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By variational methods, we study the motions of a relativistic particle under the action
of an external scalar potential. We consider standard static spacetimes whose metric co-
efficients grow at most quadratically at infinity. Fixing suitable values for the energy, we
obtain timelike trajectories.
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1. Introduction

In this paper, using variational methods, we study the connectedness of a certain class of
Lorentzian manifolds (L,g) (see, e.g., [5, 12] for the basic notions of Lorentzian geome-
try) by trajectories z of the differential equation

DL
s ż+�LV(z)= 0, (1.1)

where DL
s denotes the covariant derivative with respect to g, V : L� R is a smooth po-

tential, and �L is the gradient of V with respect to g.
On Riemannian manifolds, (1.1) is the equation of classical Lagrangian systems and it

has been widely studied. From a variational point of view, existence and multiplicity of
solutions joining two fixed points can be easily proved when V has subquadratic growth.
In [9] the same problem is analyzed when V has quadratic growth. In this case, the value
of the arrival time is important. Indeed, existence and multiplicity results of solutions
parametrized in [0,T] are obtained if T satisfies a certain inequality.

As far as we know, solutions of (1.1) in the Lorentzian case have been studied only in
[1, 3, 14]. In [14], the authors study the completeness of solutions for a class of differential
equations including (1.1). In [3], periodic trajectories and connectedness by trajectories
under V are studied, when V is bounded, on a class of orthogonal splitting Lorentzian
manifolds. In [1], the authors prove the connectedness of standard static Lorentzian man-
ifolds by trajectories of (1.1) (where V = V(x,s) is time independent) with fixed arrival
time T , when V and the coefficient β of the metric (see Definition 1.1) grow at most
quadratically at infinity, and T satisfies the same condition of [9].
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2 Timelike trajectories in static spacetimes

Here we study the same equation under a different approach. Before presenting it, we
need to recall the following facts (in the rest of the paper, for simplicity of notation, the
Lorentzian metric g(z) for z � L will be also denoted by ��,��L).

As in the case of autonomous Lagrangian systems on Riemannian manifolds, it is easy
to verify that for each solution z : I � L, I �R interval, of (1.1), a constant Ez �R exists
such that

Ez = 1
2

〈
ż(s), ż(s)

〉
L +V

(
z(s)

) �s� I. (1.2)

Throughout this paper, in analogy to the Riemannian case, Ez will be called energy.
Moreover, we recall that if L is a Lorentzian manifold, a vector ζ � TL is said to be

timelike (resp., lightlike; spacelike) if �ζ ,ζ�L < 0, (resp., �ζ ,ζ�L = 0, ζ 	= 0; �ζ ,ζ�L > 0; or
ζ = 0). A curve z on L is said to be timelike, lightlike, or spacelike according to the causal
character of ż.

Thus, it makes sense to study timelike solutions of (1.1) having a fixed value of the
energy E. Timelike solutions are more interesting from a physical point of view because
they represent the world lines of relativistic particles moving under the action of a grav-
itational field (described by the metric) and of an external scalar potential (described
by V).

When one considers this kind of solutions for a fixed E �R, by (1.2) it is clear that the
admissible region for the motion is the set

Σ= {z � L 
V(z)�E > 0
}

(1.3)

which is an open subset of L (possibly equal to L).
Fixing E �R such that Σ is not empty and z0,z1 � Σ, our aim is to prove the existence

of C2 timelike curves z : [0,T]� L solutions of

DL
s ż+�LV(z)= 0,

1
2
�ż, ż�L +V(z)= E,

z(0)= z0, z(T)= z1.

(1.4)

We obtain two different results: the first one assuming that V is bounded from below
and E is smaller than the infimum of V (in this case Σ = L) and the second one for a
more generalV possibly unbounded. In both cases, L is a standard static spacetime whose
definition is recalled here.

Definition 1.1. A standard static spacetime is a connected Lorentzian manifold (L,��,��L)
with L=M�R and

��,��L = ��,���β(x)dt2, (1.5)

where (M,��,��) is a smooth, finite-dimensional Riemannian manifold, t is the natural
coordinate of R, and β � C1(M,R) is a strictly positive function.
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The manifold M satisfies the following assumptions:
(H1) (M,��,��) is a complete, connected, at least C3 Riemannian manifold. The coef-

ficient β of the metric has at most quadratic growth. More precisely, we assume
that

(H2) there exist λ 0, k �R, p � [0,2], and a point y0 �M such that

0 < β(x)� λdp
(
x, y0

)
+ k �x �M, (1.6)

where d denotes the distance canonically associated to the Riemannian metric in
M. As the coefficient of the metric, V depends only on x �M, that is,

(H3) for all z = (x, t)� L=M�R, we have V(z)=V(x, t)=V(x,0)�V(x).
Our first result is the following theorem.

Theorem 1.2. Let (L,��,��L) be a standard static spacetime as in Definition 1.1 satisfying
(H1), (H2). Let V � C1(L,R) satisfy (H3) and be bounded from below. Set

E = inf
x�M

V(x). (1.7)

Then, for any E < E and z0 = (x0, t0), z1 = (x1, t1)� L with z0 	= z1, setting Δ= t1 � t0 and
N(E,z0,z1) the number of timelike solutions of (1.4), the following statements hold:

(a) if 
Δ
 is sufficiently small and x0 	= x1, then N(E,z0,z1)= 0;
(b) if x0 = x1, then N(E,z0,z1) 1;
(c) if M is not contractible in itself, for any m�N��0�, γm > 0 exists such that if 
Δ
 >

γm, N(E,z0,z1)m.

Remark 1.3. Some comments about the assumptions of Theorem 1.2 are necessary, in
order to compare it with previous results.

(1) Theorem 1.2 shows that if x0 = x1, problem (1.4) admits at least a solution. If x0 	=
x1, it has no solution if 
Δ
 is small, while the number of solutions goes to infinity as 
Δ

goes to infinity. These results generalize previous ones obtained by variational methods
for timelike geodesics (i.e, for (1.1) with V = 0) in standard static spacetimes (see, e.g.,
[6–8] and the textbook [11] if β has subquadratic asymptotic behavior and [2] if β has
quadratic growth).

(2) The choice of fixing the energy E (instead of the arrival time T as in [1]) takes some
advantages. It allows one to obtain timelike solutions, and no assumption on the asymp-
totic growth of V from above is necessary. In Theorem 1.2 we assume that V is bounded
from below. The role of this assumption is to ensure that Σ coincides with the complete
manifold L making easier the application of variational techniques. Nevertheless, it will
be removed in the next theorem where we will deal with an unbounded potential both
from below and from above.

In order to state our second result, we observe that if L is a standard static spacetime
as in Definition 1.1 and a potential V satisfies (H3), for any E � R, the set Σ defined in
(1.3) is given by

Σ=Λ�R Λ= {x �M 
V(x)�E > 0
}
. (1.8)
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As observed in Remark 1.3(2), when we deal with a more generalV (possibly not bounded
from below), we have to choose E such that the set Σ (and so Λ) is not empty. Note
that this is true for any E � R if V is unbounded from above, but Λ is different from M
if V is unbounded from below. Hence, generally Λ is an open submanifold of M with
topological boundary. This makes it necessary to consider more regular potentials V (at
least C2) such that for a certain E �R, the following assumption is satisfied:

(H4) a positive number δ > 0 exists such that for any x �M, E < V(x) < E+ δ, we have

�V(x) 	= 0, (1.9)

HV (x)[ξ,ξ]� 0 �ξ � TxM such that
〈�V(x),ξ

〉= 0, (1.10)
〈�V(x),�β(x)

〉 0, (1.11)

where HV (x)[ξ,ξ] denotes the Hessian of V at x with respect to the Riemannian metric
��,��.
Remark 1.4. It is useful to discuss the meaning of (H4). Condition (1.9) ensures that the
level subsets (V � E)�1(a) are smooth hypersurfaces for a sufficiently small. By (1.10),
each of these hypersurfaces is the convex boundary of (V � E)�1(]a,+�[) (see [4] for
a detailed discussion of the different notions of convexity for the boundary of an open
domain of a Riemannian manifold). As�V points out the interior of (V �E)�1(]a,+�[),
condition (1.11) ensures that the same holds for �β, for small a.

Our second result is the following theorem.

Theorem 1.5. Let (L,��,��L) be a standard static spacetime as in (1.5) satisfying (H1), (H2).
Let V � C2(L,R) satisfy (H3) and E � R such that Σ (see (1.8)) is not empty. Assume also
that (H4) holds. Then, for any z0 = (x0, t0), z1 = (x1, t1)� Σ with z0 	= z1, setting Δ= t1� t0
and N(E,z0,z1) the number of timelike solutions of (1.4), the following statements hold:

(a) if 
Δ
 is sufficiently small and x0 	= x1, then N(E,z0,z1)= 0;
(b) if x0 = x1, then N(E,z0,z1) 1;
(c) if Λ is not contractible in itself, for anym�N��0�, γm > 0 exists such that if 
Δ
 > γm,

N(E,z0,z1)m.

Remark 1.6. Parts (a) of Theorems 1.2 and 1.5 are known results for standard static space-
times. Nevertheless, for completeness, we have listed their statement together with new
results, providing a variational proof. Moreover, note that L is globally hyperbolic under
our assumptions, thus, if 
Δ
 is small enough, z0 and z1 are not causally related, so they
cannot be joined by any causal curve independent of the differential equation it may solve
(see [2, 15] for more precise results).

Our variational approach is based on the study of the functional

f (z)= 1
2

∫ 1

0
�ż, ż�Lds

∫ 1

0

(
V(z)�E)ds (1.12)

defined on a suitable manifold of curves joining z0 and z1. This is the Lorentzian version
of the functional introduced in [16] for the study of brake orbits of a class of Hamilton-
ian systems. In the Riemannian case, f is essentially obtained by a modified version of
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the classical principle of least action. We will prove that solutions of (1.4) correspond to
critical points of (1.12).

Unlike the Riemannian case, even if V is bounded, f is unbounded (both from below
and from above) due to the fact that the Lorentzian metric is indefinite, so its critical
points cannot be investigated by classical topological methods. In spite of this, when V
depends only on the variable x and L is static, following the approach used in the pio-
neering paper [7], it is possible to deal with the Riemannian functional J defined by

J(x)= 1
2

∫ 1

0

(
V(x)�E)ds

⎛

⎝
∫ 1

0
�ẋ, ẋ�ds�Δ2

(∫ 1

0

1
β(x)

ds

)�1
⎞

⎠ (1.13)

(see Proposition 2.3 for details). Critical points of J will be obtained by a minimization
argument and Ljusternik-Schnirelmann category theory.

This paper is organized as follows. In Section 2 we state the variational setting both for
Theorems 1.2 and 1.5 which will be proved, respectively, in Sections 3 and 4.

2. The variational setting

The natural setting for problem (1.4) on a standard static spacetime is the set Σ defined
in (1.8) for a fixed E � R. From now on, we assume that Σ (and so Λ) is not empty for
such E. Under the assumptions of Theorem 1.2, obviously we have Λ=M. Moreover, by
(H1), Λ is an open submanifold of M of class at least C3.

Problem (1.4) has a variational structure, that is, its solutions are, up to reparame-
terizations, the critical points of the functional f defined in (1.12). In order to establish
this property, we need to define some manifolds of curves with values in open subsets
D of M (possibly D =M). We define S = D�R � L and consider the set H1([0,1],S)
of absolutely continuous curves on S whose derivatives are square summable. This is an
infinite-dimensional Riemannian manifold diffeomorphic, when L is static, to the prod-
uct manifold H1([0,1],D)�H1([0,1],R) with the Riemannian structure given by

�ζ ,ζ�1 =
∫ 1

0
�ξ,ξ�ds+

∫ 1

0

〈
Dsξ,Dsξ

〉
ds+

∫ 1

0
τ2ds+

∫ 1

0
τ̇2ds (2.1)

for any z = (x, t) � H1([0,1],S) and ζ = (ξ,τ) � TzH1([0,1],S) � TxH1([0,1],Λ) �
H1([0,1],R) (whereDs denotes the covariant derivative induced by the Riemannian struc-
ture on M).

We point out that by the Nash embedding theorem, we can assume thatD is a subman-
ifold of an Euclidean spaceRN , ��,�� is the usual Euclidean metric, and d is the associated
distance. Hence, the Sobolev space of curves H1([0,1],D) can be identified in this way:

H1([0,1],D
)� {x �H1([0,1],RN

) 
 x([0,1]
)�D

}
. (2.2)
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We consider the submanifold of H1([0,1],S) of the curves joining two points z0 =
(x0, t0) and z1 = (x1, t1) of S. More precisely, we define the following sets of curves:

Ω1(x0,x1,D
)= {x �H1([0,1],D

) 
 x(0)= x0, x(1)= x1
}

,

W
(
t0, t1

)= {t �H1([0,1],R
) 
 t(0)= t0, t(1)= t1

}
,

Z
(
z0,z1,S

)=Ω1(x0,x1,D
)�W(

t0, t1
)
.

(2.3)

The following properties are well known.
(i) Ω1(x0,x1,D) is a smooth submanifold of H1([0,1],D) whose tangent space at

x �Ω1(x0,x1,D) is given by

TxΩ
1(x0,x1,D

)= {ξ � TxH
1([0,1],D

) 
 ξ(0)= 0= ξ(1)
}
. (2.4)

(ii) W
(
t0, t1

)
is a closed affine submanifold of H1([0,1],R), that is,

W
(
t0, t1

)=H1
0

(
[0,1],R

)
+ t�, (2.5)

where

H1
0

(
[0,1],R

)= {t �H1([0,1],R
) 
 t(0)= 0= t(1)

}
,

t� : s� [0,1] ��� t0 +Δs Δ= t1� t0.
(2.6)

(iii) Z(z0,z1,S) is a submanifold of H1([0,1],S) whose tangent space at z = (x, t) is

TxZ
(
z0,z1,S

)= TxΩ1(x0,x1,D
)�H1

0

(
[0,1],R

)
, (2.7)

which can be equipped with the Riemannian metric (equivalent to ��,��1)

�ζ ,ζ�2 =
∫ 1

0

〈
Dsξ,Dsξ

〉
ds+

∫ 1

0
τ̇2ds (2.8)

for any z = (x, t)� Z(z0,z1,S) and ζ = (ξ,τ)� TzZ(z0,z1,S).

Remark 2.1. We point out that the manifolds H1([0,1],S) and Z(z0,z1,S) are complete
with respect to their Riemannian structure if D is complete. This is true in Theorem 1.2,
where D =M but not in Theorem 1.5 where, dealing with a more general class of poten-
tials (possibly unbounded),D will be an open subset ofM having a topological boundary.

A first variational principle can now be stated.

Proposition 2.2. Let L be a standard static spacetime as in Definition 1.1 and let V �
C1(L,R) satisfy (H3). Let D be an open subset of M and let E �R be such that

V(z)�E > 0 �z = (x, t)� S=D�R. (2.9)
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Consider z0 = (x0, t0), z1 = (x1, t1)� S and f : Z(z0,z1,S)�R defined in (1.12). Then
(a) if z � Z(z0,z1,S) is a critical point of f such that f (z) < 0, y(s)= z(ωs), s� [0,1/ω],

with

ω2 =
∫ 1

0

(
V(z)�E)ds

�(1/2)
∫ 1

0 �ż, ż�Lds
(2.10)

is a solution of (1.4);
(b) if y : [0,T]� S is a solution of (1.4), z(s)= y(Ts), s� [0,1], is a critical point of f

such that f (z) < 0.

Proof. To prove (a), note that by (2.9), if f (z) < 0, then ω2 is well defined. Each critical
point z of f is a solution of

ω2DL
s ż+�LV(z)= 0 (2.11)

so that y is a solution of (1.1) joining z0 and z1. By (2.11), we have

1
2
ω2�ż, ż�L +V(z)= c (2.12)

for some c � R. Integrating (2.12) on [0,1] and substituting the value of ω2, we obtain
c = E, so (a) is proved.

Now, consider a solution y of problem (1.4) as in (b). The corresponding z satisfies

DL
s ż+T2�LV(z)= 0. (2.13)

Integrating on [0,T] the second equation in (1.4) and taking into account that

∫ T

0
� ẏ, ẏ�Lds= 1

T

∫ 1

0
�ż, ż�Lds,

∫ T

0
V(y)ds= T

∫ 1

0
V(z)ds, (2.14)

it is not difficult to prove that

T2 = �(1/2)
∫ 1

0 �ż, ż�Lds
∫ 1

0

(
V(z)�E)ds

, (2.15)

which is well defined in our setting. Substituting this value in (2.13), we easily obtain that
z is a critical point of f . As by (2.9) and (2.14)

∫ 1

0
�ż, ż�Lds < 0, (2.16)

also f (z) < 0 and the proof of (b) is complete. �

The previous proposition shows that solving problem (1.4) is equivalent to finding
critical points of f . Due to the reasons already explained in Section 1, it is convenient
to consider the functional J : Ω1(x0,x1,D) � R defined in (1.13) whose critical points
correspond to critical points of f . This is shown by the following proposition whose
proof is a slight variant of that in [7, Theorem 2.1].
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Proposition 2.3. Under the assumptions of Proposition 2.2, the following are equivalent:
(a) z = (x, t)� Z(z0,z1,S) is a critical point of f ;
(b) x is a critical point of J : Ω1(x0,x1,D) � R defined in (1.13) and t = Ψ(x) with Ψ :

Ω1(x0,x1,D)�W
(
t0, t1

)
such that

Ψ(x)(s)= t0 +Δ
(∫ 1

0

1
β(x)

ds
)�1∫ s

0

1
β
(
x(σ)

)dσ (2.17)

for any x �Ω1(x0,x1,D) and s� [0,1].
Moreover, f (z)= J(x).

In the next section, we will prove Theorem 1.2 directly showing the existence of critical
points of J defined on the complete manifold Ω1(x0,x1,M) (see Remark 2.1), whereas in
Theorem 1.5 some difficulties arise. In fact J may not satisfy the Palais-Smale condition
for the following reasons.

(a) As J is null on the boundary of Λ, Palais-Smale sequences may be not bounded.
(b) Due to possible incompleteness of Ω1(x0,x1,Λ), bounded Palais-Smale sequences

may not converge to a curve in Ω1(x0,x1,Λ).
To deal with these problems, we consider a subset of Λ where the first term of the product
in (1.13) is bounded from below. More precisely, define

Λa =
{
x �M 
V(x)�E > a} (2.18)

for any a�]0,δ[ (see (H4)). It is clear that

Λa2 �Λa1 if a1 � a2,
⋃

a�]0,δ[

Λa =Λ. (2.19)

So, fixing x0,x1 �Λ, we can choose a�]0,δ[ such that x1,x2 �Λa and find critical points
of J on Ω1(x0,x1,Λa).

As Λa has a boundary, we need also to use a penalization argument. By (H1) and (1.9)
in (H4), the boundary of Λa is given by

∂Λa =
{
x �M 
V(x)�E = a} (2.20)

and it is a smooth submanifold of M.
Consider the function φ : Λa� ∂Λa� [0,+�[ defined by

φ(x)=V(x)�E� a. (2.21)

Again by (1.9) in (H4), φ verifies that

φ�1(0)= ∂Λa,

φ > 0 on Λa,

�φ(x) 	= 0, for any x � ∂Λa.

(2.22)

We point out that by properties (2.22), the following lemma holds (for the proof see, e.g.,
[8, Lemma 2.3]).
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Lemma 2.4. Let (xm)m be a sequence in Ω1(x0,x1,Λa) such that

sup
m�N

∫ 1

0

〈
ẋm, ẋm

〉
ds <� (2.23)

and assume the existence of a sequence (sm)m in [0,1] such that

lim
m��

φ
(
xm
(
sm
))= 0. (2.24)

Then

lim
m��

∫ 1

0

1
φ2
(
xm(s)

)ds= +�. (2.25)

Now we can introduce the penalization term. For any ε > 0, consider the functions
ψε : [0,+�[�R defined by

ψε(s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 0� s� 1
ε

,

+�∑

n=3

1
n!

(
s� 1

ε

)n
s >

1
ε
.

(2.26)

Note that ψε are smooth and verify the following properties. For any ε > 0, two positive
constants aε, bε exist such that

ψε(s) aεs� bε �s 0, (2.27)

and if 0 < ε � ε�,

ψε(s)� ψε�(s) �s 0. (2.28)

For any ε �]0,1], we consider the following family of penalized functionals Jε : Ω1(x0,x1,
Λa)�R:

Jε(x)= J(x) +
∫ 1

0

(
V(x)�E)ds

∫ 1

0
ψε

(
1

φ2(x)

)
ds, (2.29)

where J has been defined in (1.13). In Section 4 we will prove that for ε sufficiently small,
each critical point of Jε is also a critical point of J .

Since we will find critical points of J and Jε by means of the Ljusternik-Schnirelman
theory, we conclude this section recalling some basic facts about this theory (for more
details see, e.g., [13]).

Definition 2.5. Let X be a topological space. The Ljusternik-Schnirelman category of a
subset A of X , briefly catX(A), is the least number of closed and contractible subsets of X
covering A. If A cannot be covered by a finite number of such sets, catX(A)= +�.

In the sequel we will use this notation:

cat(X)= catX(X). (2.30)
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Theorem 2.6. Let Ω be a Riemannian manifold and J a C1 functional on Ω satisfying the
Palais-Smale condition, that is, any (xm)m �Ω such that

(
J
(
xm
))

m is bounded, lim
m�+�

J �
(
xm
)= 0 (2.31)

converges in Ω up to subsequences. For any m�N��0�, define

cm = inf
A�Γm

sup
x�A

J(x), Γm =
{
A�Ω 
 catΩ(A)m

}
. (2.32)

If Ω is complete or if each sublevel of J is complete, then
(a) for each m such that Γm 	=� and cm �R, cm is a critical value of J ;
(b) if ci = ��� = ci+ j = c for some i and j and c is finite, there are at least j + 1 critical

points at level c;
(c) if J is bounded from below, it has at least cat(Ω) critical points, and if cat(Ω)= +�,

a sequence (xm)m of critical points of J exists such that

lim
m�+�

J
(
xm
)= +�. (2.33)

In order to prove the multiplicity results, we need the following estimate on the cate-
gory of the space Ω1(x0,x1,D) (see [10] for the proof).

Proposition 2.7. Let D be a Riemannian manifold. If D is noncontractible in itself, for any
x0,x1 �D,

cat
(
Ω1(x0,x1,D

))= +�, (2.34)

and Ω1(x0,x1,D) contains compact subsets of arbitrary large category.

3. Proof of Theorem 1.2

Assume that all the assumptions of Theorem 1.2 hold. In this case, as Λ =M, we study
functional J : Ω1(x0,x1,M)�R defined in (1.13) and prove existence and multiplicity of
its critical points. We begin by investigating under which conditions it admits a negative
minimum. To this aim, we will prove that J is bounded from below and is coercive, that
is,

lim
�ẋ��+�

J(x)= +� (3.1)

(here �ẋ� denotes the L2-norm, i.e.,

�ẋ�2 =
∫ 1

0
�ẋ, ẋ�ds (3.2)

for any x �Ω1(x0,x1,M)).
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Functional J is the product of J1 and J2, where

J1(x)=
∫ 1

0

(
V(x)�E)ds,

J2(x)= 1
2

∫ 1

0
�ẋ, ẋ�ds� Δ2

2

(∫ 1

0

1
β(x)

ds
)�1 (3.3)

for x �Ω1(x0,x1,M). We observe that
(i) if V is bounded from below, J1 is bounded from below and

J1(x) inf
x�M

V(x)�E � A > 0 �x �Ω1(x0,x1,M
)
; (3.4)

(ii) if (H2) holds, J2 is coercive and has minimum.
The proof of the last statement is quite simple if p � [0,2[ in (1.6) (i.e., if β has sub-
quadratic growth). If p = 2 (i.e., if β has quadratic growth), this is a result obtained in
the study of geodesic connectedness of standard static spacetimes (for the proof, see [2,
Proposition 4.1]).

By the previous properties, it is straightforward to prove the following lemmas.

Lemma 3.1. Under the assumptions of Theorem 1.2, J is coercive and bounded from below.

Lemma 3.2. Under the assumptions of Theorem 1.2, J satisfies the Palais-Smale condition.

Proof. Let (xm)m be a sequence in Ω1(x0,x1,M) satisfying (2.31). By Lemma 3.1, (�ẋm�)m
is bounded, whence

sup
{
d
(
xm(s),x0

) 
 s� [0,1], m�N} < +�. (3.5)

Thus (xm)m is bounded in H1([0,1],RN ) and converges, up to subsequences, to a curve
x �H1([0,1],RN ) weakly and uniformly. Reasoning as in [6, Lemma 2.1] and applying
standard arguments, x �Ω1(x0,x1,M) and the convergence is strong. �

Now we are able to prove Theorem 1.2.

Proof of Theorem 1.2. Statement (a) is a consequence of the properties of the spacetime L
(see Remark 1.6). Nevertheless, a variational proof follows by (3.4) and showing that J2 is
positive for 
Δ
 sufficiently small. This is trivial if in (H2) p � [0,2[, while if p = 2 this is
a consequence of the results in [2], where the authors prove that

lim
�ẋ��+�

∫ 1

0

�ẋ�2

β(x)
ds= +�. (3.6)

So, if x0 	= x1, for any x �Ω1(x0,x1,M),

2J2(x)= �ẋ�2

(

1�Δ2
(∫ 1

0

�ẋ�2

β(x)
ds
)�1

)

 �ẋ�2(1�Δ2L
)

(3.7)

for some positive constant L.
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By Lemmas 3.1, 3.2, it is easy to prove that J admits a minimum point x. If x0 = x1 and
we consider the constant curve y(s)� x0 in Ω1(x0,x1,M), we have

J(x)� J(y)= (V(x0
)�E)

(
� 1

2
Δ2β

(
x0
)
)
< 0. (3.8)

By Propositions 2.2 and 2.3, after a reparametrization, we obtain a solution of (1.4) which
is timelike by (1.7), so (b) is proved.

In order to prove (c), we observe that by Lemma 3.2, J verifies all the assumptions of
Theorem 2.6. Letm�N,m 1. By Proposition 2.7, a compact subset Bm of Ω1(x0,x1,M)
exists with category larger that m. By Theorem 2.6, there are at least m distinct critical
points of J at levels c1, . . . ,cm defined in (2.32) and

c1 � c2 � ����cm �max
x�Bm

J(x). (3.9)

For any x � Bm, we have

J2(x)� 1
2

(
am� Δ2

bm

)
, (3.10)

where

am =max
x�Bm

∫ 1

0
�ẋ, ẋ�ds,

bm =max
x�Bm

∫ 1

0

1
β(x)

ds

(3.11)

so that J2(x) < 0 if


Δ
 >
√
ambm � γm. (3.12)

Recalling that J1 is positive,

max
x�Bm

J(x) < 0, (3.13)

so by (3.9), c1,c2, . . . ,cm are negative and again using the variational principles, we obtain
m distinct solutions of (1.4).

Again, all the solutions obtained are timelike because they have fixed energy E verifying
(1.7). �

4. Proof of Theorem 1.5

Assume that all the assumptions of Theorem 1.5 hold and fix a �]0,δ[ such that x0, x1

are in Λa (see Section 2). To prove Theorem 1.5, it is necessary to state some properties
of the penalized functionals Jε : Ω1(x0,x1,Λa) � R (see (2.29)) and their critical points.
Observe that by the definition of Jε,

Jε(x) J(x) �x �Ω1(x0,x1,Λa
)
, ε �]0,1], (4.1)
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hence by (4.1) and reasoning as in Section 3, it is clear that
(i) Jε is coercive and bounded from below for any ε �]0,1[.

An immediate consequence (using also (2.27) and Lemma 2.4) is the following lemma.

Lemma 4.1. Let (xm)m be a sequence in Ω1(x0,x1,Λa) such that for some K > 0,

Jε
(
xm
)� K �m�N. (4.2)

Then

inf
{
φ
(
xm(s)

) 
 s� [0,1], m�N} > 0 (4.3)

(where φ is as in (2.21)).

Moreover, by Lemma 4.1, the following properties hold.
(i) For any ε �]0,1] and c �R, the sublevels

Jcε =
{
x �Ω1(x0,x1,Λa

) 
 Jε(x)� c
}

(4.4)

are complete metric subspaces of Ω1(x0,x1,Λa).
(ii) For any ε �]0,1], Jε satisfies the Palais-Smale condition.

Thus, it is straightforward to prove that
(iii) Jε admits a minimum for any ε �]0,1[.

Our next aim is to show that if ε is sufficiently small, the critical points of Jε are uniformly
far from the boundary of Λ (and so are critical points of J). Firstly, we observe that if x is
a critical point of Jε, x is a smooth curve satisfying the following equation:

J2,ε(x)�V(x)= J1(x)
(
Dsẋ+

Δ2

2β2(x)

(∫ 1

0

1
β(x)

ds
)�2

�β(x) +
2

φ3(x)
ψ�ε

(
1

φ2(x)

)
�φ(x)

)
,

(4.5)

where

J2,ε(x)= J2(x) +
∫ 1

0
ψε

(
1

φ2(x)

)
ds (4.6)

and J1, J2 have been defined, respectively, in (3.3).
Now we can prove the following proposition.

Proposition 4.2. Under assumption (H4), let xε be a critical point of Jε such that

Jε
(
xε
)
< 0. (4.7)

Then, ε0 �]0,1] exists such that

min
s�[0,1]

φ
(
xε(s)

)�ε �ε � ]0,ε0
]
. (4.8)
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Proof. Assume by contradiction that (4.8) does not hold, so a decreasing sequence (εm)m
in ]0,1] and a sequence (xm)m of critical points of Jεm � Jm exist such that

Jm
(
xm
)
< 0, (4.9)

φ
(
xm
(
sm
))= min

s�[0,1]
φ
(
xm(s)

)
<
�
εm. (4.10)

We set gm(s)= φ(xm(s)), s� [0,1]. Differentiating gm twice, using (4.5), and recalling the
definition of φ (see (2.26)), we have

g��m
(
sm
)=HV

(
xm
(
sm
))[

ẋm
(
sm
)
, ẋm

(
sm
)]

+
〈�V(xm

(
sm
))

,Dsẋm
(
sm
)〉

=HV
(
xm
(
sm
))[

ẋm
(
sm
)
, ẋm

(
sm
)]

+
J2,m

(
xm
)

J1
(
xm
)
∣
∣�V(xm

(
sm
))∣∣2

� Δ2

2β2
(
xm
(
sm
))

(∫ 1

0

1
β
(
xm
)ds

)�2
〈�β(xm

(
sm
))

,�V(xm
(
sm
))〉

� 2
φ3
(
xm
(
sm
))ψ�m

(
1

φ2
(
xm
(
sm
))
)∣
∣�V(xm

(
sm
))∣∣2

,

(4.11)

where J2,εm � J2,m and ψεm � ψm. Observe now that by (4.9), J2,m(xm) < 0 and by (4.10),
for m sufficiently large, we have

gm
(
sm
)
< δ, (4.12)

where δ is as in (H4). Then, by (1.10), (1.11), and (4.11),

g��m
(
sm
)�� 2

φ3
(
xm
(
sm
))ψ�m

(
1

φ2
(
xm
(
sm
))

)
∣
∣�V(xm

(
sm
))∣∣2

. (4.13)

By the definition of ψε and (4.10),

ψ�m

(
1

φ2
(
xm
(
sm
))

)

> 0, (4.14)

so by (1.9), we have

g��m
(
sm
)
< 0, (4.15)

which is a contradiction since sm is a minimum point of gm.
Finally, we can end our proof. �

Proof of Theorem 1.5. For the proof of (a), see Theorem 1.2 and Remark 1.6.
To prove (b), let xε be a minimum point of Jε and observe that

Jε
(
xε
)
< 0 (4.16)

if ε < φ2(x0) (using the constant curve x0 as in the proof of Theorem 1.2). So by Proposi-
tion 4.2 and the variational principles, if ε is small, we get a solution of (1.4).
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In order to prove (c), we observe that Jε verifies all the assumptions of Theorem 2.6
and that if Λ is not contractible, the same holds for Λa if a is small. Then, for any m�N,
m 1, there are at least m distinct critical points of Jε at levels

c1,ε � ��� � cm,ε �max
x�Bm

Jε(x), (4.17)

where c1,ε, . . . ,cm,ε are the critical values defined as in (2.32) and Bm is a compact subset
of Ω1(x0,x1,Λa) with category greater than m (see Proposition 2.7). By Proposition 4.2,
if we choose ε < ε0, we obtain m critical points of J with negative critical values. In fact,
by (2.28), for any x � Bm,

J2,ε(x)� 1
2

(
am� Δ2

bm

)
+ cm, (4.18)

where am, bm are defined as in (3.11),

cm =max
x�Bm

∫ 1

0
ψ1

(
1

φ2(x)

)

, (4.19)

then we can reason as in Theorem 1.2(c).
The solutions obtained in the proof of (b) and (c) are timelike because their spatial

components lie in Λa. �
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