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We give some characterizations of weak-open compact images of metric spaces.
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1. Introduction and definitions

To find internal characterizations of certain images of metric spaces is one of central
problems in general topology. Arhangel’skiı̆ [1] showed that a space is an open compact
image of a metric space if and only if it has a development consisting of point-finite open
covers, and some characterizations for certain quotient compact images of metric spaces
are obtained in [3, 5, 8]. Recently, Xia [12] introduced the concept of weak-open map-
pings. By using it, certain g-first countable spaces are characterized as images of metric
spaces under various weak-open mappings. Furthermore, Li and Lin in [4] proved that a
space is g-metrizable if and only if it is a weak-open σ-image of a metric space.

The purpose of this paper is to give some characterizations of weak-open compact
images of metric spaces, which showed that a space is a weak-open compact image of a
metric space if and only if it has a weak development consisting of point-finite cs-covers.

In this paper, all spaces are Hausdorff, all mappings are continuous and surjective. N
denotes the set of all natural numbers. τ(X) denotes the topology on a space X . For the
usual product space

∏
i∈NXi, πi denotes the projection

∏
i∈NXi onto Xi. For a sequence

{xn} in X , denote 〈xn〉 = {xn : n∈N}.
Definition 1.1 [1]. Let � =⋃{�x : x ∈ X} be a collection of subsets of a space X . � is
called a weak base for X if

(1) for each x ∈ X , �x is a network of x in X ,
(2) if U , V ∈�x, then W ⊂U ∩V for some W ∈�x,
(3) G ⊂ X is open in X if and only if for each x ∈ G, there exists P ∈�x such that

P ⊂G.
�x is called a weak neighborhood base of x in X , every element of �x is called a weak

neighborhood of x in X .
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2 On weak-open compact images of metric spaces

Definition 1.2. Let f : X → Y be a mapping.

(1) f is called a weak-open mapping [12], if there exists a weak base �=∪{�y : y ∈
Y} for Y , and for each y ∈ Y , there exists xy ∈ f −1(y) satisfying the following
condition: for each open neighborhood U of xy , By ⊂ f (U) for some By ∈�y .

(2) f is called a compact mapping, if f −1(y) is compact in X for each y ∈ Y .
It is easy to check that a weak-open mapping is quotient.

Definition 1.3 [2]. Let X be a space, and P ⊂ X . Then the following hold.

(1) A sequence {xn} in X is called eventually in P, if the {xn} converges to x, and there
exists m∈N such that {x}∪{xn : n≥m} ⊂ P.

(2) P is called a sequential neighborhood of x in X , if whenever a sequence {xn} in X
converges to x, then {xn} is eventually in P.

(3) P is called sequential open in X , if P is a sequential neighborhood at each of its
points.

(4) X is called a sequential space, if any sequential open subset of X is open in X .

Definition 1.4 [7]. Let � be a cover of a space X .
(1) � is called a cs-cover for X , if every convergent sequence in X is eventually in some

element of �.
(2) � is called an sn-cover for X , if every element of � is a sequential neighborhood

of some point in X , and for any x ∈ X , there exists a sequential neighborhood P
of x in X such that P ∈�.

Definition 1.5 [7]. Let {�n} be a sequence of covers of a space X .
(1) {�n} is called a point-star network for X , if for each x ∈ X , 〈st(x,�n)〉 is a net-

work of x in X .
(2) {�n} is called a weak development for X , if for each x ∈ X , 〈st(x,�n)〉 is a weak

neighborhood base for X .

2. Results

Theorem 2.1. The following are equivalent for a space X .
(1) X is a weak-open compact image of a metric space.
(2) X has a weak development consisting of point-finite cs-covers.
(3) X has a weak development consisting of point-finite sn-covers.

Proof. (1)⇒(2). Suppose that f : M → X is a weak-open compact mapping with M a
metric space. Let {�n} be a sequence consisting of locally finite open covers of M such
that �n+1 is a refinement of �n and 〈st(K ,�n)〉 forms a neighborhood base of K in M for
each compact subset K of M (see [7, Theorem 1.3.1]). For each n∈N, put �n = f (�n).
Since f is compact, then {�n} is a point-finite cover sequence of X .

If x ∈ V with V open in X , then f −1(x)⊂ f −1(V). Since f −1(x) compact in M, then
st( f −1(x),�n)⊂ f −1(V) for some n∈N, and so st(x,�n)⊂ V . Hence 〈st(x,�n)〉 forms
a network of x in X . Therefore, {�n} is a point-star network for X .

We will prove that every �k is a cs-cover for X . Since f is weak-open, there exists
a weak base � = ∪{�x : x ∈ X} for X , and for each x ∈ X , there exists mx ∈ f −1(x)
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satisfying the following condition: for each open neighborhood U of mx in M, B ⊂ f (U)
for some B ∈�x.

For each x ∈ X and k ∈N, let {xn} be a sequence converging to a point x ∈ X . Take
U ∈�k with mx ∈ U . Then B ⊂ f (U) for some B ∈�x. Since B is a weak neighbor-
hood of x in X , then B is a sequential neighborhood of x in X by [6, Corollary 1.6.18],
so f (U) ∈ �k is also. Thus {xn} is eventually in f (U). This implies that each �k is a
cs-cover for X . Since f (U) is a sequential neighborhood of x in X , then st(x,�k) is also.
Obviously, X is a sequential space. So 〈st(x,�k)〉 is a weak neighborhood base of x in X .

In words, {�n} is a weak development consisting of point-finite cs-covers for X .
(2)⇒(3). By Theorem A in [5], X is a sequential space. It suffices to prove that if � is

a point-finite cs-cover for X , then some subset of � is an sn-cover for X . For each x ∈ X ,
denote (�)x = {Pi : i≤ k}, where (�)x = {P ∈� : x ∈ P}. If each element of (�)x is not
a sequential neighborhood of x in X , then for each i ≤ k, there exists a sequence {xin}
converging to x such that {xin} is not eventually in Pi. For each n ∈ N and i ≤ k, put
yi+(n−1)k = xin, then {ym} converges to x and is not eventually in each Pi, a contradiction.
Thus there exists Px ∈� such that Px is a sequential neighborhood of x in X . Put � =
{Px : x ∈ X}, then � is an sn-cover for X .

(3)⇒(1). Suppose {�n} is a weak development consisting of point-finite sn-covers for
X . For each i∈N, let �i = {Pα : α∈Λi}, endow Λi with the discrete topology, then Λi is
a metric space. Put

M =
{

α= (αi)∈
∏

i∈N
Λi :

〈
Pαi
〉

forms a network at some point xα in X

}

, (2.1)

and endowM with the subspace topology induced from the usual product topology of the
collection {Λi : i ∈N} of metric spaces, then M is a metric space. Since X is Hausdorff,
xα is unique in X . For each α ∈M, we define f : M → X by f (α) = xα. For each x ∈ X
and i ∈N, there exists αi ∈ Λi such that x ∈ Pαi . From {�i} being a point-star network
for X , {Pαi : i∈N} is a network of x in X . Put α= (αi), then α∈M and f (α)= x. Thus
f is surjective. Suppose α= (αi)∈M and f (α)= x ∈U ∈ τ(X), then there exists n∈N
such that Pαn ⊂U . Put

V = {β ∈M : the nth coordinate of β is αn
}
. (2.2)

Then α∈V ∈ τ(M), and f (V)⊂ Pαn ⊂U . Hence f is continuous.
For each x ∈ X and i∈N, put

Bi =
{
αi ∈Λi : x ∈ Pαi

}
, (2.3)

then
∏

i∈NBi is compact in
∏

i∈NΛi. If α = (αi) ∈
∏

i∈NBi, then 〈Pαi〉 is a network of
x in X . So α ∈M and f (α) = x. Hence

∏
i∈NBi ⊂ f −1(x); If α = (αi) ∈ f −1(x), then

x ∈⋂i∈NPαi , so α∈∏i∈NBi. Thus f −1(x)⊂∏i∈NBi. Therefore, f −1(x)=∏i∈NBi. This
implies that f is a compact mapping.



4 On weak-open compact images of metric spaces

We will prove that f is weak-open. For each x ∈ X , since every �i is an sn-cover for X ,
then there exists αi ∈Λi such that Pαi is a sequential neighborhood of x in X . From {�i}
a point-star network for X , 〈Pαi〉 is a network of x in X . Put βx = (αi) ∈

∏
i∈NΛi, then

βx ∈ f −1(x).
Let {Umβx} be a decreasing neighborhood base of βx in M, and put

�x =
{
f
(
Umβx

)
: m∈N},

�=
⋃{

�x : x ∈ X
}

,
(2.4)

then � satisfies (1), (2) in Definition 1.1. Suppose G is open in X . For each x ∈ G, from
βx ∈ f −1(x), f −1(G) is an open neighborhood of βx in M. Thus Umβx ⊂ f −1(G) for some
m ∈N, so f (Umβx) ⊂ G and f (Umβx) ∈�x. On the other hand, suppose G ⊂ X and for
x ∈ G, there exists B ∈�x such that B ⊂ G. Let B = f (Umβx) for some m ∈ N, and let
{xn} be a sequence converging to x in X . Since Pαi is a sequential neighborhood of x in
X for each i∈N, then {xn} is eventually in Pαi . For each n∈N, if xn ∈ Pαi , let αin = αi; if
xn �∈ Pαi , pick αin ∈ Λi such that xn ∈ Pαin. Thus there exists ni ∈N such that αin = αi for
all n > ni. So {αin} converges to αi. For each n∈N, put

βn = (αin)∈
∏

i∈N
Λi, (2.5)

then f (βn) = xn and {βn} converges to βx. Since Umβx is an open neighborhood βx in
M, then {βn} is eventually in Umβx , so {xn} is eventually in G. Hence G is a sequential
neighborhood of x. So G is sequential open in X . By X being a sequential space, G is open
in X . This implies � is a weak base for X .

By the idea of �, f is weak-open. �

We give examples illustrating Theorem 2.1 of this note.

Example 2.2. Let X be the Arens space S2 (see [6, Example 1.8.6]). It is not difficult to
see that the space is a weak-open compact image of a metric space. But X is not an open
compact image of a metric space, because X is not developable. Thus the following holds.

A weak-open compact image of a metric space is not always an open compact image
of a metric space.

Example 2.3. Let Y be the weak Cauchy space in [10, Example 2.14(3)]. By the construc-
tion, Y is a quotient compact image of a metric space. But Y is not Cauchy, Y is not a
weak-open compact image of a metric space by Theorem 2.1. Thus the following holds:

A quotient compact image of a metric space is not always a weak-open compact image
of a metric space.
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