ON WEAK-OPEN COMPACT IMAGES OF METRIC SPACES

ZHIYUN YIN

Received 2 August 2005; Revised 29 June 2006; Accepted 9 July 2006

We give some characterizations of weak-open compact images of metric spaces.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction and definitions

To find internal characterizations of certain images of metric spaces is one of central problems in general topology. Arhangel'skiĭ [1] showed that a space is an open compact image of a metric space if and only if it has a development consisting of point-finite open covers, and some characterizations for certain quotient compact images of metric spaces are obtained in [3, 5, 8]. Recently, Xia [12] introduced the concept of weak-open mappings. By using it, certain *g*-first countable spaces are characterized as images of metric spaces under various weak-open mappings. Furthermore, Li and Lin in [4] proved that a space is *g*-metrizable if and only if it is a weak-open σ -image of a metric space.

The purpose of this paper is to give some characterizations of weak-open compact images of metric spaces, which showed that a space is a weak-open compact image of a metric space if and only if it has a weak development consisting of point-finite *cs*-covers.

In this paper, all spaces are Hausdorff, all mappings are continuous and surjective. \mathbb{N} denotes the set of all natural numbers. $\tau(X)$ denotes the topology on a space *X*. For the usual product space $\prod_{i \in \mathbb{N}} X_i$, π_i denotes the projection $\prod_{i \in \mathbb{N}} X_i$ onto X_i . For a sequence $\{x_n\}$ in *X*, denote $\langle x_n \rangle = \{x_n : n \in \mathbb{N}\}$.

Definition 1.1 [1]. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a collection of subsets of a space X. \mathcal{P} is called a weak base for X if

- (1) for each $x \in X$, \mathcal{P}_x is a network of x in X,
- (2) if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$,
- (3) $G \subset X$ is open in X if and only if for each $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

 \mathcal{P}_x is called a weak neighborhood base of x in X, every element of \mathcal{P}_x is called a weak neighborhood of x in X.

2 On weak-open compact images of metric spaces

Definition 1.2. Let $f : X \to Y$ be a mapping.

- (1) *f* is called a weak-open mapping [12], if there exists a weak base 𝔅 = ∪{𝔅_y : y ∈ Y} for *Y*, and for each y ∈ Y, there exists x_y ∈ f⁻¹(y) satisfying the following condition: for each open neighborhood U of x_y, B_y ⊂ f(U) for some B_y ∈ 𝔅_y.
- (2) *f* is called a compact mapping, if $f^{-1}(y)$ is compact in *X* for each $y \in Y$.

It is easy to check that a weak-open mapping is quotient.

Definition 1.3 [2]. Let *X* be a space, and $P \subset X$. Then the following hold.

- (1) A sequence $\{x_n\}$ in X is called eventually in P, if the $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \cup \{x_n : n \ge m\} \subset P$.
- (2) *P* is called a sequential neighborhood of *x* in *X*, if whenever a sequence $\{x_n\}$ in *X* converges to *x*, then $\{x_n\}$ is eventually in *P*.
- (3) *P* is called sequential open in *X*, if *P* is a sequential neighborhood at each of its points.
- (4) X is called a sequential space, if any sequential open subset of X is open in X.

Definition 1.4 [7]. Let \mathcal{P} be a cover of a space *X*.

- (1) \mathcal{P} is called a *cs*-cover for *X*, if every convergent sequence in *X* is eventually in some element of \mathcal{P} .
- (2) \mathcal{P} is called an *sn*-cover for X, if every element of \mathcal{P} is a sequential neighborhood of some point in X, and for any $x \in X$, there exists a sequential neighborhood P of x in X such that $P \in \mathcal{P}$.

Definition 1.5 [7]. Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space *X*.

- (1) $\{\mathcal{P}_n\}$ is called a point-star network for X, if for each $x \in X$, $\langle st(x, \mathcal{P}_n) \rangle$ is a network of x in X.
- (2) $\{\mathcal{P}_n\}$ is called a weak development for *X*, if for each $x \in X$, $\langle st(x, \mathcal{P}_n) \rangle$ is a weak neighborhood base for *X*.

2. Results

THEOREM 2.1. The following are equivalent for a space X.

- (1) X is a weak-open compact image of a metric space.
- (2) *X* has a weak development consisting of point-finite cs-covers.
- (3) *X* has a weak development consisting of point-finite sn-covers.

Proof. (1) \Rightarrow (2). Suppose that $f : M \to X$ is a weak-open compact mapping with M a metric space. Let $\{\mathcal{U}_n\}$ be a sequence consisting of locally finite open covers of M such that \mathcal{U}_{n+1} is a refinement of \mathcal{U}_n and $\langle st(K, \mathcal{U}_n) \rangle$ forms a neighborhood base of K in M for each compact subset K of M (see [7, Theorem 1.3.1]). For each $n \in \mathbb{N}$, put $\mathcal{P}_n = f(\mathcal{U}_n)$. Since f is compact, then $\{\mathcal{P}_n\}$ is a point-finite cover sequence of X.

If $x \in V$ with *V* open in *X*, then $f^{-1}(x) \subset f^{-1}(V)$. Since $f^{-1}(x)$ compact in *M*, then $st(f^{-1}(x),\mathfrak{A}_n) \subset f^{-1}(V)$ for some $n \in \mathbb{N}$, and so $st(x, \mathcal{P}_n) \subset V$. Hence $\langle st(x, \mathcal{P}_n) \rangle$ forms a network of *x* in *X*. Therefore, $\{\mathcal{P}_n\}$ is a point-star network for *X*.

We will prove that every \mathcal{P}_k is a *cs*-cover for X. Since f is weak-open, there exists a weak base $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\}$ for X, and for each $x \in X$, there exists $m_x \in f^{-1}(x)$ satisfying the following condition: for each open neighborhood *U* of m_x in $M, B \subset f(U)$ for some $B \in \mathfrak{B}_x$.

For each $x \in X$ and $k \in \mathbb{N}$, let $\{x_n\}$ be a sequence converging to a point $x \in X$. Take $U \in \mathfrak{A}_k$ with $m_x \in U$. Then $B \subset f(U)$ for some $B \in \mathfrak{B}_x$. Since B is a weak neighborhood of x in X, then B is a sequential neighborhood of x in X by [6, Corollary 1.6.18], so $f(U) \in \mathfrak{P}_k$ is also. Thus $\{x_n\}$ is eventually in f(U). This implies that each \mathfrak{P}_k is a *cs*-cover for X. Since f(U) is a sequential neighborhood of x in X, then $st(x, \mathfrak{P}_k)$ is also. Obviously, X is a sequential space. So $\langle st(x, \mathfrak{P}_k) \rangle$ is a weak neighborhood base of x in X.

In words, $\{\mathcal{P}_n\}$ is a weak development consisting of point-finite *cs*-covers for *X*.

 $(2)\Rightarrow(3)$. By Theorem A in [5], X is a sequential space. It suffices to prove that if \mathcal{P} is a point-finite *cs*-cover for X, then some subset of \mathcal{P} is an *sn*-cover for X. For each $x \in X$, denote $(\mathcal{P})_x = \{P_i : i \le k\}$, where $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$. If each element of $(\mathcal{P})_x$ is not a sequential neighborhood of x in X, then for each $i \le k$, there exists a sequence $\{x_{in}\}$ converging to x such that $\{x_{in}\}$ is not eventually in P_i . For each $n \in \mathbb{N}$ and $i \le k$, put $y_{i+(n-1)k} = x_{in}$, then $\{y_m\}$ converges to x and is not eventually in each P_i , a contradiction. Thus there exists $P_x \in \mathcal{P}$ such that P_x is a sequential neighborhood of x in X. Put $\mathcal{F} = \{P_x : x \in X\}$, then \mathcal{F} is an *sn*-cover for X.

 $(3) \Rightarrow (1)$. Suppose $\{\mathcal{P}_n\}$ is a weak development consisting of point-finite *sn*-covers for *X*. For each $i \in \mathbb{N}$, let $\mathcal{P}_i = \{P_\alpha : \alpha \in \Lambda_i\}$, endow Λ_i with the discrete topology, then Λ_i is a metric space. Put

$$M = \left\{ \alpha = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Lambda_i : \langle P_{\alpha_i} \rangle \text{ forms a network at some point } x_\alpha \text{ in } X \right\},$$
(2.1)

and endow *M* with the subspace topology induced from the usual product topology of the collection $\{\Lambda_i : i \in \mathbb{N}\}$ of metric spaces, then *M* is a metric space. Since *X* is Hausdorff, x_{α} is unique in *X*. For each $\alpha \in M$, we define $f : M \to X$ by $f(\alpha) = x_{\alpha}$. For each $x \in X$ and $i \in \mathbb{N}$, there exists $\alpha_i \in \Lambda_i$ such that $x \in P_{\alpha_i}$. From $\{\mathcal{P}_i\}$ being a point-star network for *X*, $\{P_{\alpha_i} : i \in \mathbb{N}\}$ is a network of *x* in *X*. Put $\alpha = (\alpha_i)$, then $\alpha \in M$ and $f(\alpha) = x$. Thus *f* is surjective. Suppose $\alpha = (\alpha_i) \in M$ and $f(\alpha) = x \in U \in \tau(X)$, then there exists $n \in \mathbb{N}$ such that $P_{\alpha_n} \subset U$. Put

$$V = \{\beta \in M : \text{the } n\text{th coordinate of } \beta \text{ is } \alpha_n\}.$$
(2.2)

Then $\alpha \in V \in \tau(M)$, and $f(V) \subset P_{\alpha_n} \subset U$. Hence f is continuous.

For each $x \in X$ and $i \in \mathbb{N}$, put

$$B_i = \{ \alpha_i \in \Lambda_i : x \in P_{\alpha_i} \}, \tag{2.3}$$

then $\prod_{i\in\mathbb{N}} B_i$ is compact in $\prod_{i\in\mathbb{N}} \Lambda_i$. If $\alpha = (\alpha_i) \in \prod_{i\in\mathbb{N}} B_i$, then $\langle P_{\alpha_i} \rangle$ is a network of x in X. So $\alpha \in M$ and $f(\alpha) = x$. Hence $\prod_{i\in\mathbb{N}} B_i \subset f^{-1}(x)$; If $\alpha = (\alpha_i) \in f^{-1}(x)$, then $x \in \bigcap_{i\in\mathbb{N}} P_{\alpha_i}$, so $\alpha \in \prod_{i\in\mathbb{N}} B_i$. Thus $f^{-1}(x) \subset \prod_{i\in\mathbb{N}} B_i$. Therefore, $f^{-1}(x) = \prod_{i\in\mathbb{N}} B_i$. This implies that f is a compact mapping.

4 On weak-open compact images of metric spaces

We will prove that f is weak-open. For each $x \in X$, since every \mathcal{P}_i is an *sn*-cover for X, then there exists $\alpha_i \in \Lambda_i$ such that P_{α_i} is a sequential neighborhood of x in X. From $\{\mathcal{P}_i\}$ a point-star network for X, $\langle P_{\alpha_i} \rangle$ is a network of x in X. Put $\beta_x = (\alpha_i) \in \prod_{i \in \mathbb{N}} \Lambda_i$, then $\beta_x \in f^{-1}(x)$.

Let $\{U_{m\beta_x}\}$ be a decreasing neighborhood base of β_x in *M*, and put

$$\mathfrak{B}_{x} = \{ f(U_{m\beta_{x}}) : m \in \mathbb{N} \},$$

$$\mathfrak{B} = \bigcup \{ \mathfrak{B}_{x} : x \in X \},$$

(2.4)

then \mathfrak{B} satisfies (1), (2) in Definition 1.1. Suppose *G* is open in *X*. For each $x \in G$, from $\beta_x \in f^{-1}(x)$, $f^{-1}(G)$ is an open neighborhood of β_x in *M*. Thus $U_{m\beta_x} \subset f^{-1}(G)$ for some $m \in \mathbb{N}$, so $f(U_{m\beta_x}) \subset G$ and $f(U_{m\beta_x}) \in \mathfrak{B}_x$. On the other hand, suppose $G \subset X$ and for $x \in G$, there exists $B \in \mathfrak{B}_x$ such that $B \subset G$. Let $B = f(U_{m\beta_x})$ for some $m \in \mathbb{N}$, and let $\{x_n\}$ be a sequence converging to x in *X*. Since P_{α_i} is a sequential neighborhood of x in *X* for each $i \in \mathbb{N}$, then $\{x_n\}$ is eventually in P_{α_i} . For each $n \in \mathbb{N}$, if $x_n \in P_{\alpha_i}$, let $\alpha_{in} = \alpha_i$; if $x_n \notin P_{\alpha_i}$, pick $\alpha_{in} \in \Lambda_i$ such that $x_n \in P_{\alpha_i n}$. Thus there exists $n_i \in \mathbb{N}$ such that $\alpha_{in} = \alpha_i$ for all $n > n_i$. So $\{\alpha_{in}\}$ converges to α_i . For each $n \in \mathbb{N}$, put

$$\beta_n = (\alpha_{in}) \in \prod_{i \in \mathbb{N}} \Lambda_i, \tag{2.5}$$

then $f(\beta_n) = x_n$ and $\{\beta_n\}$ converges to β_x . Since $U_{m\beta_x}$ is an open neighborhood β_x in M, then $\{\beta_n\}$ is eventually in $U_{m\beta_x}$, so $\{x_n\}$ is eventually in G. Hence G is a sequential neighborhood of x. So G is sequential open in X. By X being a sequential space, G is open in X. This implies \mathfrak{B} is a weak base for X.

By the idea of \mathfrak{B} , f is weak-open.

We give examples illustrating Theorem 2.1 of this note.

Example 2.2. Let X be the Arens space S_2 (see [6, Example 1.8.6]). It is not difficult to see that the space is a weak-open compact image of a metric space. But X is not an open compact image of a metric space, because X is not developable. Thus the following holds.

A weak-open compact image of a metric space is not always an open compact image of a metric space.

Example 2.3. Let *Y* be the weak Cauchy space in [10, Example 2.14(3)]. By the construction, *Y* is a quotient compact image of a metric space. But *Y* is not Cauchy, *Y* is not a weak-open compact image of a metric space by Theorem 2.1. Thus the following holds:

A quotient compact image of a metric space is not always a weak-open compact image of a metric space.

Acknowledgments

This work is supported by the NSF of Hunan Province in China (no. 05JJ40103) and the NSF of Education Department of Hunan Province in China (no. 03C204).

References

- A. V. Arhangel'skii, *Mappings and spaces*, Russian Mathematical Surveys 21 (1966), no. 4, 115– 162.
- [2] S. P. Franklin, Spaces in which sequences suffice, Fundamenta Mathematicae 57 (1965), 107–115.
- [3] Y. Ikeda, C. Liu, and Y. Tanaka, *Quotient compact images of metric spaces, and related matters,* Topology and Its Applications **122** (2002), no. 1-2, 237–252.
- [4] Z. Li and S. Lin, On the weak-open images of metric spaces, Czechoslovak Mathematical Journal 54 (2004), no. 2, 393–400.
- [5] S. Lin, On the quotient compact images of metric spaces, Advances in Mathematics 21 (1992), no. 1, 93–96.
- [6] _____, Generalized Metric Spaces and Mappings, Chinese Scientific, Beijing, 1995.
- [7] _____, *Point-Countable Coverings and Sequence-Covering Mappings*, Chinese Distinguished Scholars Foundation Academic Publications, Chinese Scientific, Beijing, 2002.
- [8] S. Lin, Y. C. Zhou, and P. F. Yan, On sequence-covering π-mappings, Acta Mathematica Sinica 45 (2002), no. 6, 1157–1164.
- [9] F. Siwiec, On defining a space by a weak base, Pacific Journal of Mathematics 52 (1974), 233–245.
- [10] Y. Tanaka, Symmetric spaces, g-developable spaces and g-metrizable spaces, Mathematica Japonica 36 (1991), no. 1, 71–84.
- [11] Y. Tanaka and Z. Li, *Certain covering-maps and k-networks, and related matters*, Topology Proceedings **27** (2003), no. 1, 317–334.
- [12] S. Xia, *Characterizations of certain g-first countable spaces*, Advances in Mathematics **29** (2000), no. 1, 61–64.

Zhiyun Yin: Department of Information, Hunan Business College, Changsha, Hunan 410205, China *E-mail address*: yzy8846@163.com