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We present a backward biorthogonalization technique for giving an orthogonal projec-
tion of a biorthogonal expansion onto a smaller subspace, reducing the dimension of
the initial space by dropping d basis functions. We also determine which basis functions
should be dropped to minimize the L2 distance between a given function and its projec-
tion. This generalizes some recent results of Rebollo-Neira.
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In [3], Rebollo-Neira gives a backward biorthogonalization technique for projecting a
biorthogonal expansion onto a subspace, reducing the dimension N of the initial space
by dropping d = 1 basis function. In this note, we generalize this method to reduce the
space by an arbitrary number d of basis functions, d < N . Proposition 3.4 in [3] indi-
cates which single basis function is to be removed in order to minimize the L2 distance
between a function f and its orthogonal projection into the reduced space. We will also
generalize this result in Proposition 7. If more than one basis function is to be dropped,
Rebollo-Neira recommends iterating the d = 1 process. We show via Example 8 that in
some circumstances iterating the d = 1 process k times leads to results inferior to using
Proposition 7 and dropping k = d basis functions simultaneously.

We begin with a Hilbert spaceH and anN-dimensional subspaceV . Assume biorthog-
onal bases of V given by {x′i}Ni=1 and {xi}Ni=1 such that 〈x′i ,xj〉 = δi j . Now drop d basis
elements from each set, without loss of generality the first d elements for notational pur-
poses, and form the reduced subspaces ˜V = span{xi}Ni=d+1 and ˜V ′ = span{x′i}di=1. We wish
to modify the x′i so that the projection from V to ˜V is orthogonal. We next recursively
construct the sequence {v′i }di=1 ⊂ ˜V ′ by

v′1 = x′1, v′i = x′i −
i−1
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉v′� , i≤ d. (1)
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We observe that the set {v′i }di=1 forms an orthogonal basis of ˜V ′ by construction. We then
construct the sequence {x̃′i}Ni=d+1 by

x̃′i = x′i −
d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉v′� (2)

and set U = span{x̃′i}Ni=d+1. We will see that this formula generalizes the dual modification
of [3, Theorem 3.1] for d ≥ 1. Note that each x̃′i is created to be orthogonal to ˜V ′ by
subtracting from x′i its projection onto ˜V ′.

Proposition 1. The spaces U and ˜V ′ are orthogonal complements in V , V = ˜V ⊕ ˜V ′.

Proof. Choose i, j such that j ≤ d < i and use the definition of x̃′i and the orthogonality
of {v′i },

〈

x̃′i ,v
′
j

〉= 〈x′i ,v′j
〉−

d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉

〈

v′� ,v
′
j

〉= 〈x′i ,v′j
〉− 〈x′i ,v′j

〉= 0. (3)

Thus U and ˜V ′ are orthogonal subspaces of V , and their dimensions add to N . �

We next verify that U and ˜V are actually the same space.

Lemma 2. The spaces U and ˜V ′ are orthogonal complements in V , and U = ˜V .

Proof. By (1), we can write v′j =
∑ j

n=1 anx
′
n for some constants an, so the original

biorthogonality condition 〈x′i ,xj〉 = δi j says that, for j < i, 〈v′j ,xi〉 =
∑ j

n=1 an〈x′n,xi〉 = 0.

Thus ˜V and ˜V ′ are orthogonal subspaces of V , and their dimensions add to N . By the
previous proposition, U = ˜V . �

Next we give the desired biorthogonal bases of the reduced subspace ˜V .

Proposition 3. The reduced spaces U and ˜V are identical and have biorthogonal bases
{x̃′i}Ni=d+1 and {xj}Nj=d+1.

Proof. Using Lemma 2 and (2), we have for i, j > d ≥ �,

〈

x̃′i ,xj
〉= 〈x′i ,xj

〉−
d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉

〈

v′� ,xj
〉= δi j −

d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉 · 0= δi j . (4)

�

In order to give an explicit method for determining which basis functions to drop to
minimize the residual, we give a formula for the projection operator.

Proposition 4. The orthogonal projection of V onto ˜V is P(·)=∑N
i=d+1 x̃

′
i (·)xi.

Proof. By Proposition 3, P(w)= w for all w ∈ ˜V and Range(P)= ˜V . From Propositions
1 and 3, ˜V ′ is the null space of P, and Range(P) and ˜V ′ =Null(P) are orthogonal, so P is
an orthogonal projection. �
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The following generalizes [3, Corollary 3.2] to give the coefficients of P( f ) for the case
d ≥ 1.

Theorem 5. If f =∑N
i=1 cixi, where ci = 〈x′i , f 〉, then

P( f )=
N
∑

i=d+1

c′i xi, where c′i = ci−
d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉

〈

v′� , f
〉

. (5)

Proof. We calculate, using (2),

P( f )=
N
∑

i=d+1

x̃′i ( f )xi =
N
∑

i=d+1

(

〈

x′i , f
〉−

d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉

〈

v′� , f
〉

)

xi. (6)

so P( f )=∑N
i=d+1 c

′
i xi, where

c′i = ci−
d
∑

�=1

〈

x′i ,v
′
�

〉

〈

v′� ,v
′
�

〉

〈

v′� , f
〉

. (7)
�

The following generalizes [3, Corollary 3.3] for the case d ≥ 1.

Corollary 6. If f =∑N
i=1 cixi, where ci = 〈x′i , f 〉, then

‖ f ‖2 = ∥∥P( f )
∥

∥

2
+

d
∑

i=1

1
∥

∥v′i
∥

∥

2

∣

∣

∣

∣

∣

i
∑

k=1

ck
〈

v′i ,xk
〉

∣

∣

∣

∣

∣

2

. (8)

Proof. Since V = ˜V ⊕ ˜V ′, we can write f = P( f ) ⊕ proj
˜V ′( f ), where proj

˜V ′( f ) =
∑d

i=1〈v′i /‖v′i‖, f 〉(v′i /‖v′i‖) is the projection of f onto ˜V ′ using the orthogonal basis {v′i }.
Thus by Parseval and then Lemma 2, we have

‖ f ‖2 = ∥∥P( f )
∥

∥

2
+

∥

∥

∥

∥

∥

d
∑

i=1

〈

v′i
∥

∥v′i
∥

∥

, f

〉

v′i
∥

∥v′i
∥

∥

∥

∥

∥

∥

∥

2

= ∥∥P( f )
∥

∥

2
+

d
∑

i=1

1
∥

∥v′i
∥

∥

2

∣

∣

〈

v′i , f
〉∣

∣

2

= ∥∥P( f )
∥

∥

2
+

d
∑

i=1

1
∥

∥v′i
∥

∥

2

∣

∣

∣

∣

∣

i
∑

k=1

ck
〈

vi,xk
〉

∣

∣

∣

∣

∣

2

.

(9)

�

Next we generalize [3, Proposition 3.4] for the case d ≥ 1.

Proposition 7. By reindexing the original xi and x′i to examine all possible
(

N
d

)

combina-

tions of d components dropped from the original basis of V and to minimize the L2 distance
between f and P( f ), choose the set of d basis elements xi that minimizes

d
∑

i=1

1
∥

∥v′i
∥

∥

2

∣

∣

∣

∣

∣

i
∑

k=1

ck
〈

v′i ,xk
〉

∣

∣

∣

∣

∣

2

. (10)

We now give an example demonstrating that iterating the process k times with d = 1
may give a projection considerably farther from the original f than reducing by k = d
basis functions simultaneously.
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Figure 1. Drop two basis functions: iteratively (a), and simultaneously (b), for Example 8.

Example 8. For simplicity, we consider a function f (t) in the four-dimensional subspace
V with basis functions generated from cardinal spline wavelets. Let B3(x) be the stan-
dard quadratic cardinal spline supported on [−1,2] and let w(t) be the standard associ-
ated wavelet for the Riesz basis of L2(R) generated by B3(x) as mentioned in [1] or [2].
Let V = span{x1,x2,x3,x4}, where x1(t)= B3(t+ 2)/‖B3‖, x2(t)= B3(t− 2)/‖B3‖, x3(t)=
(B3(t − 2) + B3(t + 2) + 0.2B3(t))/‖B3‖, x4 = w(t). The function f can be expressed as
f (t) = 0.7x1(t) + 0.5x2(t) + 0.4x3(t) + x4(t). We wish to drop d = 2 basis elements and
obtain the best two-dimensional approximation to f . If we iteratively drop one basis ele-
ment at a time using Proposition 7 with d = 1, then we remove x3 and then x2 leaving pro-
jection P( f )= 0.9x1 + x4 as shown in Figure 1(a) with residual error ‖ f −P( f )‖2 = 0.82.
However, if we simultaneously drop two elements with d = 2, then we instead drop x1

and x2 leaving projection P( f ) = 1.1x3 + x4 as shown in Figure 1(b) with residual error
‖ f −P( f )‖2 = 0.03. As can be seen from these errors and the plots in Figure 1, there is a
considerable advantage for t ≥ 1.5 in removing two basis elements together, rather than
dropping them iteratively.
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When the value of
(

N
d

)

is large, the computational expense of choosing the optimal
set of basis elements to be dropped can be quite large. Investigation of this issue merits
further study.
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