INVERSION FORMULAS FOR RIEMANN-LIOUVILLE TRANSFORM AND ITS DUAL ASSOCIATED WITH SINGULAR PARTIAL DIFFERENTIAL OPERATORS

C. BACCAR, N. B. HAMADI, AND L. T. RACHDI

Received 21 May 2005; Revised 27 September 2005; Accepted 20 October 2005

We define Riemann-Liouville transform \mathscr{R}_{α} and its dual ${ }^{t} \mathscr{R}_{\alpha}$ associated with two singular partial differential operators. We establish some results of harmonic analysis for the Fourier transform connected with \mathscr{R}_{α}. Next, we prove inversion formulas for the operators $\mathscr{R}_{\alpha}{ }^{t} \mathscr{R}_{\alpha}$ and a Plancherel theorem for ${ }^{t} \mathscr{R}_{\alpha}$.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The mean operator is defined for a continuous function f on \mathbb{R}^{2}, even with respect to the first variable by

$$
\begin{equation*}
\Re_{0}(f)(r, x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \sin \theta, x+r \cos \theta) d \theta \tag{1.1}
\end{equation*}
$$

which means that $\Re_{0}(f)(r, x)$ is the mean value of f on the circle centered at $(0, x)$ and radius r. The dual of the mean operator ${ }^{t} \mathfrak{R}_{0}$ is defined by

$$
\begin{equation*}
{ }^{t} \mathfrak{R}_{0}(f)(r, x)=\frac{1}{\pi} \int_{\mathbb{R}} f\left(\sqrt{r^{2}+(x-y)^{2}}, y\right) d y . \tag{1.2}
\end{equation*}
$$

The mean operator \mathfrak{R}_{0} and its dual ${ }^{t} \mathfrak{R}_{0}$ play an important role and have many applications, for example, in image processing of the so-called synthetic aperture radar (SAR) data [11, 12] or in the linearized inverse scattering problem in acoustics [6].

Our purpose in this work is to define and study integral transforms which generalize the operators \mathfrak{R}_{0} and ${ }^{t} \mathfrak{R}_{0}$. More precisely, we consider the following singular partial differential operators:

$$
\begin{gather*}
\Delta_{1}=\frac{\partial}{\partial x}, \\
\left.\Delta_{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}-\frac{\partial^{2}}{\partial x^{2}}, \quad(r, x) \in\right] 0,+\infty[\times \mathbb{R}, \alpha \geqslant 0 . \tag{1.3}
\end{gather*}
$$

2 Inversion formulas for Riemann-Liouville transform

We associate to Δ_{1} and Δ_{2} the Riemann-Liouville transform \mathfrak{R}_{α}, defined on $\mathscr{C}_{*}\left(\mathbb{R}^{2}\right)$ (the space of continuous functions on \mathbb{R}^{2}, even with respect to the first variable) by

$$
\Re_{\alpha}(f)(r, x)= \begin{cases}\frac{\alpha}{\pi} \iint_{-1}^{1} f\left(r s \sqrt{1-t^{2}}, x+r t\right) & \tag{1.4}\\ \quad \times\left(1-t^{2}\right)^{\alpha-1 / 2}\left(1-s^{2}\right)^{\alpha-1} d t d s, & \text { if } \alpha>0, \\ \frac{1}{\pi} \int_{-1}^{1} f\left(r \sqrt{1-t^{2}}, x+r t\right) \frac{d t}{\sqrt{1-t^{2}}}, & \text { if } \alpha=0 .\end{cases}
$$

The dual operator ${ }^{t} \mathfrak{R}_{\alpha}$ is defined on the space $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ (the space of infinitely differentiable functions on \mathbb{R}^{2}, rapidly decreasing together with all their derivatives, even with respect to the first variable) by

$$
{ }^{t} \Re_{\alpha}(f)(r, x)= \begin{cases}\frac{2 \alpha}{\pi} \int_{r}^{+\infty} \int_{-\sqrt{u^{2}-r^{2}}}^{\sqrt{u^{2}-r^{2}}} f(u, x+v)\left(u^{2}-v^{2}-r^{2}\right)^{\alpha-1} u d u d v, & \text { if } \alpha>0 \tag{1.5}\\ \frac{1}{\pi} \int_{\mathbb{R}} f\left(\sqrt{r^{2}+(x-y)^{2}}, y\right) d y, & \text { if } \alpha=0 .\end{cases}
$$

For more general fractional integrals and fractional differential equations, we can see the works of Debnath [3, 4] and Debnath with Bhatta [5].

We establish for the operators \Re_{α} and ${ }^{t} \Re_{\alpha}$ the same results given by Helgason, Ludwig, and Solmon for the classical Radon transform on $\mathbb{R}^{2}[10,14,17]$ and we find the results given in [15] for the spherical mean operator. Especially
(i) we give some harmonic analysis results related to the Fourier transform associated with the Riemann-Liouville transform \mathfrak{R}_{α};
(ii) we define and characterize some spaces of the functions on which \mathfrak{R}_{α} and ${ }^{t} \mathfrak{R}_{\alpha}$ are isomorphisms;
(iii) we give the following inversion formulas for \mathfrak{R}_{α} and ${ }^{t} \mathfrak{R}_{\alpha}$:

$$
\begin{array}{ll}
f=\Re_{\alpha} K_{\alpha}^{1 t} \Re_{\alpha}(f), & f=K_{\alpha}^{1 t} \Re_{\alpha} \Re_{\alpha}(f), \\
f={ }^{t} \Re_{\alpha} K_{\alpha}^{2} \Re_{\alpha}(f), & f=K_{\alpha}^{2} \Re_{\alpha}^{t} \Re_{\alpha}(f), \tag{1.6}
\end{array}
$$

where K_{α}^{1} and K_{α}^{2} are integro-differential operators;
(iv) we establish a Plancherel theorem for ${ }^{t} \mathfrak{R}_{\alpha}$;
(v) we show that \Re_{α} and ${ }^{t} \Re_{\alpha}$ are transmutation operators.

This paper is organized as follows. In Section 2, we show that for $(\mu, \lambda) \in \mathbb{C}^{2}$, the differential system

$$
\begin{gather*}
\Delta_{1} u(r, x)=-i \lambda u(r, x), \\
\Delta_{2} u(r, x)=-\mu^{2} u(r, x), \tag{1.7}\\
u(0,0)=1, \quad \frac{\partial u}{\partial r}(0, x)=0, \quad \forall x \in \mathbb{R},
\end{gather*}
$$

admits a unique solution $\varphi_{\mu, \lambda}$ given by

$$
\begin{equation*}
\varphi_{\mu, \lambda}(r, x)=j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) \exp (-i \lambda x) \tag{1.8}
\end{equation*}
$$

where j_{α} is the modified Bessel function defined by

$$
\begin{equation*}
j_{\alpha}(s)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(s)}{s^{\alpha}} \tag{1.9}
\end{equation*}
$$

and J_{α} is the Bessel function of first kind and index α. Next, we prove a Mehler integral representation of $\varphi_{\mu, \lambda}$ and give some properties of \Re_{α}.

In Section 3, we define the Fourier transform \mathfrak{F}_{α} connected with \mathfrak{R}_{α}, and we establish some harmonic analysis results (inversion formula, Plancherel theorem, Paley-Wiener theorem) which lead to new properties of the operator \mathfrak{R}_{α} and its dual ${ }^{t} \Re_{\alpha}$.

In Section 4 , we characterize some subspaces of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ on which \Re_{α} and ${ }^{t} \Re_{\alpha}$ are isomorphisms, and we prove the inversion formulas cited below where the operators K_{α}^{1} and K_{α}^{2} are given in terms of Fourier transforms. Next, we introduce fractional powers of the Bessel operator,

$$
\begin{equation*}
\ell_{\alpha}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}, \tag{1.10}
\end{equation*}
$$

and the Laplacian operator,

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial x^{2}}, \tag{1.11}
\end{equation*}
$$

that we use to simplify K_{α}^{1} and K_{α}^{2}.
Finally, we prove the following Plancherel theorem for ${ }^{t} \mathfrak{R}_{\alpha}$:

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty}|f(r, x)|^{2} r^{2 \alpha+1} d r d x=\int_{\mathbb{R}} \int_{0}^{+\infty}\left|K_{\alpha}^{3}\left({ }^{t} \Re_{\alpha}(f)\right)(r, x)\right|^{2} d r d x \tag{1.12}
\end{equation*}
$$

where K_{α}^{3} is an integro-differential operator.
In Section 5, we show that \Re_{α} and ${ }^{t} \Re_{\alpha}$ satisfy the following relations of permutation:

$$
\begin{align*}
{ }^{t} \mathfrak{R}_{\alpha}\left(\Delta_{2} f\right)=\frac{\partial^{2}}{\partial r^{2}}{ }^{t} \Re_{\alpha}(f), & { }^{t} \Re_{\alpha}\left(\Delta_{1} f\right)=\Delta_{1}^{t} \Re_{\alpha}(f), \\
\Delta_{2} \mathfrak{\Re}_{\alpha}(f)=\mathfrak{R}_{\alpha}\left(\frac{\partial^{2} f}{\partial r^{2}}\right), & \Delta_{1} \Re_{\alpha}(f)=\Re_{\alpha}\left(\Delta_{1} f\right) \tag{1.13}
\end{align*}
$$

2. Riemann-Liouville transform and its dual associated with the operators Δ_{1} and Δ_{2}

In this section, we define the Riemann-Liouville transform \mathfrak{R}_{α} and its dual ${ }^{t} \Re_{\alpha}$, and we give some properties of these operators. It is well known [21] that for every $\lambda \in \mathbb{C}$, the system

$$
\begin{gather*}
\ell_{\alpha} v(r)=-\lambda^{2} v(r) ; \\
v(0)=1 ; \quad v^{\prime}(0)=0, \tag{2.1}
\end{gather*}
$$

4 Inversion formulas for Riemann-Liouville transform

where ℓ_{α} is the Bessel operator, admits a unique solution, that is, the modified Bessel function $r \mapsto j_{\alpha}(r \lambda)$. Thus, for all $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}$, the system

$$
\begin{gather*}
\Delta_{1} u(r, x)=-i \lambda u(r, x), \\
\Delta_{2} u(r, x)=-\mu^{2} u(r, x), \tag{2.2}\\
u(0,0)=1, \quad \frac{\partial u}{\partial r}(0, x)=0, \quad \forall x \in \mathbb{R},
\end{gather*}
$$

admits the unique solution given by

$$
\begin{equation*}
\varphi_{\mu, \lambda}(r, x)=j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) \exp (-i \lambda x) . \tag{2.3}
\end{equation*}
$$

The modified Bessel function j_{α} has the Mehler integral representation, (we refer to [13, 21])

$$
\begin{equation*}
j_{\alpha}(s)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-1 / 2} \exp (-i s t) d t . \tag{2.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\forall k \in \mathbb{N}, \forall s \in \mathbb{R}, \quad\left|j_{\alpha}^{(k)}(s)\right| \leqslant 1 \tag{2.5}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sup _{r \in \mathbb{R}}\left|j_{\alpha}(r \lambda)\right|=1 \quad \text { iff } \lambda \in \mathbb{R} . \tag{2.6}
\end{equation*}
$$

This involves that

$$
\begin{equation*}
\sup _{(r, x) \in \mathbb{R}^{2}}\left|\varphi_{\mu, \lambda}(r, x)\right|=1 \quad \text { iff }(\mu, \lambda) \in \Gamma, \tag{2.7}
\end{equation*}
$$

where Γ is the set defined by

$$
\begin{equation*}
\Gamma=\mathbb{R}^{2} \cup\left\{(i \mu, \lambda) ;(\mu, \lambda) \in \mathbb{R}^{2},|\mu| \leqslant|\lambda|\right\} . \tag{2.8}
\end{equation*}
$$

Proposition 2.1. The eigenfunction $\varphi_{\mu, \lambda}$ given by (2.3) has the following Mehler integral representation:

$$
\varphi_{\mu, \lambda}(r, x)= \begin{cases}\frac{\alpha}{\pi} \iint_{-1}^{1} \cos \left(\mu r s \sqrt{1-t^{2}}\right) \exp (-i \lambda(x+r t))\left(1-t^{2}\right)^{\alpha-1 / 2}\left(1-s^{2}\right)^{\alpha-1} d t d s, \tag{2.9}\\ & \text { if } \alpha>0, \\ \frac{1}{\pi} \int_{-1}^{1} \cos \left(r \mu \sqrt{1-t^{2}}\right) \exp (-i \lambda(x+r t)) \frac{d t}{\sqrt{1-t^{2}}}, & \text { if } \alpha=0 .\end{cases}
$$

Proof. From the following expansion of the function j_{α} :

$$
\begin{equation*}
j_{\alpha}(s)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(s)}{s^{\alpha}}=\Gamma(\alpha+1) \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}\left(\frac{s}{2}\right)^{2 k}, \tag{2.10}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right)=\Gamma(\alpha+1) \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!\Gamma(k+\alpha+1)}\left(\frac{r \mu}{2}\right)^{2 k} j_{\alpha+k}(r \lambda) \tag{2.11}
\end{equation*}
$$

and from the equality (2.4), we obtain

$$
\begin{equation*}
j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{-1}^{1} j_{\alpha-1 / 2}\left(r \mu \sqrt{1-t^{2}}\right) \exp (-i r \lambda t)\left(1-t^{2}\right)^{\alpha-1 / 2} d t \tag{2.12}
\end{equation*}
$$

Then, the results follow by using again the relation (2.4) for $\alpha>0$, and from the fact that

$$
\begin{equation*}
j_{-1 / 2}(s)=\cos s, \quad \text { for } \alpha=0 . \tag{2.13}
\end{equation*}
$$

Definition 2.2. The Riemann-Liouville transform \mathfrak{R}_{α} associated with the operators Δ_{1} and Δ_{2} is the mapping defined on $\mathscr{C}_{*}\left(\mathbb{R}^{2}\right)$ by the following. For all $(r, x) \in \mathbb{R}^{2}$,

$$
\mathfrak{R}_{\alpha}(f)(r, x)= \begin{cases}\frac{\alpha}{\pi} \iint_{-1}^{1} f\left(r s \sqrt{1-t^{2}}, x+r t\right) \tag{2.14}\\ \quad \times\left(1-t^{2}\right)^{\alpha-1 / 2}\left(1-s^{2}\right)^{\alpha-1} d t d s, & \text { if } \alpha>0 \\ \frac{1}{\pi} \int_{-1}^{1} f\left(r \sqrt{1-t^{2}}, x+r t\right) \frac{d t}{\sqrt{1-t^{2}}}, & \text { if } \alpha=0\end{cases}
$$

Remark 2.3. (i) From Proposition 2.1 and Definition 2.2, we have

$$
\begin{equation*}
\varphi_{\mu, \lambda}(r, x)=\Re_{\alpha}(\cos (\mu .) \exp (-i \lambda .))(r, x) . \tag{2.15}
\end{equation*}
$$

(ii) We can easily see, as in [2], that the transform \mathfrak{R}_{α} is continuous and injective from $\mathscr{C}_{*}\left(\mathbb{R}^{2}\right)$ (the space of infinitely differentiable functions on \mathbb{R}^{2}, even with respect to the first variable) into itself.

6 Inversion formulas for Riemann-Liouville transform

Lemma 2.4. For $f \in \mathscr{C}_{*}\left(\mathbb{R}^{2}\right), f$ bounded, and $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty} \mathfrak{R}_{\alpha}(f)(r, x) g(r, x) r^{2 \alpha+1} d r d x=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x)^{t} \mathfrak{R}_{\alpha}(g)(r, x) d r d x \tag{2.16}
\end{equation*}
$$

where ${ }^{t} \mathfrak{R}_{\alpha}$ is the dual transform defined by

$$
{ }^{t} \mathfrak{R}_{\alpha}(g)(r, x)= \begin{cases}\frac{2 \alpha}{\pi} \int_{r}^{+\infty} \int_{-\sqrt{u^{2}-r^{2}}}^{\sqrt{u^{2}-r^{2}}} g(u, x+v)\left(u^{2}-v^{2}-r^{2}\right)^{\alpha-1} u d u d v, & \text { if } \alpha>0 \tag{2.17}\\ \frac{1}{\pi} \int_{\mathbb{R}} g\left(\sqrt{r^{2}+(x-y)^{2}}, y\right) d y, & \text { if } \alpha=0\end{cases}
$$

To obtain this lemma, we use Fubini's theorem and an adequate change of variables. Remark 2.5. By a simple change of variables, we have

$$
\begin{equation*}
\mathfrak{R}_{0}(f)(r, x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \sin \theta, x+r \cos \theta) d \theta \tag{2.18}
\end{equation*}
$$

3. Fourier transform associated with Riemann-Liouville operator

In this section, we define the Fourier transform associated with the operator \Re_{α}, and we give some results of harmonic analysis that we use in the next sections.

We denote by
(i) $d \nu(r, x)$ the measure defined on $[0,+\infty[\times \mathbb{R}$ by

$$
\begin{equation*}
d \nu(r, x)=\frac{1}{\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)} r^{2 \alpha+1} d r \otimes d x \tag{3.1}
\end{equation*}
$$

(ii) $L^{1}(d \nu)$ the space of measurable functions f on $[0,+\infty[\times \mathbb{R}$ satisfying

$$
\begin{equation*}
\|f\|_{1, v}=\int_{\mathbb{R}} \int_{0}^{+\infty}|f(r, x)| d \nu(r, x)<+\infty . \tag{3.2}
\end{equation*}
$$

Definition 3.1. (i) The translation operator associated with Riemann-Liouville transform is defined on $L^{1}(d \nu)$ by the following. For all $(r, x),(s, y) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
\mathscr{T}_{(r, x)} f(s, y)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{0}^{\pi} f\left(\sqrt{r^{2}+s^{2}+2 r s \cos \theta}, x+y\right) \sin ^{2 \alpha} \theta d \theta \tag{3.3}
\end{equation*}
$$

(ii) The convolution product associated with the Riemann-Liouville transform of f, $g \in L^{1}(d \nu)$ is defined by the following. For all $(r, x) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
f \# g(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty} \mathscr{T}_{(r,-x)} \check{f}(s, y) g(s, y) d v(s, y), \tag{3.4}
\end{equation*}
$$

where $\check{f}(s, y)=f(s,-y)$.

We have the following properties.
(i) Since

$$
\begin{equation*}
\forall r, s \geqslant 0, \quad j_{\alpha}(r \lambda) j_{\alpha}(s \lambda)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{0}^{\pi} j_{\alpha}\left(\lambda \sqrt{r^{2}+s^{2}+2 r s \cos \theta}\right) \sin ^{2 \alpha} \theta d \theta \tag{3.5}
\end{equation*}
$$

(we refer to [21]) we deduce that the eigenfunction $\varphi_{\mu, \lambda}$ defined by the relation (2.3) satisfies the product formula

$$
\begin{equation*}
\mathscr{T}_{(r, x)} \varphi_{\mu, \lambda}(s, y)=\varphi_{\mu, \lambda}(r, x) \varphi_{\mu, \lambda}(s, y) . \tag{3.6}
\end{equation*}
$$

(ii) If $f \in L^{1}(d \nu)$, then for all $(r, x) \in\left[0,+\infty\left[\times \mathbb{R}, \mathscr{T}_{(r, x)} f\right.\right.$ belongs to $L^{1}(d \nu)$, and we have

$$
\begin{equation*}
\left\|\mathscr{T}_{(r, x)} f\right\|_{1, v} \leqslant\|f\|_{1, v} . \tag{3.7}
\end{equation*}
$$

(iii) For $f, g \in L^{1}(d \nu), f \# g$ belongs to $L^{1}(d \nu)$, and the convolution product is commutative and associative.
(iv) For $f, g \in L^{1}(d \nu)$,

$$
\begin{equation*}
\|f \# g\|_{1, \nu} \leqslant\|f\|_{1, \nu}\|g\|_{1, v} \tag{3.8}
\end{equation*}
$$

Definition 3.2. The Fourier transform associated with the Riemann-Liouville operator is defined by

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathfrak{F}_{\alpha}(f)(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) \varphi_{\mu, \lambda}(r, x) d v(r, x), \tag{3.9}
\end{equation*}
$$

where Γ is the set defined by the relation (2.8).
We have the following properties.
(i) Let f be in $L^{1}(d v)$. For all $(r, x) \in[0,+\infty[\times \mathbb{R}$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathfrak{F}_{\alpha}\left(\mathscr{T}_{(r,-x)} f\right)(\mu, \lambda)=\varphi_{\mu, \lambda}(r, x) \mathfrak{F}_{\alpha}(f)(\mu, \lambda) . \tag{3.10}
\end{equation*}
$$

(ii) For $f, g \in L^{1}(d \nu)$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathfrak{F}_{\alpha}(f \# g)(\mu, \lambda)=\mathfrak{F}_{\alpha}(f)(\mu, \lambda) \mathfrak{F}_{\alpha}(g)(\mu, \lambda) \tag{3.11}
\end{equation*}
$$

(iii) For $f \in L^{1}(d \nu)$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathfrak{F}_{\alpha}(f)(\mu, \lambda)=B \circ \widetilde{\mathfrak{F}}_{\alpha}(f)(\mu, \lambda), \tag{3.12}
\end{equation*}
$$

where

$$
\begin{gather*}
\forall(\mu, \lambda) \in \mathbb{R}^{2}, \quad \widetilde{\mathfrak{F}}_{\alpha}(f)(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) j_{\alpha}(r \mu) \exp (-i \lambda x) d \nu(r, x), \tag{3.13}\\
\forall(\mu, \lambda) \in \Gamma, \quad B f(\mu, \lambda)=f\left(\sqrt{\mu^{2}+\lambda^{2}}, \lambda\right) .
\end{gather*}
$$

3.1. Inversion formula and Plancherel theorem for \mathfrak{F}_{α}. We denote by (see [15])

(i) $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ the space of infinitely differentiable functions on \mathbb{R}^{2} rapidly decreasing together with all their derivatives, even with respect to the first variable;
(ii) $\mathscr{S}_{*}(\Gamma)$ the space of functions $f: \Gamma \rightarrow \mathbb{C}$ infinitely differentiable, even with respect to the first variable and rapidly decreasing together with all their derivatives, that is, for all $k_{1}, k_{2}, k_{3} \in \mathbb{N}$,

$$
\begin{equation*}
\sup _{(\mu, \lambda) \in \Gamma}\left(1+|\mu|^{2}+|\lambda|^{2}\right)^{k_{1}}\left|\left(\frac{\partial}{\partial \mu}\right)^{k_{2}}\left(\frac{\partial}{\partial \lambda}\right)^{k_{3}} f(\mu, \lambda)\right|<+\infty \tag{3.14}
\end{equation*}
$$

where

$$
\frac{\partial f}{\partial \mu}(\mu, \lambda)= \begin{cases}\frac{\partial}{\partial r}(f(r, \lambda)), & \text { if } \mu=r \in \mathbb{R} \tag{3.15}\\ \frac{1}{i} \frac{\partial}{\partial t}(f(i t, \lambda)), & \text { if } \mu=i t,|t| \leqslant|\lambda|\end{cases}
$$

Each of these spaces is equipped with its usual topology:
(i) $L^{2}(d \nu)$ the space of measurable functions on $[0,+\infty[\times \mathbb{R}$ such that

$$
\begin{equation*}
\|f\|_{2, v}=\left(\int_{\mathbb{R}} \int_{0}^{+\infty}|f(r, x)|^{2} d v(r, x)\right)^{1 / 2}<+\infty ; \tag{3.16}
\end{equation*}
$$

(ii) $d \gamma(\mu, \lambda)$ the measure defined on Γ by

$$
\begin{align*}
& \iint_{\Gamma} f(\mu, \lambda) d \gamma(\mu, \lambda) \\
& =\frac{1}{\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)}\left\{\int_{\mathbb{R}} \int_{0}^{+\infty} f(\mu, \lambda)\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \mu d \mu d \lambda+\int_{\mathbb{R}} \int_{0}^{|\lambda|} f(i \mu, \lambda)\left(\lambda^{2}-\mu^{2}\right)^{\alpha} \mu d \mu d \lambda\right\} ; \tag{3.17}
\end{align*}
$$

(iii) $L^{p}(d \gamma), p=1, p=2$, the space of measurable functions on Γ satisfying

$$
\begin{equation*}
\|f\|_{p, \gamma}=\left(\iint_{\Gamma}|f(\mu, \lambda)|^{p} d \gamma(\mu, \lambda)\right)^{1 / p}<+\infty . \tag{3.18}
\end{equation*}
$$

Remark 3.3. It is clear that a function f belongs to $L^{1}(d \nu)$ if, and only if, the function $B f$ belongs to $L^{1}(d \gamma)$, and we have

$$
\begin{equation*}
\iint_{\Gamma} B f(\mu, \lambda) d \gamma(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) d \nu(r, x) \tag{3.19}
\end{equation*}
$$

Proposition 3.4 (inversion formula for $\left.\mathfrak{F}_{\alpha}\right)$. Let $f \in L^{1}(d \nu)$ such that $\mathfrak{F}_{\alpha}(f)$ belongs to $L^{1}(d \gamma)$, then for almost every $(r, x) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
f(r, x)=\iint_{\Gamma} \mathfrak{F}_{\alpha}(f)(\mu, \lambda) \bar{\varphi}_{\mu, \lambda}(r, x) d \gamma(\mu, \lambda) . \tag{3.20}
\end{equation*}
$$

Proof. From $[9,19]$, one can see that if $f \in L^{1}(d \nu)$ is such that $\widetilde{\mathfrak{F}}_{\alpha}(f) \in L^{1}(d \nu)$, then for almost every $(r, x) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
f(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty} \widetilde{\mathfrak{F}}_{\alpha}(f)(\mu, \lambda) j_{\alpha}(r \mu) \exp (i \lambda x) d \nu(\mu, \lambda) . \tag{3.21}
\end{equation*}
$$

Then, the result follows from the relation (3.12) and Remark 3.3.
Theorem 3.5. (i) The Fourier transform \mathfrak{F}_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*}(\Gamma)$.
(ii) (Plancherel formula) for $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\left\|\mathfrak{F}_{\alpha}(f)\right\|_{2, \gamma}=\|f\|_{2, v} . \tag{3.22}
\end{equation*}
$$

(iii) (Plancherel theorem) the transform \mathfrak{F}_{α} can be extended to an isometric isomorphism from $L^{2}(d \nu)$ onto $L^{2}(d \gamma)$.
Proof. This theorem follows from the relation (3.12), Remark 3.3, and the fact that $\widetilde{\mathfrak{F}}_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself, satisfying that for all $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\left\|\widetilde{\mathfrak{F}}_{\alpha}(f)\right\|_{2, v}=\|f\|_{2, v} \tag{3.23}
\end{equation*}
$$

Lemma 3.6. For $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{R}^{2}, \quad \mathfrak{F}_{\alpha}(f)(\mu, \lambda)=\Lambda_{\alpha} \circ{ }^{t} \mathfrak{R}_{\alpha}(f)(\mu, \lambda) \tag{3.24}
\end{equation*}
$$

where ${ }^{t} \Re_{\alpha}$ is the dual transform of the Riemann-Liouville operator, and Λ_{α} is a constant multiple of the classical Fourier transform on \mathbb{R}^{2} defined by

$$
\begin{equation*}
\Lambda_{\alpha}(f)(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) \cos (r \mu) \exp (-i \lambda x) d m(r, x) \tag{3.25}
\end{equation*}
$$

where $d m(r, x)$ is the measure defined on $[0,+\infty[\times \mathbb{R}$ by

$$
\begin{equation*}
d m(r, x)=\frac{1}{\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)} d r \otimes d x . \tag{3.26}
\end{equation*}
$$

This lemma follows from the relation (2.15) and Lemma 2.4.
Using the relation (3.12) and the fact that the mapping B is continuous from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into itself, we deduce that the Fourier transform \mathfrak{F}_{α} is continuous from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into itself. On the other hand, Λ_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself. Then, Lemma 3.6 implies that the dual transform ${ }^{t} \mathfrak{R}_{\alpha}$ maps continuously $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into itself.

Proposition 3.7. (i) ${ }^{t} \mathfrak{R}_{\alpha}$ is not injective when applied to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$.
(ii) ${ }^{t} \mathfrak{R}_{\alpha}\left(\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)\right)=\mathscr{Y}_{*}\left(\mathbb{R}^{2}\right)$.

Proof. (i) Let $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ such that $\operatorname{supp} g \subset\left\{(r, x) \in \mathbb{R}^{2},|r| \leqslant|x|\right\}, g \neq 0$.
Since $\widetilde{\mathfrak{F}}_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself, there exists $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ such that $\widetilde{\mathfrak{F}}_{\alpha}(f)=g$. From the relation (3.12) and Lemma 3.6, we deduce that ${ }^{t} \mathfrak{R}_{\alpha}(f)=0$.
(ii) We obtain the result by the same way as in [1].

3.2. Paley-Wiener theorem. We denote by

(i) $\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$ the space of infinitely differentiable functions on \mathbb{R}^{2}, even with respect to the first variable, and with compact support;
(ii) $\mathbb{H}_{*}\left(\mathbb{C}^{2}\right)$ the space of entire functions $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$, even with respect to the first variable rapidly decreasing of exponential type, that is, there exists a positive constant M, such that for all $k \in \mathbb{N}$,

$$
\begin{equation*}
\sup _{(\mu, \lambda) \in \mathbb{C}^{2}}\left(1+|\mu|^{2}+|\lambda|^{2}\right)^{k}|f(\mu, \lambda)| \exp (-M(|\operatorname{Im} \mu|+|\operatorname{Im} \lambda|))<+\infty ; \tag{3.27}
\end{equation*}
$$

(iii) $\mathbb{H}_{*, 0}\left(\mathbb{C}^{2}\right)$ the subspace of $\mathbb{H}_{*}\left(\mathbb{C}^{2}\right)$, consisting of functions $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$, such that for all $k \in \mathbb{N}$,

$$
\begin{equation*}
\sup _{\substack{(\mu, \lambda) \in \mathbb{R}^{2} \\|\mu| \leqslant|\lambda|}}\left(1-\mu^{2}+2 \lambda^{2}\right)^{k}|f(i \mu, \lambda)|<+\infty ; \tag{3.28}
\end{equation*}
$$

(iv) $\mathscr{E}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ the space of distributions on \mathbb{R}^{2}, even with respect to the first variable, and with compact support;
(v) $\mathscr{H}_{*}\left(\mathbb{C}^{2}\right)$ the space of entire functions $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$, even with respect to the first variable, slowly increasing of exponential type, that is, there exist a positive constant M and an integer k, such that

$$
\begin{equation*}
\sup _{(\mu, \lambda) \in \mathbb{C}^{2}}\left(1+|\mu|^{2}+|\lambda|^{2}\right)^{-k}|f(\mu, \lambda)| \exp (-M(|\operatorname{Im} \mu|+|\operatorname{Im} \lambda|))<+\infty ; \tag{3.29}
\end{equation*}
$$

(vi) $\mathscr{H}_{*, 0}\left(\mathbb{C}^{2}\right)$ the subspace of $\mathscr{H}_{*}\left(\mathbb{C}^{2}\right)$, consisting of functions $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$, such that there exists an integer k, satisfying

$$
\begin{equation*}
\sup _{\substack{(\mu, \lambda) \in \mathbb{R}^{2} \\|\mu| \leqslant \lambda \mid}}\left(1-\mu^{2}+2 \lambda^{2}\right)^{-k}|f(i \mu, \lambda)|<+\infty . \tag{3.30}
\end{equation*}
$$

Each of these spaces is equipped with its usual topology.
Definition 3.8. The Fourier transform associated with the Riemann-Liouville operator is defined on $\mathscr{E}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{C}^{2}, \quad \mathfrak{F}_{\alpha}(T)(\mu, \lambda)=\left\langle T, \varphi_{\mu, \lambda}\right\rangle . \tag{3.31}
\end{equation*}
$$

Proposition 3.9. For every $T \in \mathscr{E}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{C}^{2}, \quad \mathfrak{F}_{\alpha}(T)(\mu, \lambda)=B \circ \widetilde{\mathfrak{F}}_{\alpha}(T)(\mu, \lambda), \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{C}^{2}, \quad \tilde{\mathfrak{F}}_{\alpha}(T)(\mu, \lambda)=\left\langle T, j_{\alpha}(\mu .) \exp (-i \lambda .)\right\rangle \tag{3.33}
\end{equation*}
$$

and B is the transform defined by the relation (3.12).
Using [7, Lemma 2] (see also [15]) and the fact that $\widetilde{\mathfrak{F}}_{\alpha}$ is an isomorphism from $\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)\left(\right.$ resp., $\mathscr{E}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$) onto $\mathbb{H}_{*}\left(\mathbb{C}^{2}\right)$ (resp., $\mathscr{H}_{*}\left(\mathbb{C}^{2}\right)$), we deduce the following theorem.

Theorem 3.10 (of Paley-Wiener). The Fourier transform \mathfrak{F}_{α} is an isomorphism
(i) from $\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$ onto $\mathbb{H}_{*, 0}\left(\mathbb{C}^{2}\right)$;
(ii) from $\mathscr{E}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{H}_{*, 0}\left(\mathbb{C}^{2}\right)$.

From Lemma 3.6, Theorem 3.10, and the fact that Λ_{α} is an isomorphism from $\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$ onto $\mathbb{H}_{*}\left(\mathbb{C}^{2}\right)$, we have the following corollary.

Corollary 3.11. (i) ${ }^{t} \mathfrak{R}_{\alpha}$ maps injectively $\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$ into itself.
(ii) ${ }^{t} \mathfrak{R}_{\alpha}\left(\mathscr{D}_{*}\left(\mathbb{R}^{2}\right)\right) \neq \mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$.

4. Inversion formulas for \mathfrak{R}_{α} and ${ }^{t} \Re_{\alpha}$ and Plancherel theorem for ${ }^{t} \Re_{\alpha}$

In this section, we will define some subspaces of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ on which \Re_{α} and ${ }^{t} \Re_{\alpha}$ are isomorphisms, and we give their inverse transforms in terms of integro-differential operators. Next, we establish Plancherel theorem for ${ }^{t} \mathfrak{R}_{\alpha}$.

We denote by
(i) \mathcal{N} the subspace of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, consisting of functions f satisfying

$$
\begin{equation*}
\forall k \in \mathbb{N}, \forall x \in \mathbb{R}, \quad\left(\frac{\partial}{\partial r^{2}}\right)^{k} f(0, x)=0 \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial r^{2}}=\frac{1}{r} \frac{\partial}{\partial r} \tag{4.2}
\end{equation*}
$$

(ii) $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ the subspace of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, consisting of functions f, such that

$$
\begin{equation*}
\forall k \in \mathbb{N}, \forall x \in \mathbb{R}, \quad \int_{0}^{+\infty} f(r, x) r^{2 k} d r=0 \tag{4.3}
\end{equation*}
$$

(iii) $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ the subspace of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, consisting of functions f, such that

$$
\begin{equation*}
\operatorname{supp} \widetilde{\mathfrak{F}}_{\alpha}(f) \subset\left\{(\mu, \lambda) \in \mathbb{R}^{2} ;|\mu| \geqslant|\lambda|\right\} . \tag{4.4}
\end{equation*}
$$

Lemma 4.1. (i) The mapping Λ_{α} is an isomorphism from $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ onto \mathcal{N}.
(ii) The subspace \mathcal{N} can be written as

$$
\begin{equation*}
\mathcal{N}=\left\{f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right) ; \forall k \in \mathbb{N}, \forall x \in \mathbb{R} ;\left(\frac{\partial}{\partial r}\right)^{2 k} f(0, x)=0\right\} . \tag{4.5}
\end{equation*}
$$

Proof. Let $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$.
(i) For $v>-1$, we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial \mu^{2}}\right)^{k}\left(j_{\nu}(r \mu)\right)=\frac{\Gamma(\nu+1)}{2^{k} \Gamma(\nu+k+1)}\left(-r^{2}\right)^{k} j_{\nu+k}(r \mu), \tag{4.6}
\end{equation*}
$$

thus, from the expression of Λ_{α}, given in Lemma 3.6, and the fact that $j_{-1 / 2}(s)=\cos s$, we obtain

$$
\begin{equation*}
\left(\frac{\partial}{\partial \mu^{2}}\right)^{k}\left(\Lambda_{\alpha}(f)\right)(0, \lambda)=\frac{\sqrt{\pi}}{2^{k} \Gamma(k+1 / 2)}(-1)^{k} \int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) r^{2 k} \exp (-i \lambda x) d m(r, x) \tag{4.7}
\end{equation*}
$$

which gives the result.
(ii) The proof of (ii) is immediate.

Theorem 4.2. (i) For all real numbers γ, the mappings
(i) $f \mapsto\left(r^{2}+x^{2}\right)^{\gamma} f$
(ii) $f \mapsto|r|^{\gamma} f$
are isomorphisms from \mathcal{N} onto itself.
(ii) For $f \in \mathcal{N}$, the function g defined by

$$
g(r, x)= \begin{cases}f\left(\sqrt{r^{2}-x^{2}}, x\right) & \text { if }|r| \geqslant|x|, \tag{4.8}\\ 0 & \text { otherwise }\end{cases}
$$

belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$.
Proof. (i) Let $f \in \mathcal{N}$, by Leibnitz formula, we have

$$
\begin{align*}
\left(\frac{\partial}{\partial r}\right)^{k_{1}} & \left(\frac{\partial}{\partial x}\right)^{k_{2}}\left[\left(r^{2}+x^{2}\right)^{\gamma} f\right](r, x) \\
& =\sum_{j=0}^{k_{1}} \sum_{i=0}^{k_{2}} C_{k_{1}}^{j} C_{k_{2}}^{i} P_{j}(r) P_{i}(x)\left(r^{2}+x^{2}\right)^{\gamma-i-j} \frac{\partial^{k_{1}+k_{2}-i-j}}{\partial r^{k_{1}-j} \partial x^{k_{2}-i}} f(r, x), \tag{4.9}
\end{align*}
$$

where P_{i} and P_{j} are real polynomials.

Let $n \in \mathbb{N}$ such that $\gamma-k_{1}-k_{2}+n>0$. By Taylor formula and the fact that $f \in \mathcal{N}$, we have

$$
\begin{align*}
\left(\frac{\partial}{\partial r}\right)^{k_{1}-j}(f)(r, x) & =\frac{r^{2 n}}{(2 n-1)!} \int_{0}^{1}(1-t)^{2 n-1}\left(\frac{\partial}{\partial r}\right)^{k_{1}-j+2 n}(f)(r t, x) d t \\
& =-\frac{r^{2 n}}{(2 n-1)!} \int_{1}^{+\infty}(1-t)^{2 n-1}\left(\frac{\partial}{\partial r}\right)^{k_{1}-j+2 n}(f)(r t, x) d t \tag{4.10}\\
\left(\frac{\partial}{\partial x}\right)^{k_{2}-i}\left(\frac{\partial}{\partial r}\right)^{k_{1}-j} f(r, x) & =\frac{r^{2 n}}{(2 n-1)!} \int_{0}^{1}(1-t)^{2 n-1}\left(\frac{\partial}{\partial x}\right)^{k_{2}-i}\left(\frac{\partial}{\partial r}\right)^{k_{1}-j+2 n} f(r t, x) d t \\
& =-\frac{r^{2 n}}{(2 n-1)!} \int_{1}^{+\infty}(1-t)^{2 n-1}\left(\frac{\partial}{\partial x}\right)^{k_{2}-i}\left(\frac{\partial}{\partial r}\right)^{k_{1}-j+2 n} f(r t, x) d t . \tag{4.11}
\end{align*}
$$

The relations (4.9) and (4.11) imply that the function

$$
\begin{equation*}
(r, x) \longmapsto\left(r^{2}+x^{2}\right)^{\gamma} f(r, x) \tag{4.12}
\end{equation*}
$$

belongs to \mathcal{N} and that the mapping

$$
\begin{equation*}
f \longmapsto\left(r^{2}+x^{2}\right)^{\gamma} f \tag{4.13}
\end{equation*}
$$

is continuous from \mathcal{N} onto itself. The inverse mapping is given by

$$
\begin{equation*}
f \longmapsto\left(r^{2}+x^{2}\right)^{-\gamma} f \tag{4.14}
\end{equation*}
$$

By the same way, we show that the mapping

$$
\begin{equation*}
f \longmapsto|r|^{\gamma} f \tag{4.15}
\end{equation*}
$$

is an isomorphism from \mathcal{N} onto itself.
(ii) Let $f \in \mathcal{N}$, and

$$
g(r, x)= \begin{cases}f\left(\sqrt{r^{2}-x^{2}}, x\right) & \text { if }|r| \geqslant|x| \tag{4.16}\\ 0 & \text { if }|r| \leqslant|x|\end{cases}
$$

we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}\right)^{k_{2}}\left(\frac{\partial}{\partial r}\right)^{k_{1}}(g)(r, x)=\sum_{j=0}^{k_{1}} P_{j}(r)\left(\sum_{p, q=0}^{k_{2}} Q_{p, q}(x)\left(\frac{\partial}{\partial x}\right)^{p}\left(\frac{\partial}{\partial r^{2}}\right)^{q+j}(f)\left(\sqrt{r^{2}-x^{2}}, x\right)\right) \tag{4.17}
\end{equation*}
$$

where P_{j} and $Q_{p, q}$ are real polynomials. This equality, together with the fact that f belongs to \mathcal{N}, implies that g belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$.

Theorem 4.3. The Fourier transform \mathfrak{F}_{α} associated with Riemann-Liouville transform is an isomorphism from $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ onto \mathcal{N}.

Proof. Let $f \in \mathscr{Y}_{*}^{0}\left(\mathbb{R}^{2}\right)$. From the relation (3.12), we get

$$
\begin{align*}
\left(\frac{\partial}{\partial \mu^{2}}\right)^{k} \mathfrak{F}_{\alpha}(f)(0, \lambda) & =\left(\frac{\partial}{\partial \mu^{2}}\right)^{k}\left(B \circ \widetilde{\mathfrak{F}}_{\alpha}(f)\right)(0, \lambda) \\
& =B\left(\left(\frac{\partial}{\partial \mu^{2}}\right)^{k} \widetilde{\mathfrak{F}}_{\alpha}(f)\right)(0, \lambda) \tag{4.18}\\
& =\left(\frac{\partial}{\partial \mu^{2}}\right)^{k} \widetilde{\mathfrak{F}}_{\alpha}(f)(\lambda, \lambda)=0
\end{align*}
$$

because $\operatorname{supp} \widetilde{\mathfrak{F}}_{\alpha}(f) \subset\left\{(\mu, \lambda) \in \mathbb{R}^{2},|\mu| \geqslant|\lambda|\right\}$, this shows that \mathfrak{F}_{α} maps injectively $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ into \mathcal{N}. On the other hand, let $h \in \mathcal{N}$ and

$$
g(r, x)= \begin{cases}h\left(\sqrt{r^{2}-x^{2}}, x\right) & \text { if }|r| \geqslant|x|, \tag{4.19}\\ 0 & \text { if }|r| \leqslant|x| .\end{cases}
$$

From Theorem 4.2(ii), g belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, so there exists $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ satisfying $\widetilde{\mathfrak{F}}_{\alpha}(f)=g$. Consequently, $f \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ and $\mathfrak{F}_{\alpha}(f)=h$.

From Lemmas 3.6, 4.1, and Theorem 4.3, we deduce the following result.
Corollary 4.4. The dual transform ${ }^{t} \mathfrak{R}_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$.

4.1. Inversion formula for \mathfrak{R}_{α} and ${ }^{t} \mathfrak{R}_{\alpha}$

Theorem 4.5. (i) The operator K_{α}^{1} defined by

$$
\begin{equation*}
K_{\alpha}^{1}(f)(r, x)=\Lambda_{\alpha}^{-1}\left(\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(\mu^{2}+\lambda^{2}\right)^{\alpha}|\mu| \Lambda_{\alpha}(f)\right)(r, x) \tag{4.20}
\end{equation*}
$$

is an isomorphism from $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ onto itself.
(ii) The operator K_{α}^{2} defined by

$$
\begin{equation*}
K_{\alpha}^{2}(g)(r, x)=\mathfrak{F}_{\alpha}^{-1}\left(\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(\mu^{2}+\lambda^{2}\right)^{\alpha}|\mu| \mathfrak{F}_{\alpha}(g)\right)(r, x) \tag{4.21}
\end{equation*}
$$

is an isomorphism from $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ onto itself.
This theorem follows from Lemma 4.1, Theorems 4.2 and 4.3.
Theorem 4.6. (i) For $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ and $g \in \mathscr{P}_{*}^{0}\left(\mathbb{R}^{2}\right)$, there exists the inversion formula for \mathfrak{R}_{α} :

$$
\begin{equation*}
g=\Re_{\alpha} K_{\alpha}^{1}{ }^{t} \Re_{\alpha}(g), \quad f=K_{\alpha}^{1}{ }^{t} \Re_{\alpha} \Re_{\alpha}(f) . \tag{4.22}
\end{equation*}
$$

(ii) For $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ and $g \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, there exists the inversion formula for ${ }^{t} \mathfrak{R}_{\alpha}$:

$$
\begin{equation*}
f={ }^{t} \Re_{\alpha} K_{\alpha}^{2} \Re_{\alpha}(f), \quad g=K_{\alpha}^{2} \Re_{\alpha}{ }^{t} \Re_{\alpha}(g) . \tag{4.23}
\end{equation*}
$$

Proof. (i) Let $g \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$. From the relation (2.15), Proposition 3.4, Lemma 3.6, and Theorem 4.3, we have

$$
\begin{align*}
g(r, x) & =\int_{\mathbb{R}} \int_{0}^{+\infty}\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \mu \Lambda_{\alpha} \circ^{t} \Re_{\alpha}(g)(\mu, \lambda) \Re_{\alpha}(\cos (\mu .) \exp (i \lambda .))(r, x) d m(\mu, \lambda) \\
& =\Re_{\alpha}\left(\int_{\mathbb{R}} \int_{0}^{+\infty}\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \mu \Lambda_{\alpha} \circ t \Re_{\alpha}(g)(\mu, \lambda) \cos (\mu .) \exp (i \lambda .) d m(\mu, \lambda)\right)(r, x) \\
& =\Re_{\alpha}\left(\Lambda_{\alpha}^{-1}\left(\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(\mu^{2}+\lambda^{2}\right)^{\alpha}|\mu| \Lambda_{\alpha} \circ^{t} \Re_{\alpha}(g)\right)\right)(r, x) \\
& =\Re_{\alpha} K_{\alpha}^{1 t} \Re_{\alpha}(g)(r, x) . \tag{4.24}
\end{align*}
$$

This relation, together with Corollary 4.4 and Theorem 4.5(i), implies that \Re_{α} is an isomorphism from $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, and that $K_{\alpha}^{1 t} \Re_{\alpha}$ is its inverse; in particular for $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{equation*}
K_{\alpha}^{1 t} \Re_{\alpha} \Re_{\alpha}(f)=f \tag{4.25}
\end{equation*}
$$

(ii) Let $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$. From (i), we have

$$
\begin{equation*}
K_{\alpha}^{1 t} \Re_{\alpha} \Re_{\alpha}(f)=f \tag{4.26}
\end{equation*}
$$

Let us put $g=\mathfrak{R}_{\alpha}(f)$, then $g \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, and we have

$$
\begin{equation*}
\mathfrak{R}_{\alpha}^{-1}(g)=K_{\alpha}^{1 t} \Re_{\alpha}(g), \tag{4.27}
\end{equation*}
$$

and from Lemma 3.6, it follows that

$$
\begin{gather*}
\mathfrak{R}_{\alpha}^{-1}(g)=\Lambda_{\alpha}^{-1}\left(\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(\mu^{2}+\lambda^{2}\right)^{\alpha}|\mu| \mathfrak{F}_{\alpha}(g)\right) \\
{ }^{t} \mathfrak{R}_{\alpha}^{-1} \Re_{\alpha}^{-1}(g)=\mathfrak{F}_{\alpha}^{-1}\left(\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(\mu^{2}+\lambda^{2}\right)^{\alpha}|\mu| \mathfrak{F}_{\alpha}(g)\right)=K_{\alpha}^{2}(g), \tag{4.28}
\end{gather*}
$$

which gives

$$
\begin{equation*}
f={ }^{t} \Re_{\alpha} K_{\alpha}^{2} \Re_{\alpha}(f) \tag{4.29}
\end{equation*}
$$

4.2. The expressions of the operators K_{α}^{1} and K_{α}^{2}. In the previous subsection, we have defined the operators K_{α}^{1} and K_{α}^{2} in terms of Fourier transforms Λ_{α} and \mathfrak{F}_{α}. Here, we will give nice expressions of these operators using fractional powers of partial differential operators. For this, we need the following inevitable notations.
(i) $\mathscr{C}_{*}(\mathbb{R})$ is the space of even infinitely differentiable functions on \mathbb{R}.
(ii) $\mathscr{S}_{*}(\mathbb{R})$ is the subspace of $\mathscr{E}_{*}(\mathbb{R})$, consisting of functions rapidly decreasing together with all their derivatives.
(iii) $\mathscr{S}_{*}^{\prime}(\mathbb{R})$ is the space of even tempered distributions on \mathbb{R}.
(iv) $\mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ is the space of tempered distributions on \mathbb{R}^{2}, even with respect to the first variable.

Each of these spaces is equipped with its usual topology.
(i) For $a \in \mathbb{R}, a \geqslant-1 / 2, d \omega_{a}(r)$ is the measure defined on $[0,+\infty[$ by

$$
\begin{equation*}
d \omega_{a}(r)=\frac{1}{2^{a} \Gamma(a+1)} r^{2 a+1} d r . \tag{4.30}
\end{equation*}
$$

(ii) ℓ_{a} is the Bessel operator defined on $] 0,+\infty[$ by

$$
\begin{equation*}
\ell_{a}=\frac{d^{2}}{d r^{2}}+\frac{2 a+1}{r} \frac{d}{d r}, \quad a \geqslant-\frac{1}{2} . \tag{4.31}
\end{equation*}
$$

(iii) For an even measurable function f on $\mathbb{R}, T_{f}^{\omega_{a}}$ is the element of $\mathscr{Y}_{*}^{\prime}(\mathbb{R})$, defined by

$$
\begin{equation*}
\left\langle T_{f}^{\omega_{a}}, \varphi\right\rangle=\int_{0}^{+\infty} f(r) \varphi(r) d \omega_{a}(r), \quad \varphi \in \mathscr{Y}_{*}(\mathbb{R}) . \tag{4.32}
\end{equation*}
$$

(iv) For a measurable function g on \mathbb{R}^{2}, even with respect to the first variable, T_{g}^{v} (resp., $\left.T_{g}^{m}\right)$ is the element of $\mathscr{G}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$, defined by

$$
\begin{gather*}
\left\langle T_{g}^{v}, \varphi\right\rangle=\int_{\mathbb{R}} \int_{0}^{+\infty} g(r, x) \varphi(r, x) d \nu(r, x), \tag{4.33}\\
\left(\text { resp., }\left\langle T_{g}^{m}, \varphi\right\rangle=\int_{\mathbb{R}} \int_{0}^{+\infty} g(r, x) \varphi(r, x) d m(r, x)\right), \quad \varphi \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right),
\end{gather*}
$$

where $d v$ and $d m$ are the measures defined by the relations (3.1) and (3.26).
Definition 4.7. (i) The translation operator $\tau_{r}^{a}, r \in \mathbb{R}$, associated with Bessel operator ℓ_{a} is defined on $\mathscr{S}_{*}(\mathbb{R})$ by the following. For all $s \in \mathbb{R}$,

$$
\tau_{r}^{a} f(s)= \begin{cases}\frac{\Gamma(a+1)}{\sqrt{\pi \Gamma(a+1 / 2)}} \int_{0}^{\pi} f\left(\sqrt{r^{2}+s^{2}+2 r s \cos \theta}\right) \sin ^{2 a} \theta d \theta & \text { if } a>-\frac{1}{2} \tag{4.34}\\ \frac{f(r+s)+f(|r-s|)}{2} & \text { if } a=-\frac{1}{2}\end{cases}
$$

(ii) The convolution product of $f \in \mathscr{S}_{*}(\mathbb{R})$ and $T \in \mathscr{S}_{*}^{\prime}(\mathbb{R})$ is defined by

$$
\begin{equation*}
\forall r \in \mathbb{R}, \quad T *_{a} f(r)=\left\langle T, \tau_{r}^{a} f\right\rangle \tag{4.35}
\end{equation*}
$$

(iii) The Fourier Bessel transform is defined on $\mathscr{S}_{*}(\mathbb{R})$ by

$$
\begin{equation*}
\forall \mu \in \mathbb{R}, \quad F_{a}(f)(\mu)=\int_{0}^{+\infty} f(r) j_{a}(r \mu) d \omega_{a}(r), \tag{4.36}
\end{equation*}
$$

and on $\mathscr{S}_{*}^{\prime}(\mathbb{R})$ by

$$
\begin{equation*}
\forall \varphi \in \mathscr{S}_{*}(\mathbb{R}), \quad\left\langle F_{a}(T), \varphi\right\rangle=\left\langle T, F_{a}(\varphi)\right\rangle . \tag{4.37}
\end{equation*}
$$

We have the following properties (we refer to [19]).
(i) F_{a} is an isomorphism from $\mathscr{S}_{*}(\mathbb{R})$ (resp., $\mathscr{S}_{*}^{\prime}(\mathbb{R})$) onto itself, and we have

$$
\begin{equation*}
F_{a}^{-1}=F_{a} . \tag{4.38}
\end{equation*}
$$

(ii) For $f \in \mathscr{S}_{*}(\mathbb{R})$, and $r \in \mathbb{R}, \tau_{r}^{a} f$ belongs to $\mathscr{S}_{*}(\mathbb{R})$, and we have

$$
\begin{equation*}
F_{a}\left(\tau_{r}^{a} f\right)(\mu)=j_{a}(r \mu) F_{a}(f)(\mu) . \tag{4.39}
\end{equation*}
$$

(iii) For $f \in \mathscr{S}_{*}(\mathbb{R})$ and $T \in \mathscr{S}_{*}^{\prime}(\mathbb{R})$, the function $T *_{a} f$ belongs to $\mathscr{E}_{*}(\mathbb{R})$, and is slowly increasing, moreover

$$
\begin{equation*}
F_{a}\left(T_{T *_{a} f}^{\omega_{a}}\right)=F_{a}(f) F_{a}(T) \tag{4.40}
\end{equation*}
$$

In the following, we will define the fractional powers of Bessel operator and the Laplacian operator defined on \mathbb{R}^{2} by

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial x^{2}} \tag{4.41}
\end{equation*}
$$

that we use to give simple expressions of K_{α}^{1} and K_{α}^{2}.
In [16], the author has proved that the mappings

$$
\begin{equation*}
z \longmapsto T_{|r|^{2}}^{\omega_{a}}, \quad z \longmapsto T_{\left(2^{z+a+1} \Gamma(z / 2+a+1) / \Gamma(-z / 2)\right)|r|^{-z-2 a-2}}^{\omega_{a}} \tag{4.42}
\end{equation*}
$$

defined initially for $-2(a+1)<\mathfrak{R} e(z)<0$, can be extended to a valued functions on $\mathscr{S}_{*}^{\prime}(\mathbb{R})$, analytic on $\mathbb{C} \backslash\left\{-2(k+a), k \in \mathbb{N}^{*}\right\}$, and we have

$$
\begin{equation*}
T_{|r|^{2}}^{\omega_{a}}=F_{a}\left(T_{\left(2^{2+a+1+1}\right.}^{\left.\omega_{a}(z / 2+a+1) / \Gamma(-z / 2)\right)|r|-z-2 a-2}\right) . \tag{4.43}
\end{equation*}
$$

Definition 4.8. For $z \in \mathbb{C} \backslash\left\{-(k+a), k \in \mathbb{N}^{*}\right\}$, the fractional power of Bessel operator ℓ_{a} is defined on $\mathscr{S}_{*}(\mathbb{R})$ by

$$
\begin{equation*}
\left(-\ell_{a}\right)^{z} f(r)=\left(T_{\left(2^{2 z+a+1} \Gamma(z+a+1) / \Gamma(-z)| | s \mid-2 z-2 a-2\right.}^{\omega_{a}}\right) *{ }_{a} f(r) \tag{4.44}
\end{equation*}
$$

From the relations (4.40) and (4.43), we deduce that for $f \in \mathscr{S}_{*}(\mathbb{R})$ and $z \in \mathbb{C} \backslash\{-(k+$ a), $\left.k \in \mathbb{N}^{*}\right\}$, we have

$$
\begin{equation*}
F_{a}\left(T_{\left(-e_{a}\right)^{2} f}^{\omega_{a}}\right)=F_{a}(f) T_{|r|^{2 z}}^{\omega_{a}} \tag{4.45}
\end{equation*}
$$

On the other hand, from $[8,10]$, we deduce that the mappings

$$
\begin{equation*}
z \longmapsto T_{\left(r^{2}+x^{2}\right) z}^{m}, \quad T_{\sqrt{2 / \pi}\left(2^{2 z+\alpha+1} \Gamma(z+1) \Gamma(\alpha+1) / \Gamma(-z)\right)\left(r^{2}+x^{2}\right)^{-z-1}}^{m} \tag{4.46}
\end{equation*}
$$

defined initially for $-1<\mathfrak{R e} e(z)<0$, can be extended to a valued functions in $\mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$, analytic on $\mathbb{C} \backslash\left\{-k, k \in \mathbb{N}^{*}\right\}$, and we have

$$
\begin{equation*}
T_{\left(r^{2}+x^{2}\right)^{z}}^{m}=\Lambda_{\alpha}\left(T_{\sqrt{2 / \pi}\left(2^{2 z+\alpha+1} \Gamma(z+1) \Gamma(\alpha+1) / \Gamma(-z)\right)\left(r^{2}+x^{2}\right)^{-z-1}}^{m}\right) \tag{4.47}
\end{equation*}
$$

where Λ_{α} is defined on $\mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
\left\langle\Lambda_{\alpha}(T), \varphi\right\rangle=\left\langle T, \Lambda_{\alpha}(\varphi)\right\rangle, \quad \varphi \in \mathscr{G}_{*}\left(\mathbb{R}^{2}\right) \tag{4.48}
\end{equation*}
$$

and $\Lambda_{\alpha}(\varphi)$ is given in Lemma 3.6.
Definition 4.9. For $z \in \mathbb{C} \backslash\left\{-k, k \in \mathbb{N}^{*}\right\}$, the fractional power of the Laplacian operator Δ is defined on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
(-\Delta)^{z} f(r, x)=\left(T_{\left.(1 / \pi)\left(2^{2 z+1} \Gamma(z+1) / \Gamma(-z)\right)\left(s^{2}+y^{2}\right)^{-z-1} * f\right)}^{m}\right)(r, x), \tag{4.49}
\end{equation*}
$$

where
(i) $*$ is the usual convolution product defined by

$$
\begin{equation*}
T * f(r, x)=\left\langle T, \sigma_{(r, x)} \check{f}\right\rangle, \quad T \in \mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2}\right), f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right) \tag{4.50}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\sigma_{(r, x)} f(s, y)=\frac{1}{2}[f(r+s, y-x)+f(r-s, y-x)], \quad f \in \mathscr{T}_{*}\left(\mathbb{R}^{2}\right) \tag{4.51}
\end{equation*}
$$

It is well known that for $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ and $T \in \mathscr{Y}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$, the function $T * f$ belongs to $\mathscr{E}_{*}\left(\mathbb{R}^{2}\right)$ and is slowly increasing, and we have

$$
\begin{equation*}
\Lambda_{\alpha}\left(T_{T * f}^{m}\right)=\Lambda_{\alpha}(f) \Lambda_{\alpha}(T) \tag{4.52}
\end{equation*}
$$

thus from the relations (4.47) and (4.52), we deduce that for $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ and $z \in \mathbb{C}$ $\left\{-k, k \in \mathbb{N}^{*}\right\}$,

$$
\begin{equation*}
\Lambda_{\alpha}\left(T_{\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)(-\Delta)^{2} f}^{m}\right)=\Lambda_{\alpha}(f) T_{\left(r^{2}+x^{2}\right)^{z}}^{m} \tag{4.53}
\end{equation*}
$$

Theorem 4.10. The operator K_{α}^{1} defined in Theorem 4.5 can be written as

$$
\begin{equation*}
K_{\alpha}^{1}(f)=\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)}\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 2}(-\Delta)^{\alpha} f \tag{4.54}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 2} f(r, x)=\left(-\ell_{-1 / 2}\right)^{1 / 2}(f(\cdot, x))(r) \tag{4.55}
\end{equation*}
$$

Proof. Let $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$. Using Fubini's theorem, we get for every $\varphi \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ the following:

$$
\begin{align*}
& \left\langle\Lambda_{\alpha}\left(T_{\left(-\partial^{2} / \partial r^{2}\right)^{1 / 2} f}^{m}\right), \varphi\right\rangle \\
& \quad=\frac{1}{2^{2 \alpha+2} \Gamma^{2}(\alpha+1)} \int_{\mathbb{R}} \int_{0}^{+\infty}\left\langle T_{\left(-\ell_{-1 / 2}\right)^{1 / 2}(f(\cdot, x))}^{\omega_{-1 / 2}}, F_{-1 / 2}(\varphi(\cdot, y))\right\rangle \times \exp (-i x y) d x d y \tag{4.56}
\end{align*}
$$

and by the relation (4.45), we obtain

$$
\begin{align*}
& \left\langle\Lambda_{\alpha}\left(T_{\left(-\partial^{2} / \partial r^{2}\right)^{1 / 2} f}^{m}\right), \varphi\right\rangle \\
& \quad=\frac{1}{2^{2 \alpha+2} \Gamma^{2}(\alpha+1)} \int_{\mathbb{R}} \int_{0}^{+\infty}\left\langle F_{-1 / 2}(f(\cdot, x)) T_{|r|}^{\omega-1 / 2}, \varphi(\cdot, y)\right\rangle \times \exp (-i x y) d x d y \tag{4.57}
\end{align*}
$$

which involves that

$$
\begin{equation*}
\left\langle\Lambda_{\alpha}\left(T_{\left(-\partial^{2} / \partial r^{2}\right)^{1 / 2} f}^{m}\right), \varphi\right\rangle=\int_{\mathbb{R}} \int_{0}^{+\infty} r \Lambda_{\alpha}(f)(r, y) \varphi(r, y) d m(r, y), \tag{4.58}
\end{equation*}
$$

this shows that

$$
\begin{equation*}
\Lambda_{\alpha}\left(T_{\left(-\partial^{2} / \partial r^{2}\right)^{1 / 2} f}^{m}\right)=T_{|r| \Lambda_{\alpha}(f)}^{m} . \tag{4.59}
\end{equation*}
$$

Now, from Lemma 4.1, we deduce that the function

$$
\begin{equation*}
(\mu, \lambda) \longmapsto|\mu| \Lambda_{\alpha}(f)(\mu, \lambda) \tag{4.60}
\end{equation*}
$$

belongs to the subspace \mathcal{N}. Then, from the relation (4.59), it follows that the function $\left(-\partial^{2} / \partial r^{2}\right)^{1 / 2} f$ belongs to the subspace $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$, and we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{R}^{2}, \quad \Lambda_{\alpha}\left(\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 2} f\right)(\mu, \lambda)=|\mu| \Lambda_{\alpha}(\mu, \lambda) . \tag{4.61}
\end{equation*}
$$

By the same way, and using the relation (4.53), we deduce that for every $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$, the function $(-\Delta)^{\alpha} f$ belongs to the subspace $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$, and we have that for all $(\mu, \lambda) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\Lambda_{\alpha}\left(\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)(-\Delta)^{\alpha} f\right)(\mu, \lambda)=\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \Lambda_{\alpha}(f)(\mu, \lambda) \tag{4.62}
\end{equation*}
$$

Hence, the theorem follows from the relations (4.61) and (4.62).
Definition 4.11. Let $a, b \in \mathbb{R}, b \geqslant a \geqslant-1 / 2$.
(i) The Sonine transform is the mapping defined on $\mathscr{E}_{*}(\mathbb{R})$ by the following. For all $r \in \mathbb{R}$,

$$
S_{b, a}(f)(r)= \begin{cases}\frac{2 \Gamma(b+1)}{\Gamma(b-a) \Gamma(a+1)} \int_{0}^{1}\left(1-t^{2}\right)^{b-a-1} f(r t) t^{2 a+1} d t & \text { if } b>a \tag{4.63}\\ f(r) & \text { if } b=a\end{cases}
$$

(ii) The dual transform ${ }^{t} S_{b, a}$ is the mapping defined on $\mathscr{S}_{*}(\mathbb{R})$ by the following. For all $r \in \mathbb{R}$,

$$
{ }^{t} S_{b, a}(f)(r)= \begin{cases}\frac{2 \Gamma(b+1)}{\Gamma(b-a) \Gamma(a+1)} \int_{r}^{+\infty}\left(t^{2}-r^{2}\right)^{b-a-1} f(t) t d t & \text { if } b>a \tag{4.64}\\ f(r) & \text { if } b=a\end{cases}
$$

Then, we have the following.
(i) The Sonine transform is an isomorphism from $\mathscr{E}_{*}(\mathbb{R})$ onto itself.
(ii) The dual Sonine transform is an isomorphism from $\mathscr{S}_{*}(\mathbb{R})$ onto itself.
(iii) For $f \in \mathscr{E}_{*}(\mathbb{R}), f$ bounded, and $g \in \mathscr{S}_{*}(\mathbb{R})$, we have

$$
\begin{equation*}
\int_{0}^{+\infty} S_{b, a}(f)(r) g(r) r^{2 b+1} d r=\int_{0}^{+\infty} f(r)^{t} S_{b, a}(g)(r) r^{2 a+1} d r . \tag{4.65}
\end{equation*}
$$

(iv) $j_{b}=S_{b, a}\left(j_{a}\right)$.
(v)

$$
\begin{equation*}
F_{b}=\frac{\Gamma(a+1)}{2^{b-a} \Gamma(b+1)} F_{a} \circ{ }^{t} S_{b, a} . \tag{4.66}
\end{equation*}
$$

For more details, we refer to [18, 20, 21].
We denote the following.
(i) For $T \in \mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2}\right), \varphi \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\left\langle S_{a, 0}(T), \varphi\right\rangle=\langle T, \psi\rangle, \tag{4.67}
\end{equation*}
$$

with $\psi(r, x)={ }^{t} S_{a, 0}(\varphi(\cdot, x))(r)$.
(ii) For all $(r, x) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
T \# \varphi(r, x)=\left\langle T, \mathcal{T}_{(r,-x)} \check{\varphi}\right\rangle, \tag{4.68}
\end{equation*}
$$

where $\mathscr{T}_{(r, x)}$ is the translation operator given by Definition 3.1.
(iii) $\widetilde{\mathfrak{F}}_{\alpha}$ is the mapping defined on $\mathscr{S}^{\prime}{ }_{*}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
\forall \varphi \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right), \quad\left\langle\tilde{\mathfrak{F}}_{\alpha}(T), \varphi\right\rangle=\left\langle T, \widetilde{\mathfrak{F}}_{\alpha}(\varphi)\right\rangle . \tag{4.69}
\end{equation*}
$$

(iv) L_{α} is the operator defined on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ by

$$
\begin{equation*}
L_{\alpha} f(r, x)=\left(-\ell_{\alpha}\right)^{2 \alpha}(f(\cdot, x))(r) \tag{4.70}
\end{equation*}
$$

where $\left(-\ell_{\alpha}\right)^{z}$ is the fractional power of Bessel given by Definition 4.8.
Theorem 4.12. The operator K_{α}^{2}, defined in Theorem 4.5, is given by

$$
\begin{equation*}
K_{\alpha}^{2}(f)(r, x)=\frac{\pi}{2^{4 \alpha+2} \Gamma^{4}(\alpha+1)} S_{\alpha, 0}(T) \#\left(-\Delta_{2}\right) L_{\alpha}(\check{f})(r,-x), \quad f \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right), \tag{4.71}
\end{equation*}
$$

where
(i) T is the distribution defined by

$$
\begin{equation*}
\langle T, \varphi\rangle=\int_{\mathbb{R}} \varphi(y, y) d y ; \tag{4.72}
\end{equation*}
$$

(ii) Δ_{2} is the operator defined in Section 2.

Proof. By the definition of K_{α}^{2}, and the relation (3.12), we have that for $f \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$,

$$
\begin{align*}
& K_{\alpha}^{2}(f)(r, x) \\
& \quad=\frac{\sqrt{\pi / 2}}{2^{3 \alpha+1} \Gamma^{3}(\alpha+1)} \int_{\mathbb{R}} \int_{0}^{+\infty} \mu^{2}\left(\mu^{2}+\lambda^{2}\right)^{2 \alpha} \widetilde{\mathfrak{F}}_{\alpha}(f)\left(\sqrt{\mu^{2}+\lambda^{2}}, \lambda\right) j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) \exp (i \lambda x) d \mu d \lambda . \tag{4.73}
\end{align*}
$$

By a change of variables, and using Fubini's theorem, we get

$$
\begin{equation*}
K_{\alpha}^{2}(f)(r, x)=\frac{\sqrt{\pi / 2}}{2^{3 \alpha+1} \Gamma^{3}(\alpha+1)} \int_{0}^{+\infty} \int_{-\nu}^{\nu} \nu^{4 \alpha}\left(\nu^{2}-\lambda^{2}\right) \widetilde{\mathfrak{F}}_{\alpha}(f)(\nu, \lambda) \frac{\exp (i \lambda x)}{\sqrt{\nu^{2}-\lambda^{2}}} j_{\alpha}(r v) v d \nu d \lambda \tag{4.74}
\end{equation*}
$$

On the other hand, for $f \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, the function $L_{\alpha} f$ belongs to $\mathscr{E}_{*}\left(\mathbb{R}^{2}\right)$, and is slowly increasing. Moreover, we have

$$
\begin{equation*}
\widetilde{\mathfrak{F}}_{\alpha}\left(T_{L_{\alpha} f}^{v}\right)=T_{|\mu|^{4 \alpha} \tilde{\mathcal{F}}_{\alpha}(f)}^{v} . \tag{4.75}
\end{equation*}
$$

But, for $f \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, the function $\widetilde{\mathfrak{F}}_{\alpha}(f)$ belongs to the subspace \mathcal{N}; according to Theorem 4.2 , we deduce that the function $L_{\alpha} f$ belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, and we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{R}^{2}, \quad \widetilde{\mathfrak{F}}_{\alpha}\left(L_{\alpha} f\right)(\mu, \lambda)=|\mu|^{4 \alpha} \widetilde{\mathfrak{F}}_{\alpha}(f)(\mu, \lambda) \tag{4.76}
\end{equation*}
$$

This involves that

$$
\begin{align*}
K_{\alpha}^{2}(f)(r, x) & =\frac{\sqrt{\pi / 2}}{2^{3 \alpha+1} \Gamma^{3}(\alpha+1)} \int_{0}^{+\infty} \int_{-\nu}^{\nu}\left(\nu^{2}-\lambda^{2}\right) \widetilde{\mathfrak{F}}_{\alpha}\left(L_{\alpha} f\right)(\nu, \lambda) \frac{\exp (i \lambda x)}{\sqrt{\nu^{2}-\lambda^{2}}} j_{\alpha}(r \nu) \nu d \nu d \lambda \\
& =\frac{\sqrt{\pi / 2}}{2^{3 \alpha+1} \Gamma^{3}(\alpha+1)} \int_{0}^{+\infty} \int_{-\nu}^{\nu} \widetilde{\mathfrak{F}}_{\alpha}\left(\left(-\Delta_{2}\right) L_{\alpha} f\right)(\nu, \lambda) \frac{\exp (i \lambda x)}{\sqrt{\nu^{2}-\lambda^{2}}} j_{\alpha}(r \nu) \nu d \nu d \lambda \tag{4.77}
\end{align*}
$$

Since for every $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, we have that

$$
\begin{equation*}
\forall(r, x),(\mu, \lambda) \in \mathbb{R}^{2}, \quad \widetilde{\mathfrak{F}}_{\alpha}\left(\mathscr{T}_{(r, x)} f\right)(\nu, \lambda)=j_{\alpha}(r \nu) \exp (i \lambda x) \widetilde{\mathfrak{F}}_{\alpha}(f)(\nu, \lambda), \tag{4.78}
\end{equation*}
$$

we get

$$
\begin{equation*}
K_{\alpha}^{2}(f)(r, x)=\frac{\sqrt{\pi / 2}}{2^{3 \alpha+1} \Gamma^{3}(\alpha+1)} \int_{0}^{+\infty} \int_{-\nu}^{v} \widetilde{\mathfrak{F}}_{\alpha}\left(\mathscr{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(v, \lambda) \frac{v d \nu d \lambda}{\sqrt{\nu^{2}-\lambda^{2}}} \tag{4.79}
\end{equation*}
$$

Using the expression of $\widetilde{\mathfrak{F}}_{\alpha}$, we obtain

$$
\begin{align*}
K_{\alpha}^{2}(f)(r, x)=\frac{1}{2^{4 \alpha+2} \Gamma^{4}(\alpha+1)} \int_{0}^{+\infty} \int_{-\nu}^{\nu}\left[\int_{\mathbb{R}} \int_{0}^{+\infty}\right. & \left(\mathscr{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(s, y) \\
& \left.\times j_{\alpha}(s v) \exp (-i \lambda y) s^{2 \alpha+1} d s d y\right] \frac{d \lambda}{\sqrt{\nu^{2}-\lambda^{2}}} v d \nu \tag{4.80}
\end{align*}
$$

22 Inversion formulas for Riemann-Liouville transform
From the fact that

$$
\begin{equation*}
\int_{-v}^{\nu} \frac{\exp (-i \lambda y)}{\sqrt{\nu^{2}-\lambda^{2}}} d \lambda=\pi j_{0}(\nu y), \tag{4.81}
\end{equation*}
$$

and using Fubini's theorem, we deduce that

$$
\begin{align*}
& K_{\alpha}^{2}(f)(r, x) \\
&=\frac{\pi}{2^{4 \alpha+2} \Gamma^{4}(\alpha+1)} \int_{\mathbb{R}}\left\{\iint_{0}^{+\infty}\left(\mathscr{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(s, y) j_{\alpha}(s v) \times j_{0}(\nu y) s^{2 \alpha+1} d s v d \nu\right\} d y \\
& \quad=\frac{\pi}{2^{3 \alpha+2} \Gamma^{3}(\alpha+1)} \int_{\mathbb{R}}\left\{\int_{0}^{+\infty} F_{\alpha}\left(\left(\mathscr{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(\cdot, y)\right)(\nu) j_{0}(\nu y) v d \nu\right\} d y, \tag{4.82}
\end{align*}
$$

and from the relation (4.66), we have

$$
\begin{align*}
& K_{\alpha}^{2}(f)(r, x) \\
& \quad=\frac{\pi}{2^{4 \alpha+2} \Gamma^{4}(\alpha+1)} \int_{\mathbb{R}}\left\{\int_{0}^{+\infty} F_{0} \circ^{t} S_{\alpha, 0}\left(\left(\mathcal{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(\cdot, y)\right)(\nu) \times j_{0}(\nu y) v d \nu\right\} d y, \tag{4.83}
\end{align*}
$$

and the relation (4.38) implies that

$$
\begin{equation*}
K_{\alpha}^{2}(f)(r, x)=\frac{\pi}{2^{4 \alpha+2} \Gamma^{4}(\alpha+1)} \int_{\mathbb{R}}{ }^{t} S_{\alpha, 0}\left(\left(\mathscr{T}_{(r, x)}\left(-\Delta_{2}\right) L_{\alpha} f\right)(\cdot, y)\right)(y) d y . \tag{4.84}
\end{equation*}
$$

4.3. Plancherel theorem for ${ }^{t} \mathfrak{R}_{\alpha}$

Proposition 4.13. The operator K_{α}^{3} defined by

$$
\begin{equation*}
K_{\alpha}^{3}(f)=\pi\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 4}(-\triangle)^{\alpha / 2} f \tag{4.85}
\end{equation*}
$$

is an isomorphism from $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ onto itself, where

$$
\begin{equation*}
\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 4} f(r, x)=\left(-\ell_{-1 / 2}\right)^{1 / 4}(f(\cdot, x))(r) \tag{4.86}
\end{equation*}
$$

Proof. Let $f \in \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$. From the relations (4.45) and (4.53), we deduce that for all (μ, λ) $\in \mathbb{R}^{2}$,

$$
\begin{equation*}
\sqrt{|\mu|}\left(\mu^{2}+\lambda^{2}\right)^{\alpha / 2} \Lambda_{\alpha}(f)(\mu, \lambda)=\Lambda_{\alpha}\left(\sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)\left(-\frac{\partial^{2}}{\partial r^{2}}\right)^{1 / 4}(-\Delta)^{\alpha / 2} f\right)(\mu, \lambda) \tag{4.87}
\end{equation*}
$$

which implies that for all $(\mu, \lambda) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\Lambda_{\alpha}\left(K_{\alpha}^{3}\right)(f)(\mu, \lambda)=\sqrt{\frac{\pi}{2}} \frac{1}{2^{\alpha} \Gamma(\alpha+1)} \sqrt{|\mu|}\left(\mu^{2}+\lambda^{2}\right)^{\alpha / 2} \Lambda_{\alpha}(f)(\mu, \lambda) . \tag{4.88}
\end{equation*}
$$

Then, the result follows from Lemma 4.1 and Theorem 4.2.
Proposition 4.14. For $g \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, there exists the Plancherel formula

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty}|g(r, x)|^{2} d v(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty}\left|K_{\alpha}^{3}\left({ }^{t} \Re_{\alpha}(g)\right)(r, x)\right|^{2} d m(r, x) . \tag{4.89}
\end{equation*}
$$

Proof. Let $g \in \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$, from Theorem 3.5 (Plancherel formula), we have

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty}|g(r, x)|^{2} d v(r, x)=\iint_{\Gamma}\left|\mathfrak{F}_{\alpha}(g)(\mu, \lambda)\right|^{2} d \gamma(\mu, \lambda) \tag{4.90}
\end{equation*}
$$

From the relation (3.12), Lemma 3.6, and the fact that

$$
\begin{equation*}
\operatorname{supp} \widetilde{\mathfrak{F}}_{\alpha}(g) \subset\left\{(\mu, \lambda) \in \mathbb{R}^{2} /|\mu| \geqslant|\lambda|\right\} \tag{4.91}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty}|g(r, x)|^{2} d \nu(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty}\left|\sqrt{\mu}\left(\mu^{2}+\lambda^{2}\right)^{\alpha / 2} \Lambda_{\alpha} \circ{ }^{t} \Re_{\alpha}(g)(\mu, \lambda)\right|^{2} d m(\mu, \lambda) \tag{4.92}
\end{equation*}
$$

We complete the proof by using the formula (4.88), and the fact that for every $f \in$ $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty}\left|\Lambda_{\alpha}(f)(\mu, \lambda)\right|^{2} d m(\mu, \lambda)=\frac{\pi}{2^{2 \alpha+1} \Gamma^{2}(\alpha+1)} \int_{\mathbb{R}} \int_{0}^{+\infty}|f(\mu, \lambda)|^{2} d m(\mu, \lambda) \tag{4.93}
\end{equation*}
$$

We denote by
(i) $L_{0}^{2}(d \nu)$ the subspace of $L^{2}(d \nu)$ consisting of functions g such that

$$
\begin{equation*}
\operatorname{supp} \widetilde{\mathfrak{F}}_{\alpha}(g) \subset\left\{(\mu, \lambda) \in \mathbb{R}^{2} /|\mu| \geqslant|\lambda|\right\} ; \tag{4.94}
\end{equation*}
$$

(ii) $L^{2}(d m)$ the space of square integrable functions on $[0,+\infty[\times \mathbb{R}$ with respect to the measure $d m(r, x)$.
Theorem 4.15. The operator $K_{\alpha}^{3} \circ{ }^{t} \Re_{\alpha}$ can be extended to an isometric isomorphism from $L_{0}^{2}(d \nu)$ onto $L^{2}(d m)$.

Proof. The theorem follows from Propositions 4.13, 4.14, and the density of $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ (resp., $\left.\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)\right)$ in $L^{2}(d m)\left(\right.$ resp., $\left.L_{0}^{2}(d \nu)\right)$.

5. Transmutation operators

Proposition 5.1. The Riemann-Liouville transform and its dual satisfy the following permutation properties.
(i) For all $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
{ }^{t} \mathfrak{R}_{\alpha}\left(\Delta_{2} f\right)=\frac{\partial^{2}}{\partial r^{2}}{ }^{t} \Re_{\alpha}(f), \quad{ }^{t} \Re_{\alpha}\left(\Delta_{1} f\right)=\Delta_{1}{ }^{t} \Re_{\alpha}(f) . \tag{5.1}
\end{equation*}
$$

(ii) For all $f \in \mathscr{E} *\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\Delta_{2} \mathfrak{R}_{\alpha}(f)=\mathfrak{R}_{\alpha}\left(\frac{\partial^{2} f}{\partial r^{2}}\right), \quad \Delta_{1} \Re_{\alpha}(f)=\mathfrak{R}_{\alpha}\left(\Delta_{1} f\right) \tag{5.2}
\end{equation*}
$$

Proof. (i) We know that the operators $\Delta_{1}, \Delta_{2}, \partial^{2} / \partial r^{2}$, and ${ }^{t} \Re_{\alpha}$ are continuous mappings from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into itself. Then, by applying the usual Fourier transform Λ_{α}, we have

$$
\begin{gather*}
\Lambda_{\alpha}\left({ }^{t} \Re_{\alpha}\left(\Delta_{2} f\right)\right)(\mu, \lambda)=-\mu^{2} \Lambda_{\alpha} \circ{ }^{t} \Re_{\alpha}(f)(\mu, \lambda)=\Lambda_{\alpha}\left(\frac{\partial^{2}}{\partial r^{2}}{ }^{t} \Re_{\alpha}(f)\right)(\mu, \lambda), \tag{5.3}\\
\Lambda_{\alpha}\left(\Delta_{1}{ }^{t} \Re_{\alpha} f\right)(\mu, \lambda)=i \lambda \Lambda_{\alpha}\left({ }^{t} \Re_{\alpha}(f)\right)(\mu, \lambda)=\Lambda_{\alpha}\left({ }^{t} \Re_{\alpha}\left(\Delta_{1} f\right)\right)(\mu, \lambda) .
\end{gather*}
$$

Consequently, (i) follows from the fact that Λ_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself.
(ii) We obtain the result from (i), Lemma 2.4, and the fact that for $f \in \mathscr{E}_{*}\left(\mathbb{R}^{2}\right)$, and $g \in \mathscr{D}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{+\infty} \Delta_{2} f(r, x) g(r, x) d \nu(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) \Delta_{2} g(r, x) d \nu(r, x) . \tag{5.4}
\end{equation*}
$$

Theorem 5.2. (i) The Riemann-Liouville transform \mathfrak{R}_{α} is a transmutation operator of

$$
\begin{equation*}
\frac{\partial^{2}}{\partial r^{2}}, \Delta_{1} \quad \text { into } \Delta_{2}, \Delta_{1} \tag{5.5}
\end{equation*}
$$

from

$$
\begin{equation*}
\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right) \quad \text { onto } \mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right) \tag{5.6}
\end{equation*}
$$

(ii) The dual transform ${ }^{t} \mathfrak{R}_{\alpha}$ is a transmutation operator of

$$
\begin{equation*}
\Delta_{2}, \Delta_{1} \quad \text { into } \frac{\partial^{2}}{\partial r^{2}}, \Delta_{1} \tag{5.7}
\end{equation*}
$$

from

$$
\begin{equation*}
\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right) \quad \text { onto } \mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right) \tag{5.8}
\end{equation*}
$$

This theorem follows from Proposition 5.1 and the fact that \mathfrak{R}_{α} is an isomorphism from $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ and ${ }^{t} \Re_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}^{0}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*, 0}\left(\mathbb{R}^{2}\right)$.

References

[1] L.-E. Andersson, On the determination of a function from spherical averages, SIAM Journal on Mathematical Analysis 19 (1988), no. 1, 214-232.
[2] R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Wiley-Interscience, New York, 1962.
[3] L. Debnath, Fractional integral and fractional differential equations in fluid mechanics, Fractional Calculus \& Applied Analysis 6 (2003), no. 2, 119-155.
[4] , Recent applications of fractional calculus to science and engineering, International Journal of Mathematics and Mathematical Sciences 2003 (2003), no. 54, 3413-3442.
[5] L. Debnath and D. D. Bhatta, Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics, Fractional Calculus \& Applied Analysis 7 (2004), no. 1, 21-36.
[6] J. A. Fawcett, Inversion of n-dimensional spherical averages, SIAM Journal on Applied Mathematics 45 (1985), no. 2, 336-341.
[7] T. G. Genchev, Entire functions of exponential type with polynomial growth on \mathbb{R}_{x}^{n}, Journal of Mathematical Analysis and Applications 60 (1977), no. 1, 103-119.
[8] F. B. Gonzalez, Radon transforms on Grassmann manifolds, Journal of Functional Analysis 71 (1987), no. 2, 339-362.
[9] J. Gosselin and K. Stempak, A weak-type estimate for Fourier-Bessel multipliers, Proceedings of the American Mathematical Society 106 (1989), no. 3, 655-662.
[10] S. Helgason, The Radon Transform, Progress in Mathematics, vol. 5, Birkhäuser, Massachusetts, 1980.
[11] H. Hellsten and L.-E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems 3 (1987), no. 1, 111-124.
[12] M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D 30430-3.2, National Defense Research Institute, FOA, Box 1165; S-581 11, Linköping, 1986.
[13] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[14] D. Ludwig, The Radon transform on Euclidean space, Communications on Pure and Applied Mathematics 19 (1966), 49-81.
[15] M. M. Nessibi, L. T. Rachdi, and K. Trimeche, Ranges and inversion formulas for spherical mean operator and its dual, Journal of Mathematical Analysis and Applications 196 (1995), no. 3, 861884.
[16] L. T. Rachdi, Fractional powers of Bessel operator and inversion formulas for Riemann-Liouville and Weyl transforms, Journal of Mathematical Sciences 12 (2001), no. 1.
[17] D. C. Solmon, Asymptotic formulas for the dual Radon transform and applications, Mathematische Zeitschrift 195 (1987), no. 3, 321-343.
[18] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0, \infty)$ [Weyl integral transform and Paley-Wiener theorem associated
with a singular differential operator on $(0, \infty)$], Journal de Mathématiques Pures et Appliquées. Neuvième Série 60 (1981), no. 1, 51-98.
[19] \qquad , Inversion of the Lions transmutation operators using generalized wavelets, Applied and Computational Harmonic Analysis 4 (1997), no. 1, 97-112.
[20] , Generalized Harmonic Analysis and Wavelet Packets: An Elementary Treatment of Theory \& Applications, Gordon and Breach Science, Amsterdam, 2001.
[21] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, London, 1966.
C. Baccar: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
N. B. Hamadi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
L. T. Rachdi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
E-mail address: lakhdartannech.rachdi@fst.rnu.tn

