A NOTE ON COMPREHENSIVE BACKWARD BIORTHOGONALIZATION

DAVID K. RUCH

Received 16 February 2006; Revised 21 July 2006; Accepted 25 July 2006

We present a backward biorthogonalization technique for giving an orthogonal projection of a biorthogonal expansion onto a smaller subspace, reducing the dimension of the initial space by dropping d basis functions. We also determine which basis functions should be dropped to minimize the L^{2} distance between a given function and its projection. This generalizes some recent results of Rebollo-Neira.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.
In [3], Rebollo-Neira gives a backward biorthogonalization technique for projecting a biorthogonal expansion onto a subspace, reducing the dimension N of the initial space by dropping $d=1$ basis function. In this note, we generalize this method to reduce the space by an arbitrary number d of basis functions, $d<N$. Proposition 3.4 in [3] indicates which single basis function is to be removed in order to minimize the L^{2} distance between a function f and its orthogonal projection into the reduced space. We will also generalize this result in Proposition 7. If more than one basis function is to be dropped, Rebollo-Neira recommends iterating the $d=1$ process. We show via Example 8 that in some circumstances iterating the $d=1$ process k times leads to results inferior to using Proposition 7 and dropping $k=d$ basis functions simultaneously.

We begin with a Hilbert space H and an N-dimensional subspace V. Assume biorthogonal bases of V given by $\left\{x_{i}^{\prime}\right\}_{i=1}^{N}$ and $\left\{x_{i}\right\}_{i=1}^{N}$ such that $\left\langle x_{i}^{\prime}, x_{j}\right\rangle=\delta_{i j}$. Now drop d basis elements from each set, without loss of generality the first d elements for notational purposes, and form the reduced subspaces $\tilde{V}=\operatorname{span}\left\{x_{i}\right\}_{i=d+1}^{N}$ and $\tilde{V}^{\prime}=\operatorname{span}\left\{x_{i}^{\prime}\right\}_{i=1}^{d}$. We wish to modify the x_{i}^{\prime} so that the projection from V to \widetilde{V} is orthogonal. We next recursively construct the sequence $\left\{v_{i}^{\prime}\right\}_{i=1}^{d} \subset \tilde{V}^{\prime}$ by

$$
\begin{equation*}
v_{1}^{\prime}=x_{1}^{\prime}, \quad v_{i}^{\prime}=x_{i}^{\prime}-\sum_{\ell=1}^{i-1} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle} v_{\ell}^{\prime}, \quad i \leq d . \tag{1}
\end{equation*}
$$

2 A note on comprehensive backward biorthogonalization
We observe that the set $\left\{v_{i}^{\prime}\right\}_{i=1}^{d}$ forms an orthogonal basis of \tilde{V}^{\prime} by construction. We then construct the sequence $\left\{\tilde{x}_{i}^{\prime}\right\}_{i=d+1}^{N}$ by

$$
\begin{equation*}
\widetilde{x}_{i}^{\prime}=x_{i}^{\prime}-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle} v_{\ell}^{\prime} \tag{2}
\end{equation*}
$$

and set $U=\operatorname{span}\left\{\tilde{x}_{i}^{\prime}\right\}_{i=d+1}^{N}$. We will see that this formula generalizes the dual modification of [3, Theorem 3.1] for $d \geq 1$. Note that each $\widetilde{x}_{i}^{\prime}$ is created to be orthogonal to \tilde{V}^{\prime} by subtracting from x_{i}^{\prime} its projection onto \tilde{V}^{\prime}.
Proposition 1. The spaces U and \tilde{V}^{\prime} are orthogonal complements in $V, V=\tilde{V} \oplus \tilde{V}^{\prime}$.
Proof. Choose i, j such that $j \leq d<i$ and use the definition of $\widetilde{x}_{i}^{\prime}$ and the orthogonality of $\left\{v_{i}^{\prime}\right\}$,

$$
\begin{equation*}
\left\langle\widetilde{x}_{i}^{\prime}, v_{j}^{\prime}\right\rangle=\left\langle x_{i}^{\prime}, v_{j}^{\prime}\right\rangle-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle}\left\langle v_{\ell}^{\prime}, v_{j}^{\prime}\right\rangle=\left\langle x_{i}^{\prime}, v_{j}^{\prime}\right\rangle-\left\langle x_{i}^{\prime}, v_{j}^{\prime}\right\rangle=0 . \tag{3}
\end{equation*}
$$

Thus U and \tilde{V}^{\prime} are orthogonal subspaces of V, and their dimensions add to N.
We next verify that U and \tilde{V} are actually the same space.
Lemma 2. The spaces U and \tilde{V}^{\prime} are orthogonal complements in V, and $U=\widetilde{V}$.
Proof. By (1), we can write $v_{j}^{\prime}=\sum_{n=1}^{j} a_{n} x_{n}^{\prime}$ for some constants a_{n}, so the original biorthogonality condition $\left\langle x_{i}^{\prime}, x_{j}\right\rangle=\delta_{i j}$ says that, for $j<i,\left\langle v_{j}^{\prime}, x_{i}\right\rangle=\sum_{n=1}^{j} a_{n}\left\langle x_{n}^{\prime}, x_{i}\right\rangle=0$. Thus \tilde{V} and \tilde{V}^{\prime} are orthogonal subspaces of V, and their dimensions add to N. By the previous proposition, $U=\widetilde{V}$.

Next we give the desired biorthogonal bases of the reduced subspace \tilde{V}.
Proposition 3. The reduced spaces U and \tilde{V} are identical and have biorthogonal bases $\left\{\tilde{x}_{i}^{\prime}\right\}_{i=d+1}^{N}$ and $\left\{x_{j}\right\}_{j=d+1}^{N}$.
Proof. Using Lemma 2 and (2), we have for $i, j>d \geq \ell$,

$$
\begin{equation*}
\left\langle\widetilde{x}_{i}^{\prime}, x_{j}\right\rangle=\left\langle x_{i}^{\prime}, x_{j}\right\rangle-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle}\left\langle v_{\ell}^{\prime}, x_{j}\right\rangle=\delta_{i j}-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle} \cdot 0=\delta_{i j} . \tag{4}
\end{equation*}
$$

In order to give an explicit method for determining which basis functions to drop to minimize the residual, we give a formula for the projection operator.

Proposition 4. The orthogonal projection of V onto \tilde{V} is $P(\cdot)=\sum_{i=d+1}^{N} \tilde{x}_{i}^{\prime}(\cdot) x_{i}$.
Proof. By Proposition 3, $P(w)=w$ for all $w \in \tilde{V}$ and Range $(P)=\tilde{V}$. From Propositions 1 and $3, \tilde{V}^{\prime}$ is the null space of P, and $\operatorname{Range}(P)$ and $\tilde{V}^{\prime}=\operatorname{Null}(P)$ are orthogonal, so P is an orthogonal projection.

The following generalizes [3, Corollary 3.2] to give the coefficients of $P(f)$ for the case $d \geq 1$.
Theorem 5. If $f=\sum_{i=1}^{N} c_{i} x_{i}$, where $c_{i}=\left\langle x_{i}^{\prime}, f\right\rangle$, then

$$
\begin{equation*}
P(f)=\sum_{i=d+1}^{N} c_{i}^{\prime} x_{i}, \quad \text { where } c_{i}^{\prime}=c_{i}-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle}\left\langle v_{\ell}^{\prime}, f\right\rangle . \tag{5}
\end{equation*}
$$

Proof. We calculate, using (2),

$$
\begin{equation*}
P(f)=\sum_{i=d+1}^{N} \widetilde{x}_{i}^{\prime}(f) x_{i}=\sum_{i=d+1}^{N}\left(\left\langle x_{i}^{\prime}, f\right\rangle-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle}\left\langle v_{\ell}^{\prime}, f\right\rangle\right) x_{i} . \tag{6}
\end{equation*}
$$

so $P(f)=\sum_{i=d+1}^{N} c_{i}^{\prime} x_{i}$, where

$$
\begin{equation*}
c_{i}^{\prime}=c_{i}-\sum_{\ell=1}^{d} \frac{\left\langle x_{i}^{\prime}, v_{\ell}^{\prime}\right\rangle}{\left\langle v_{\ell}^{\prime}, v_{\ell}^{\prime}\right\rangle}\left\langle v_{\ell}^{\prime}, f\right\rangle . \tag{7}
\end{equation*}
$$

The following generalizes [3, Corollary 3.3] for the case $d \geq 1$.
Corollary 6. If $f=\sum_{i=1}^{N} c_{i} x_{i}$, where $c_{i}=\left\langle x_{i}^{\prime}, f\right\rangle$, then

$$
\begin{equation*}
\|f\|^{2}=\|P(f)\|^{2}+\sum_{i=1}^{d} \frac{1}{\left\|v_{i}^{\prime}\right\|^{2}}\left|\sum_{k=1}^{i} c_{k}\left\langle v_{i}^{\prime}, x_{k}\right\rangle\right|^{2} \tag{8}
\end{equation*}
$$

Proof. Since $V=\tilde{V} \oplus \tilde{V}^{\prime}$, we can write $f=P(f) \oplus \operatorname{proj}_{\tilde{V}^{\prime}}(f)$, where $\operatorname{proj}_{\tilde{V}^{\prime}}(f)=$ $\sum_{i=1}^{d}\left\langle v_{i}^{\prime} /\left\|v_{i}^{\prime}\right\|, f\right\rangle\left(v_{i}^{\prime} /\left\|v_{i}^{\prime}\right\|\right)$ is the projection of f onto \tilde{V}^{\prime} using the orthogonal basis $\left\{v_{i}^{\prime}\right\}$. Thus by Parseval and then Lemma 2, we have

$$
\begin{align*}
\|f\|^{2} & =\|P(f)\|^{2}+\left\|\sum_{i=1}^{d}\left\langle\frac{v_{i}^{\prime}}{\left\|v_{i}^{\prime}\right\|}, f\right\rangle \frac{v_{i}^{\prime}}{\left\|v_{i}^{\prime}\right\|}\right\|^{2}=\|P(f)\|^{2}+\sum_{i=1}^{d} \frac{1}{\left\|v_{i}^{\prime}\right\|^{2}}\left|\left\langle v_{i}^{\prime}, f\right\rangle\right|^{2} \\
& =\|P(f)\|^{2}+\sum_{i=1}^{d} \frac{1}{\left\|v_{i}^{\prime}\right\|^{2}}\left|\sum_{k=1}^{i} c_{k}\left\langle v_{i}, x_{k}\right\rangle\right|^{2} . \tag{9}
\end{align*}
$$

Next we generalize [3, Proposition 3.4] for the case $d \geq 1$.
Proposition 7. By reindexing the original x_{i} and x_{i}^{\prime} to examine all possible $\binom{N}{d}$ combinations of d components dropped from the original basis of V and to minimize the L^{2} distance between f and $P(f)$, choose the set of d basis elements x_{i} that minimizes

$$
\begin{equation*}
\sum_{i=1}^{d} \frac{1}{\left\|v_{i}^{\prime}\right\|^{2}}\left|\sum_{k=1}^{i} c_{k}\left\langle v_{i}^{\prime}, x_{k}\right\rangle\right|^{2} \tag{10}
\end{equation*}
$$

We now give an example demonstrating that iterating the process k times with $d=1$ may give a projection considerably farther from the original f than reducing by $k=d$ basis functions simultaneously.

4 A note on comprehensive backward biorthogonalization

(a)

(b)

Figure 1. Drop two basis functions: iteratively (a), and simultaneously (b), for Example 8.

Example 8. For simplicity, we consider a function $f(t)$ in the four-dimensional subspace V with basis functions generated from cardinal spline wavelets. Let $B_{3}(x)$ be the standard quadratic cardinal spline supported on $[-1,2]$ and let $w(t)$ be the standard associated wavelet for the Riesz basis of $L^{2}(\mathbb{R})$ generated by $B_{3}(x)$ as mentioned in [1] or [2]. Let $V=\operatorname{span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, where $x_{1}(t)=B_{3}(t+2) /\left\|B_{3}\right\|, x_{2}(t)=B_{3}(t-2) /\left\|B_{3}\right\|, x_{3}(t)=$ $\left(B_{3}(t-2)+B_{3}(t+2)+0.2 B_{3}(t)\right) /\left\|B_{3}\right\|, x_{4}=w(t)$. The function f can be expressed as $f(t)=0.7 x_{1}(t)+0.5 x_{2}(t)+0.4 x_{3}(t)+x_{4}(t)$. We wish to drop $d=2$ basis elements and obtain the best two-dimensional approximation to f. If we iteratively drop one basis element at a time using Proposition 7 with $d=1$, then we remove x_{3} and then x_{2} leaving projection $P(f)=0.9 x_{1}+x_{4}$ as shown in Figure 1(a) with residual error $\|f-P(f)\|^{2}=0.82$. However, if we simultaneously drop two elements with $d=2$, then we instead drop x_{1} and x_{2} leaving projection $P(f)=1.1 x_{3}+x_{4}$ as shown in Figure 1(b) with residual error $\|f-P(f)\|^{2}=0.03$. As can be seen from these errors and the plots in Figure 1, there is a considerable advantage for $t \geq 1.5$ in removing two basis elements together, rather than dropping them iteratively.

When the value of $\binom{N}{d}$ is large, the computational expense of choosing the optimal set of basis elements to be dropped can be quite large. Investigation of this issue merits further study.

References

[1] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, SIAM, Pennsylvania, 1992.
[2] P. R. Massopust, D. K. Ruch, and P. J. Van Fleet, On the support properties of scaling vectors, Applied and Computational Harmonic Analysis 3 (1996), no. 3, 229-238.
[3] L. Rebollo-Neira, Backward adaptive biorthogonalization, International Journal of Mathematics and Mathematical Sciences 2004 (2004), no. 35, 1843-1853.

David K. Ruch: Department of Mathematical and Computer Sciences, Metropolitan State College of Denver, Denver, CO 80217-3362, USA
E-mail address: ruch@mscd.edu

