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We study the following integral operators: Jg f (z)=∫ z0 f (ξ)g′(ξ)dξ; Ig f (z)=∫ z0 f ′(ξ)g(ξ)dξ,
where g is an analytic function on the open unit disk in the complex plane. The bounded-
ness and compactness of Jg , Ig between the Bergman-type spaces and the α-Bloch spaces
are investigated.
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1. Introduction

Let D be the open unit disk in the complex plane. Denote by H(D) the class of all analytic
functions on D. An analytic function f in D is said to belong to the α-Bloch space �α, or
Bloch-type space, if

‖ f ‖α = sup
z∈D

(
1−|z|2)α∣∣ f ′(z)

∣
∣ <∞. (1.1)

The expression ‖ f ‖α defines a seminorm while the natural norm is given by ‖ f ‖�α =
| f (0)|+‖ f ‖α. It makes �α into a Banach space.

A positive continuous function φ on [0,1) is normal, if there exists 0 < s < t such that
(see [7])

φ(r)
(1− r)s

↓ 0,
φ(r)

(1− r)t
↑ ∞, as r −→ 1−. (1.2)

For 0 < p <∞ and a normal function φ, let H(p, p,φ) denote the space of all analytic
functions f on D such that

‖ f ‖H(p,p,φ) =
∫

D

∣
∣ f (z)

∣
∣p φ

p
(|z|)

1−|z| dA(z) <∞. (1.3)

Here dA denotes the normalized Lebesgue area measure on the unit disk D such that
A(D)= 1. We call H(p, p,φ) the Bergman-type space. If 1≤ p <∞, H(p, p,φ) is a Banach
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space equipped with the norm ‖ f ‖H(p,p,φ). When 0 < p < 1, H(p, p,φ) is a Fréchlet space.
In particular, if φ(r)= (1− r)1/p, then H(p, p,φ) is the Bergman space Ap.

For an analytic function f (z) on the unit disk D with the Taylor expansion f (z) =
∑∞

n=0 anz
n, the Cesàro operator acting on f is

� f (z)=
∞∑

n=0

(
1

n+ 1

n∑

k=0

ak

)

zn. (1.4)

The integral form of � is

�( f )(z)= 1
z

∫ z

0
f (ζ)

1
1− ζ

dζ = 1
z

∫ z

0
f (ζ)

(
ln

1
1− ζ

)′
dζ , (1.5)

taking simply as a path the segment joining 0 and z, we have that

�( f )(z)=
∫ 1

0
f (tz)

(
ln

1
1− ζ

)′∣∣
∣
∣
ζ=tz

dt. (1.6)

The following operator:

z�( f )(z)=
∫ z

0

f (ζ)
1− ζ

dζ (1.7)

is closely related to the previous operator and on many spaces the boundedness of these
two operators is equivalent. It is well known that Cesàro operator acts as a bounded linear
operator on various analytic function spaces (see, e.g., [6, 9, 13, 15, 16, 18, 20], and the
references therein).

Suppose that g : D→ C1 is an analytic map, f ∈ H(D). A class of integral operator
introduced by Pommerenke is defined by (see [11])

Jg f (z)=
∫ z

0
f dg =

∫ 1

0
f (tz)zg′(tz)dt =

∫ z

0
f (ξ)g′(ξ)dξ, z ∈D. (1.8)

The operator Jg can be viewed as a generalization of the Cesàro operator which was called
the Riemann-Stieltjes operator (see [21]).

In [11], Pommerenke showed that Jg is a bounded operator on the Hardy space H2

if and only if g ∈ BMOA. Aleman and Siskakis showed that Jg is bounded (compact) on
the Hardy space Hp, 1 ≤ p <∞, if and only if g ∈ BMOA (g ∈ VMOA), and that Jg is
bounded (compact) on the Bergman space Ap if and only if g ∈� (g ∈�0), see [2, 3].
Recently, Jg acting on various function spaces, including the Bloch space, the weighted
Bergman space, the BMOA, and VMOA spaces have been studied (see [1–3, 17, 22], and
the related references therein).

Another integral operator has recently been defined as the following (see [22]):

Ig f (z)=
∫ z

0
f ′(ξ)g(ξ)dξ. (1.9)

In this paper, we study the boundedness and compactness of the operators Jg , Ig be-
tween the Bergman-type space and the α-Bloch space.
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Constants are denoted by C in this paper, they are positive and may differ from one
occurrence to the other. a
 b means that there is a positive constant C such that a≤ Cb.
Moreover, if both a
 b and b 
 a hold, then one says that a� b.

2. Jg , Ig : H(p, p,φ)→�α

In this section, we consider the boundedness and compactness of Jg , Ig : H(p, p,φ)→�α.
First, let us state some useful lemmas.

Lemma 2.1. Assume that 0 < p <∞ and φ is normal on [0,1). If f ∈H(p, p,φ), then

∣
∣ f (z)

∣
∣≤ C

‖ f ‖H(p,p,φ)

φ
(|z|)(1−|z|2)1/p . (2.1)

Proof. Let β(z,w) denote the Bergman metric between two points z and w in D. It is given
by

β(z,w)= 1
2

log
1 +

∣
∣ϕz(w)

∣
∣

1−∣∣ϕz(w)
∣
∣ . (2.2)

For a∈D and r > 0, the set D(a,r)= {z ∈D : β(a,z) < r} is a Bergman metric disk with
center a and radius r. It is well known that (see [25])

(
1−|a|2)2

|1− āz|4 � 1
(
1−|z|2)2 �

1
(
1−|a|2)2 �

1
∣
∣D(a,r)

∣
∣ , (2.3)

when z ∈ D(a,r). For 0 < r < 1 and z ∈ D, by the subharmonicity of | f (z)|p and the
normality of φ, we get

∣
∣ f (z)

∣
∣p ≤ C

(
1−|z|2)2

∫

D(z,r)

∣
∣ f (a)

∣
∣pdA(a)

≤ C
(
1−|z|2)φp

(|z|)
∫

D(z,r)

(
1−|a|)−1

φp
(|a|)∣∣ f (a)

∣
∣pdA(a)

≤ C
(
1−|z|2)φp

(|z|)
∫

D

(
1−|a|)−1

φp
(|a|)∣∣ f (a)

∣
∣pdA(a)≤

C‖ f ‖pH(p,p,φ)
(
1−|z|2)φp

(|z|) ,

(2.4)

from which we get the desired result. �

The following lemma can be found in [7, Theorem 2].

Lemma 2.2. Assume that 0 < p <∞ and φ is normal on [0,1). Then for f ∈H(D),

‖ f ‖pH(p,p,φ) �
∣
∣ f (0)

∣
∣p +

∫

D

∣
∣ f ′(z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z). (2.5)

From the proof of Lemmas 2.1 and 2.2, we get the following result.
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Lemma 2.3. Assume that 0 < p <∞ and φ is normal on [0,1). If f ∈H(p, p,φ) and z ∈D,
then

∣
∣ f ′(z)

∣
∣≤ C

‖ f ‖H(p,p,φ)

φ
(|z|)(1−|z|2)1/p+1 , (z ∈D). (2.6)

The following lemma can be found in [14].

Lemma 2.4. For β >−1 and m> 1 +β,

∫ 1

0
(1− ρr)−m(1− r)βdr ≤ C(1− ρ)1+β−m, 0 < ρ < 1. (2.7)

The next lemma can be proved in a standard way (see [5]).

Lemma 2.5. The operator Jg (or Ig): H(p, p,φ) → �α is compact if and only if for any
bounded sequence ( fk)k∈N in H(p, p,φ) which converges to zero uniformly on compact sub-
sets of D, Jg fk (or Ig fk)→ 0 in �α as k→∞.

Theorem 2.6. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then the operator
Jg : H(p, p,φ)→�α is bounded if and only if

sup
z∈D

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣ <∞. (2.8)

Moreover, the following relationship:

∥
∥Jg
∥
∥
H(p,p,φ)→�α � sup

z∈D

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣ (2.9)

holds.

Proof. By (1.8), it is easy to see that (Jg f )′(z) = f (z)g′(z), (Jg f )(0) = 0. Let f (z) ∈
H(p, p,φ). We have

(
1−|z|2)α∣∣(Jg f

)′
(z)
∣
∣≤ C‖ f ‖H(p,p,φ)

(
1−|z|2)α

φ
(|z|)(1−|z|2)1/p

∣
∣g′(z)

∣
∣. (2.10)

Taking supremum over the unit disk in this inequality, we obtain

∥
∥Jg f

∥
∥

�α ≤ C‖ f ‖H(p,p,φ) sup
z∈D

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣. (2.11)

Therefore, (2.8) implies that Jg : H(p, p,φ)→�α is bounded.
Conversely, suppose Jg is a bounded operator from H(p, p,φ) to �α. For w ∈D, let

fw(z)=
(
1−|w|2)t+1

φ
(|w|)(1−wz)1/p+t+1 . (2.12)
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It is easy to see that

fw(w)= 1

φ
(|w|)(1−|w|2)1/p ,

∣
∣ f ′w(w)

∣
∣=

(
1
p

+ t+ 1
) |w|
φ
(|w|)(1−|w|2)1/p+1 .

(2.13)

By [12], we get

Mp
(
fw,r

)≤ C

(
1−|w|2)t+1

φ
(|w|)(1− r|w|)t+1 . (2.14)

Since φ is normal, by Lemma 2.4,

∥
∥ fw

∥
∥p
p,p,φ=

∫ 1

0
r(1− r)−1φp(r)M

p
p
(
fw,r

)
dr 


∫ 1

0
(1− r)−1φp(r)

(
1−|w|2)p(t+1)

φp
(|w|)(1− r|w|)p(t+1) dr



∫ |w|

0
(1− r)−1 φ

p(r)
(
1−|w|2)p(t+1)

dr

φp
(|w|)(1− r|w|)p(t+1) +

∫ 1

|w|
(1− r)−1 φ

p(r)
(
1−|w|2)p(t+1)

dr

φp
(|w|)(1− r|w|)p(t+1)


 (1−|w|2)p
∫ |w|

0

(1− r)pt−1dr
(
1− r|w|)p(t+1) +

(
1−|w|2)p(t+1)−ps

∫ 1

|w|
(1− r)ps−1dr
(
1− r|w|)p(t+1)


 (1−|w|2)p
∫ 1

0

(1− r)pt−1dr
(
1− r|w|)p(t+1) +

(
1−|w|2)p(t+1)−ps

∫ 1

0

(1− r)ps−1dr
(
1− r|w|)p(t+1) ≤ C.

(2.15)

Therefore, fw ∈H(p, p,φ) (or see [23]). Moreover, there is a positive constant C such that
‖ fw‖H(p,p,φ) ≤ C. Hence

(
1−|z|2)α∣∣ fw(z)g′(z)

∣
∣≤ ∥∥Jg fw

∥
∥

�α ≤
∥
∥Jg
∥
∥
H(p,p,φ)−→�α

∥
∥ fw

∥
∥
H(p,p,φ) (2.16)

for every z,w ∈D.
From this and (2.13), we have

(
1−|w|2)α

φ
(|w|)(1−|w|2)1/p

∣
∣g′(w)

∣
∣≤ (1−|w|2)α∣∣ fw(w)g′(w)

∣
∣≤ C

∥
∥Jg
∥
∥
H(p,p,φ)→�α ,

(2.17)

from which (2.8) follows. Combining (2.11) with (2.17), we get (2.9). �

Theorem 2.7. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then Ig : H(p, p,φ)
→�α is bounded if and only if

sup
z∈D

(
1−|z|2)α−1/p−1

φ
(|z|)

∣
∣g(z)

∣
∣ <∞. (2.18)
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Moreover, the following relationship:

∥
∥Ig
∥
∥
H(p,p,φ)→�α � sup

z∈D

(
1−|z|2)α−1/p−1

φ
(|z|)

∣
∣g(z)

∣
∣ (2.19)

holds.

Proof. Similar to the case of Jg , we have (Ig f )′ = f ′(z)g(z), (Ig f )(0)= 0. Assume (2.18)
holds. Let f (z)∈H(p, p,φ). Then

(
1−|z|2)α∣∣(Ig f

)′
(z)
∣
∣≤ C‖ f ‖H(p,p,φ)

(
1−|z|2)α

φ
(|z|)(1−|z|2)1/p+1

∣
∣g(z)

∣
∣. (2.20)

It follows that Ig : H(p, p,φ)→�α is bounded.
Conversely, if Ig : H(p, p,φ) → �α is bounded. For w ∈ D, let fw(z) be defined by

(2.12). From (2.3) and (2.13),

(
1
p

+ t+ 1
)2 |w|2

φ2
(|w|)(1−|w|2)2(1/p+1)

∣
∣g(w)

∣
∣2

= ∣∣ f ′w(w)g(w)
∣
∣2 ≤ C

(
1−|w|2)2

∫

D(w,r)

∣
∣ f ′w(z)

∣
∣2∣∣g(z)

∣
∣2
dA(z)

≤ C
(
1−|w|2)2

∫

D(w,r)

∣
∣ f ′w(z)

∣
∣2∣∣g(z)

∣
∣2(

1−|z|2)2α 1
(
1−|z|2)2α dA(z)

≤ C
∫

D(w,r)

dA(z)
(
1−|z|2)2α+2 sup

z∈D(w,r)

(
1−|z|2)2α∣∣ f ′w(z)

∣
∣2∣∣g(z)

∣
∣2

≤ C
(
1−|w|2)2α

∥
∥Ig fw

∥
∥2

�α ,

(2.21)

that is,

|w|(1−|w|2)α
φ
(|w|)(1−|w|2)1/p+1

∣
∣g(w)

∣
∣≤ C

∥
∥Ig fw

∥
∥

�α ≤ C
∥
∥Ig
∥
∥
H(p,p,φ)→�α . (2.22)

Taking supremum in the last inequality over the set 1/2 ≤ |w| < 1 and noticing that by
the maximum modulus principle there is a positive constant C independent of g ∈H(D)
such that

sup
|w|≤1/2

(
1−|w|2)α

φ
(|w|)(1−|w|2)1/p+1

∣
∣g(w)

∣
∣≤ C sup

1/2≤|w|<1

|w|(1−|w|2)α
φ
(|w|)(1−|w|2)1/p+1

∣
∣g(w)

∣
∣,

(2.23)

the result follows. From (2.20) and (2.22), we obtain (2.19). �
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Theorem 2.8. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then the operator
Jg : H(p, p,φ)→�α is compact if and only if

lim
|z|→1

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣= 0. (2.24)

Proof. First, we assume that (2.24) holds. In order to prove that Jg is compact, by
Lemma 2.5, it suffices to show that if { fn} is a bounded sequence in H(p, p,φ) that con-
verges to 0 uniformly on compact subsects of D, then ‖Jg fn‖�α → 0. Let { fn} be a se-
quence in H(p, p,φ) with ‖ fn‖H(p,p,φ) ≤ 1 and fn → 0 uniformly on compact subsets of
D. By the assumption, for any ε > 0, there is a constant δ, 0 < δ < 1, such that δ < |z| < 1
implies

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣ <

ε
2
. (2.25)

Let K = {z ∈D : |z| ≤ δ}. Note that K is a compact subsect of D and φ is normal, we have
∥
∥Jg fn

∥
∥

�α = sup
z∈D

(
1−|z|2)α∣∣(Jg fn

)′
(z)
∣
∣

≤ sup
z∈K

(
1−|z|2)α∣∣g′(z) fn(z)

∣
∣+ sup

z∈D\K

(
1−|z|2)α

φ
(|z|)(1−|z|2)1/p

∣
∣g′(z)

∣
∣‖ f ‖H(p,p,φ)

≤ CN sup
z∈K

(
1−|z|2)s+1/p∣∣ fn(z)

∣
∣+

Cε
2

,

(2.26)

where

N = sup
z∈D

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣. (2.27)

By the assumption and Theorem 2.6, we obtain ‖Jg fn‖�α → 0 as n→∞. Therefore, Jg :
H(p, p,φ)→�α is compact.

Conversely, suppose Jg : H(p, p,φ)→�α is compact. Let {zn} be a sequence in D such
that |zn| → 1 as n→∞. Let

fn(z)=
(

1−∣∣zn
∣
∣2
)t+1

φ
(∣∣zn

∣
∣)(1− znz

)1/p+t+1 . (2.28)

Then fn ∈H(p, p,φ) and fn converges to 0 uniformly on compact subsets of D (see [7]).
Since Jg is compact, by Lemma 2.5, ‖Jg fn‖�α → 0 as n→∞. In addition,

∥
∥Jg fn

∥
∥

�α = sup
z∈D

(
1−|z|2)α∣∣(Jg fn

)′
(z)
∣
∣≥

(
1−∣∣zn

∣
∣2
)α∣
∣g′

(
zn
)∣∣

φ
(∣∣zn

∣
∣)
(

1−∣∣zn
∣
∣2
)1/p , (2.29)

from which the result follows. �
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Theorem 2.9. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then Ig : H(p, p,φ)
→�α is compact if and only if

lim
|z|→1

(
1−|z|2)α−1/p−1

φ
(|z|)

∣
∣g(z)

∣
∣= 0. (2.30)

Proof. Suppose that Ig : H(p, p,φ)→�α is compact. Let {zn} be a sequence in D such that
|zn| → 1 as n→∞. Let fn(z) be defined by (2.28). Then from the proof of Theorem 2.8
and the compactness of Ig , ‖Ig fn‖�α → 0 as n→∞. In addition,

∥
∥Ig fn

∥
∥

�α = sup
z∈D

(
1−|z|2)α∣∣(Ig fn

)′
(z)
∣
∣≥

(
1
p

+ t+ 1

) (
1−∣∣zn

∣
∣2
)α∣
∣g
(
zn
)
zn
∣
∣

φ
(∣∣zn

∣
∣)
(

1−∣∣zn
∣
∣2
)1+1/p ,

(2.31)

from which we get the desired result. �

Assume (2.30) holds, in order to prove that Ig is compact, it suffices to show that if { fn}
is a bounded sequence in H(p, p,φ) that converges to 0 uniformly on compact subsects
of D, then ‖Ig fn‖�α → 0. Let { fn} be a sequence in H(p, p,φ) with ‖ fn‖H(p,p,φ) ≤ 1 and
fn → 0 uniformly on compact subsets of D. By the assumption, for any ε > 0, there is a
constant δ, 0 < δ < 1, such that δ < |z| < 1 implies

(
1−|z|2)α∣∣g(z)

∣
∣

φ
(|z|)(1−|z|2)1+1/p <

ε
2
. (2.32)

Similar to the proof of Theorem 2.8, we have

∥
∥Ig fn

∥
∥

�α −→ 0 as n−→∞. (2.33)

Therefore, Ig : H(p, p,φ)→�α is compact.
From the introduction, we can easily get the following corollary.

Corollary 2.10. Let 0 < p <∞, α≥ 1 + 2/p. Then
(1) Jg : Ap →�α is bounded if and only if

sup
z∈D

(
1−|z|2)α−2/p∣∣g′(z)

∣
∣ <∞, (2.34)

(2) Ig : Ap →�α is bounded if and only if

sup
z∈D

(
1−|z|2)α−2/p−1∣∣g(z)

∣
∣ <∞, (2.35)

(3) Jg : Ap →�α is compact if and only if

lim
|z|→1

(
1−|z|2)α−2/p∣∣g′(z)

∣
∣= 0, (2.36)
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(4) Ig : Ap →�α is compact if and only if

lim
|z|→1

(
1−|z|2)α−2/p−1∣∣g(z)

∣
∣= 0. (2.37)

3. Jg ,Ig : H(p, p,φ)→�α
0

In this section, we characterize the boundedness and compactness of Jg ,Ig : H(p, p,φ)→
�α

0 . For this purpose, we need Lemma 3.1. When α= 1, Lemma 3.1 was proved in [8]. For
the general case, the proof is similar to the proof of the case α= 1. We omit the details.

Lemma 3.1. A closed set K in �α
0 is compact if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

(
1−|z|2)α∣∣ f ′(z)

∣
∣= 0. (3.1)

Theorem 3.2. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then the following
statements hold.

(i) Jg : H(p, p,φ)→�α
0 is bounded if and only if g ∈�α

0 and Jg : H(p, p,φ) →�α is
bounded.

(ii) Jg : H(p, p,φ)→�α
0 is compact if and only if

lim
|z|→1

(
1−|z|2)α−1/p

φ
(|z|)

∣
∣g′(z)

∣
∣= 0. (3.2)

Proof. (i) It is clear to see that g ∈�α
0 and Jg : H(p, p,φ)→�α is bounded if Jg : H(p, p,φ)

→�α
0 is bounded.

Conversely, suppose that Jg : H(p, p,φ)→�α is bounded and g ∈�α
0 . For any polyno-

mial p(z), since g ∈�α
0 and
(
1−|z|2)α(Jg p

)′
(z)= (1−|z|2)αp(z)g′(z), (3.3)

we know that Jg p ∈�α
0 . For any f ∈ H(p, p,φ), there exists a sequence of polynomials

{pn} such that ‖ f − pn‖H(p,p,φ) → 0 as n→∞. Since �α
0 is closed, we get

Jg f = lim
n→∞ Jg pn ∈�α

0 . (3.4)

In addition, Jg : H(p, p,φ)→�α is bounded. Therefore, Jg : H(p, p,φ)→�α
0 is bounded.

(ii) If Jg : H(p, p,φ)→�α
0 is compact, then by Theorem 2.8, we get (3.2).

Conversely, assume that (3.2) holds. It follows from Lemma 3.1 that Jg : H(p, p,φ)→
�α

0 is compact if and only if

lim
|z|→1

sup
‖ f ‖H(p,p,φ)≤1

(
1−|z|2)α∣∣(Jg f

)′
(z)
∣
∣= 0. (3.5)

In fact,

(
1−|z|2)α∣∣(Jg f

)′
(z)
∣
∣=

(
1−|z|2)α∣∣g′(z)

∣
∣

φ
(|z|)(1−|z|2)1/p φ

(|z|)(1−|z|2)1/p∣∣ f (z)
∣
∣. (3.6)

By Lemma 2.1, the result follows. �
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Similarly, we have the following results.

Theorem 3.3. Assume that 0 < p <∞, α > 0, and φ is normal on [0,1). Then the following
statements hold.

(i) Ig : H(p, p,φ)→�α
0 is bounded if and only if Ig : H(p, p,φ)→�α is bounded and

lim
|z|→1

∣
∣g(z)

∣
∣(1−|z|2)α = 0. (3.7)

(ii) Ig : H(p, p,φ)→�α
0 is compact if and only if

lim
|z|→1

(
1−|z|2)α−1/p−1

φ
(|z|)

∣
∣g(z)

∣
∣= 0. (3.8)

Corollary 3.4. Let 0 < p <∞, α > 0. Then the following statements hold.
(i) Jg : Ap →�α

0 is bounded if and only if Jg : Ap →�α is bounded and g ∈�α
0 .

(ii) Jg : Ap →�α
0 is compact if and only if

lim
|z|→1

(
1−|z|2)α−2/p∣∣g′(z)

∣
∣= 0. (3.9)

Corollary 3.5. Let 0 < p <∞, α > 0. Then the following statements hold.
(i) Ig : Ap →�α

0 is bounded if and only if Ig : Ap →�α is bounded and

lim
|z|→1

∣
∣g(z)

∣
∣(1−|z|2)α = 0. (3.10)

(ii) Ig : Ap →�α
0 is compact if and only if

lim
|z|→1

(
1−|z|2)α−2/p−1∣∣g(z)

∣
∣= 0. (3.11)

Remark 3.6. In Corollary 3.5, if α≤ 2/p+ 1, then by the maximum modulus principle, it
is easy to see that g ≡ 0.

4. Jg ,Ig : �α→H(p, p,φ)

The following lemma is well known(e.g., see [19]).

Lemma 4.1. Let f ∈�α(D), 0 < α <∞. Then

∣
∣ f (z)

∣
∣≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣ f (0)

∣
∣+‖ f ‖�α

1− (1−|z|)1−α

1−α
, α �= 1,

∣
∣ f (0)

∣
∣+‖ f ‖�α ln

2
1−|z| , α= 1.

(4.1)

The following lemma can be found in [10].

Lemma 4.2. Let μ be a positive measure on D and 0 < p <∞. Let either 0 < α <∞ and
n∈N, or 1 < α <∞ and n= 0. Then

∫

D

dμ(z)
(
1−|z|2)αp <∞ (4.2)
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if and only if there is a positive constant C such that

(∫

D

∣
∣ f (n)(z)

∣
∣p(1−|z|2)p(n−1)

dμ(z)
)1/p

≤ C‖ f ‖�α (4.3)

for all analytic functions f in D, in particular, for all f ∈�α.
Let 0 < p <∞, let μ be a positive Borel measure on D. Define

Dp(μ)=
{
f ∈H(D), ‖ f ‖pDp(μ) =

∫

D

∣
∣ f ′(z)

∣
∣pdμ(z) <∞

}
. (4.4)

Lemma 4.3. Let μ be a positive measure on D and 0 < p, α <∞. Then the following state-
ments are equivalent.

(1) i : �α �→Dp(μ) is bounded.
(2) i : �α �→Dp(μ) is compact.
(3) i : �α

0 �→Dp(μ) is bounded.
(4) i : �α

0 �→Dp(μ) is compact.
(5)

∫

D

dμ(z)
(
1−|z|2)αp <∞. (4.5)

Remark 4.4. The above lemma was obtained by Zhao when 0 < α≤ 1 (see [24]). In fact,
his proof implies that the result also holds for α > 1. Partial results can also be found in
[4] when α= 1.

Theorem 4.5. Assume that 0 < α <∞, 0 < p <∞, and φ is normal on [0,1). Then the
following statements are equivalent.

(1) Ig : �α→H(p, p,φ) is bounded.
(2) Ig : �α→H(p, p,φ) is compact.
(3) Ig : �α

0 →H(p, p,φ) is bounded.
(4) Ig : �α

0 →H(p, p,φ) is compact.
(5)

∫

D

∣
∣g(z)

∣
∣p(1−|z|2)p−pα φ

p
(|z|)

1−|z| dA(z). (4.6)

Proof. Since

∥
∥Ig f

∥
∥p
H(p,p,φ) �

∫

D

∣
∣(Ig f

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

=
∫

D

∣
∣g(z)

∣
∣p
∣
∣ f ′(z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)=
∫

D

∣
∣ f ′(z)

∣
∣pdμ(z),

(4.7)

where

dμ(z)= ∣∣g(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z). (4.8)
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By Lemma 4.3, we know that Ig : �α(�α
0)→ H(p, p,φ) is bounded (or compact) if and

only if

∞ >
∫

D

dμ
(
1−|z|2)αp =

∫

D

∣
∣g(z)

∣
∣p(1−|z|2)p−pα φ

p
(|z|)

1−|z| dA(z). (4.9)
�

Theorem 4.6. Assume that α > 1, 0 < p <∞, and φ is normal on [0,1). Then the following
statements are equivalent.

(i) Jg : �α→H(p, p,φ) is bounded.
(ii) Jg : �α→H(p, p,φ) is compact.
(iii)

∫

D

∣
∣g′(z)

∣
∣p(1−|z|2)(2−α)p φp

(|z|)
1−|z| dA(z) <∞. (4.10)

Proof. Since

∥
∥Jg f

∥
∥p
H(p,p,φ) �

∫

D

∣
∣(Jg f

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

=
∫

D

∣
∣g′(z)

∣
∣p
∣
∣ f (z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

=
∫

D

∣
∣ f (z)

∣
∣p(1−|z|2)−pdμ(z),

(4.11)

where

dμ= ∣∣g′(z)
∣
∣p(1−|z|2)2p φp

(|z|)
1−|z| dA(z). (4.12)

Similar to the proof of Theorem 4.5, we get (i)⇔(iii) by Lemma 4.2.
(ii)⇒(i) is clear. Next we prove that (iii)⇒(ii). Assume (iii) holds, we obtain that Jg is

bounded and so g ∈H(p, p,φ). In addition to this, we also find that for any ε > 0, there is
an r ∈ (0,1) such that

∫

|z|>r

∣
∣g′(z)

∣
∣p(1−|z|2)(2−α)p φp

(|z|)
1−|z| dA(z) < ε. (4.13)

Let { fk} be any sequence in the unit ball of �α and converges to 0 uniformly on compact
subsets of D. For the above ε, there exists a k0 > 0 such that sup|z|≤r | fk(z)| < ε as k > k0.
Hence we have

∥
∥Jg fk

∥
∥p
H(p,p,φ) �

(∫

|z|≤r
+
∫

|z|>r

)∣
∣(Jg fk

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

≤ Cε‖g‖pH(p,p,φ) +
∥
∥ fk

∥
∥p

�α

∫

|z|>r

∣
∣g′(z)

∣
∣p(1−|z|2)(2−α)p φp

(|z|)
1−|z| dA(z)

≤ Cε‖g‖pH(p,p,φ) + ε
∥
∥ fk

∥
∥p

�α .
(4.14)
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In other words, we obtain limk→∞‖Jg f ‖H(p,p,φ) = 0 and so Jp : �α → H(p, p,φ) is com-
pact. �

Theorem 4.7. Assume that 0 < α < 1, 0 < p <∞, and φ is normal on [0,1). Then the fol-
lowing statements are equivalent.

(i) Jg : �α→H(p, p,φ) is bounded.
(ii) Jg : �α→H(p, p,φ) is compact.
(iii)

∫

D

∣
∣g′(z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z) <∞. (4.15)

Proof. (ii)⇒(i) is clear.
(i)⇒(iii). Assume that Jg : �α→H(p, p,φ) is bounded. Hence

∥
∥Jg f

∥
∥p
H(p,p,φ) �

∫

D

∣
∣g′(z)

∣
∣p
∣
∣ f (z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z). (4.16)

Taking f = 1, we get (iii).
Conversely, we assume that (iii) holds. Let f ∈�α, then | f (z)| ≤ C‖ f ‖�α . Therefore,

by (4.16), we see that Jg : �α → H(p, p,φ) is bounded. Similar to the proof of
Theorem 4.6, we obtain that (iii)⇒(ii). �

Theorem 4.8. Assume that 0 < p <∞ and φ is normal on [0,1). Then the following state-
ments hold.

(i) If the operator Jg : �→H(p, p,φ) is bounded, then

sup
z∈D

φ
(|z|)(1−|z|2)1+1/p∣∣g′(z)

∣
∣ ln

2
1−|z|2 <∞. (4.17)

(ii) If

sup
z∈D

φ
(|z|)(1−|z|2)1−1/p∣∣g′(z)

∣
∣ ln

2
1−|z|2 <∞, (4.18)

then Jg : �→H(p, p,φ) is bounded.

Proof. Assume that (4.18) holds. For any f ∈ �, by Lemmas 2.2, 4.1 and the fact
(Jg f )′(z)= f (z)g′(z), (Jg f )(0)= 0, we have

∥
∥Jg f

∥
∥p
H(p,p,φ) �

∫

D

∣
∣(Jg f

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

=
∫

D

∣
∣g′(z)

∣
∣p
∣
∣ f (z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

≤ C‖ f ‖p�
∫

D

∣
∣g′(z)

∣
∣p | lnp 2

1−|z|2
(
1−|z|2)p φ

p
(|z|)

1−|z| dA(z)
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≤ C‖ f ‖p� sup
z∈D

∣
∣g′(z)

∣
∣p | lnp 2

1−|z|2
(
1−|z|2)p φ

p
(|z|)

1−|z|
∫

D
dA(z)

≤ C‖ f ‖p� sup
z∈D

∣
∣g′(z)

∣
∣p | lnp 2

1−|z|2
(
1−|z|2)p−1

φp
(|z|).

(4.19)

Therefore, Jg : �→H(p, p,φ) is bounded.
Assume that Jg : � → H(p, p,φ) is bounded. For w ∈ D, put fw(z) = ln2/(1−wz).

Since

(
1−|z|2)∣∣ f ′w(z)

∣
∣≤ (1−|z|2) |w|

|1−wz| ≤
1−|z|2
|1−wz| ≤ 2, (4.20)

we have ‖ fw‖� ≤ ln2 + 2. By the subharmonicity, we have

C
∥
∥Jg
∥
∥p ≥ C

∥
∥Jg
∥
∥p
∥
∥ fw

∥
∥p

� ≥ C
∥
∥Jg fw

∥
∥p
H(p,p,φ)

≥ C
∫

D

∣
∣(Jg fw

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

≥ C
∫

D(w,r)

∣
∣g′(z)

∣
∣p
∣
∣ fw(z)

∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

≥ C
∣
∣g′(w)

∣
∣p
∣
∣ fw(w)

∣
∣p(1−|w|2)p+1

φp
(|w|)

≥ C
(
1−|w|)p+1

φp
(|w|)∣∣g′(w)

∣
∣p
(

ln
2

1−|w|2
)p

.

(4.21)

Therefore, we get the desired result. �

Remark 4.9. We use another method to prove the necessary condition of the boundedness
of Jg : �→H(p, p,φ).

Since Jg f ∈H(p, p,φ), by Lemma 2.3, we have

∣
∣(Jg f

)′
(z)
∣
∣≤ C

∥
∥Jg f

∥
∥
H(p,p,φ)

(
1−|z|2)1/p+1

φ
(|z|)

≤ C

∥
∥Jg
∥
∥

�→H(p,p,φ)‖ f ‖�
(
1−|z|2)1/p+1

φ
(|z|)

. (4.22)

For any w ∈D, let fw(z)= ln2/(1− zw). Then we get

∣
∣g′(z)

∣
∣
∣
∣ fw(z)

∣
∣φ
(|z|)(1−|z|2)1/p+1 ≤ C

∥
∥Jg
∥
∥

�→H(p,p,φ)

∥
∥ fw

∥
∥

�. (4.23)

Let z =w, we have

∣
∣g′(w)

∣
∣ ln

2
1−|w|2 φ

(|w|)(1−|w|2)1/p+1 ≤ C
∥
∥Jg
∥
∥

�→H(p,p,φ)

∥
∥ fw

∥
∥

�. (4.24)

Therefore, we get the desired result.
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Theorem 4.10. Assume that 0 < p <∞ and φ is normal on [0,1). Then the following state-
ments hold.

(i) If the operator Jg : �→H(p, p,φ) is compact, then

lim
|z|→1

φ
(|z|)(1−|z|2)1+1/p∣∣g′(z)

∣
∣ ln

2
1−|z|2 = 0. (4.25)

(ii) If

lim
|z|→1

φ
(|z|)(1−|z|2)1−1/p∣∣g′(z)

∣
∣ ln

2
1−|z|2 = 0, (4.26)

then Jg : �→H(p, p,φ) is compact.

Proof. Suppose the operator Jg : �→ H(p, p,φ) is compact. Let zn be a sequence in D
such that |zn| → 1 as n→∞. Take

fn(z)=
(

ln
2

1−∣∣zn
∣
∣2

)−1(

ln
2

1− znz

)2

. (4.27)

Then

f ′n (z)= 2

(

ln
2

1−∣∣zn
∣
∣2

)−1(

ln
2

1− zzn

)
zn

1− zzn
. (4.28)

Thus for any z ∈D,

(
1−|z|2)∣∣ f ′n (z)

∣
∣≤ 2

(
1−|z|2)

∣
∣
∣
∣
∣

ln2/
(
1− zzn

)

ln2/
(

1−∣∣zn
∣
∣2
)

∣
∣
∣
∣
∣

1
1−|z| ≤ 4

C+ ln2/
(
1−∣∣zn

∣
∣)

ln2/
(

1−∣∣zn
∣
∣2
) ≤ C.

(4.29)

On the other hand,

∣
∣ fn(0)

∣
∣≤

(

ln
2

1−∣∣zn|2
)−1

(ln2)2 ≤ ln2. (4.30)

Thus ‖ fn‖� ≤M, where M is a constant independent of n. Since for |z| = r < 1, we have

∣
∣ fn(z)

∣
∣=

∣
∣ ln2/

(
1− zzn

)∣∣2

ln2/
(

1−∣∣zn
∣
∣2
) ≤

(
ln2/(1− r) +C

)2

ln2/
(

1−∣∣zn
∣
∣2
) −→ 0 (n−→∞), (4.31)

that is, fn→ 0 uniformly on compact subsets of D as n→∞. By the proof of Theorem 4.8,
we obtain

φ
(∣∣zn

∣
∣)(1−∣∣zn

∣
∣2)1+1/p∣∣g′

(
zn
)∣∣ ln

2

1−∣∣zn
∣
∣2 ≤

∥
∥Jg fn

∥
∥−→ 0 (4.32)

as n→∞. Therefore, we get (4.25).
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From (4.26), for any ε > 0, there exists an r, 0 < r < 1, such that

φ
(|z|)(1−|z|2)1−1/p∣∣g′(z)

∣
∣ ln

2
1−|z|2 < ε, (4.33)

when |z| > r. Also, from (4.26), we see that there exist C > 0 such that

sup
|z|≤r

φ
(|z|)(1−|z|2)1−1/p∣∣g′(z)

∣
∣ < C. (4.34)

Let { fk} be any sequence in the unit ball of � and converges to 0 uniformly on compact
subsets of D. For the above ε, there exists a k0 > 0 such that sup|z|≤r | fk(z)| < ε as k > k0.
Hence we have

∥
∥Jg fk

∥
∥p
H(p,p,φ) �

(∫

|z|≤r
+
∫

|z|>r

)
∣
∣(Jg fk

)′
(z)
∣
∣p(1−|z|2)p φ

p
(|z|)

1−|z| dA(z)

≤ Cε+
∥
∥ fk

∥
∥p

�

∫

|z|>r

∣
∣g′(z)

∣
∣p(1−|z|2)p

(
ln

2
1−|z|2

)p φp
(|z|)

1−|z| dA(z)

≤ Cε+ ε
∥
∥ fk

∥
∥p

�,
(4.35)

as k > k0, from which we get the desired result. �
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