Seminar Lecture Notes, University of Missouri-Rolla, Missouri, 1998.
- [10] A. Tauber, *Ein Satz aus der Theorie der unendlichen Reihen*, Monatshefte für Mathematik **8** (1897), 273–277.

İbrahım Çanak: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey *E-mail address*: icanak@adu.edu.tr

Ümit Totur: Department of Mathematics, Adnan Menderes University, 09010 Aydin, Turkey *E-mail address*: utotur@adu.edu.tr