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The nonlocal boundary value problems for differential operator equations of second or-
der with dependent coefficients are studied. The principal parts of the differential oper-
ators generated by these problems are non-selfadjoint. Several conditions for the maxi-
mal regularity and the Fredholmness in Banach-valued Lp-spaces of these problems are
given. By using these results, the maximal regularity of parabolic nonlocal initial bound-
ary value problems is shown. In applications, the nonlocal boundary value problems for
quasi elliptic partial differential equations, nonlocal initial boundary value problems for
parabolic equations, and their systems on cylindrical domain are studied.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction, notations, and background

Boundary value problems (BVPs) for differential operator equations (DOE) in H-val-
ued (Hilbert space-valued) function spaces have been studied extensively by many re-
searchers (see [4–7, 12, 15, 16, 18, 20, 22, 28–33, 37–39] and the references therein). In
these works Hilbert-valued function spaces essentially were considered. The main objec-
tive of the present paper is to discuss the nonlocal BVP for DOE with variable coefficients
in Banach-valued function spaces. In this work, (1) at first, nonhomogenous BVP for or-
dinary DOE is considered; (2) partial DOE with dependent coefficients in principal part
is considered; (3) boundary conditions are, generally, nonlocal; (4) operators contain-
ing equations and boundary conditions are, in general, unbounded; (5) nonlocal initial
boundary value problems (IBVP) for parabolic DOE are considered. The maximal reg-
ularity, positivity and, Fredholmness of these problems in Banach-valued Lp-spaces are
proved. These results are also applied to the nonlocal BVP for quasi elliptic partial dif-
ferential equations, infinite systems of nonlocal BVP for elliptic equations with variable
coefficients, and INBVP for parabolic equations on cylindrical domains.

Let E be a Banach space. Lp(Ω;E) denotes a space all of strongly measurable E-valued
functions that are defined on a domain Ω⊂ Rn with the norm

‖ f ‖Lp = ‖ f ‖Lp(Ω;E) =
(∫ ∥∥ f (x)

∥∥p
Edx

)1/p

, 1≤ p <∞. (1.1)
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2 Maximal regular problems

By Lp,q(Ω) and Wl
p,q(Ω), we will denote a scalar-valued (p,q)-integrable function

space and Sobolev space with mixed norms, respectively [8]. Let Bs
pq denote the Besov

space (see, e.g., [35, Section 2.3]).
A Banach space E is said to be ζ-convex space (see [9–11, 15, 23]) if there exists on

E× E a symmetric real-valued function ζ(u,v) which is convex with respect to each of
the variables, and satisfies the conditions

ζ(0,0) > 0, ζ(u,v)≤ ∥∥u+ v
∥∥, for ‖u‖ = ‖v‖ = 1. (1.2)

In literature the ζ-convex Banach spaces E are often called UMD-spaces and written
as E ∈ UMD. It is shown in [10] that the Hilbert operator

(H f )(x)= lim
ε→0

∫
|x−y|>ε

f (y)
x− y

dy (1.3)

is bounded in Lp(R;E), p ∈ (1,∞), for those and only those spaces E which possess the
property of UMD spaces. UMD spaces include, for example, Lp, lp spaces and Lorentz
spaces Lpq, p,q ∈ (1,∞).

Let C be a set of complex numbers. Sϕ denotes an open sector with vertex 0, opening
angle 2ϕ, which is symmetric with respect to the positive half-axis R+, that is,

Kϕ =
{
ξ; ξ ∈ C, |argξ −π| ≤ π−ϕ

}
, 0 < ϕ≤ π. (1.4)

Let

Sϕ =
{
ξ; ξ ∈ C, |argξ| ≤ π−ϕ

}
, 0 < ϕ≤ π. (1.5)

A linear operator A is said to be positive in a Banach space E, with bound M if D(A) is
dense on E and

∥∥(A+ ξI)−1
∥∥
L(E) ≤M

(
1 + |ξ|)−1

(1.6)

with ξ ∈ Kϕ, ϕ ∈ (0,π], where M is a positive constant and I an identity operator in
E, where L(E) is a space of bounded linear operators acting in E. Sometimes instead of
A+ ξI , will be written A+ ξ and denoted by Aξ . The operator A(t) is said to be positive
in a Banach space E uniformly with respect to t, if D(A(t)) is independent of t, D(A(t))
is dense in E, and

∥∥(A(t) + λI)−1
∥∥≤ M

1 + |λ| (1.7)

for all λ∈ K(ϕ) , ϕ∈ (0,π].
It is known [35, Section 1.15.1] that there exist fractional powers Aθ of the positive

operator A. Let E(Aθ) denote the space D(Aθ) with graphical norm defined as

‖u‖E(Aθ) =
(‖u‖p +

∥∥Aθu
∥∥p)1/p

, 1≤ p <∞, −∞ < θ <∞. (1.8)

Let E1 and E2 be two Banach spaces. By (E1,E2)θ,p, 0 < θ < 1,1 ≤ p ≤∞, will be de-
noted an interpolation space for {E1,E2} by the K-method [35, Section 1.3.1]. By C(Ω;E)
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andC(m)(Ω;E) will be denoted spaces of E-valued bounded continuous andm-times con-
tinuously differentiable function on Ω, respectively. Let S(Rn;E) denote a Schwarz class,
that is, the space of all E-valued rapidly decreasing smooth functions ϕ on Rn. The func-
tion Ψ ∈ C(Rn;L(E1,E2)) is called a multiplier from Lp(Rn;E1) to Lq(Rn;E2) if the map
u→ Ku= F−1Ψ(ξ)Fu, u∈ S(Rn;E1), is well defined and extends to a bounded linear op-
erator

K : Lp
(
Rn;E1

)−→ Lq
(
Rn;E2

)
. (1.9)

We denote the set of all multipliers from Lp(Rn;E1) to Lq(Rn;E2) by M
q
p(E1,E2). For E1 =

E2 = E we denote M
q
p(E1,E2) by M

q
p(E). Let

Hk =
{
Ψh ∈M

q
p
(
E1,E2

)
, h= (h1,h2, . . . ,hL

)∈Q
}

(1.10)

be a collection of multipliers in M
q
p(E1,E2). We say that Φh is a uniformly bounded mul-

tiplier with respect to h if there exists a constant C > 0, independent on h ∈ B(h), such
that

∥∥F−1ΨhFu
∥∥
Lq(Rn,E2) ≤ C‖u‖Lp(Rn,E1) (1.11)

for all h∈ K and u∈ S(Rn;E1).
The exposition of the theory of Lp-multipliers of the Fourier transformation, and

some related references, can be found in [35, Sections 2.2.1–2.2.4]. On the other hand, in
vector-valued function spaces, Fourier multipliers have been studied by [11–13, 18, 26,
27, 36].

A set K ⊂ B(E1,E2) is called R-bounded (see, e.g., [9, 11, 12, 18, 36]) if there is a
constant C such that for all T1,T2, . . . ,Tm ∈ K and u1,u2, . . . ,um ∈ E1, m∈N,

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tjuj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (1.12)

where {r j} is a sequence of independent symmetric {−1,1}-valued random variables on
{0,1} and N denotes the set of natural numbers.

A set K(h) ⊂ B(E1,E2) depending on parameters h = (h1,h2, . . . ,hL) ∈ B(h) ∈ RL is
called uniformly R-bounded with respect to h if there is a constant C such that for all
T1(h),T2(h), . . . ,Tm(h)∈ K and u1,u2, . . . ,um ∈ E1, m∈N ,

∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)Tj(h)uj

∥∥∥∥∥
E2

dy ≤ C
∫ 1

0

∥∥∥∥∥
m∑
j=1

r j(y)uj

∥∥∥∥∥
E1

dy, (1.13)

where a positive constant C is independent of the parameter h.
Let

Vn =
{
ξ : ξ = (ξ1,ξ2, . . . ,ξn

)∈Rn, ξj �= 0
}

,

Un =
{
β = (β1,β2, . . . ,βn

)
, |β| ≤ n

}
, ξβ = ξ

β1

1 ,ξ
β2

2 , . . . ,ξ
βn
n .

(1.14)
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Definition 1.1. A Banach space E is said to be the space satisfying a multiplier condition
with respect to p ∈ (1,∞) when for Ψ∈ C(n)(Rn;B(E)), if the sets

Ψ(ξ) :
{
ξβD

β
ξΨ(ξ) : ξ ∈Vn, β ∈Un

}
(1.15)

are R-bounded, then Ψ∈M
p
p (E).

A Banach space E has a property (α) (see, e.g., [18]) if there exists a constant α such
that

∥∥∥∥∥
N∑

i, j=1

αi jεiε
�

jxi j

∥∥∥∥∥
L2(Ω×Ω�;E)

dy ≤ α

∥∥∥∥∥
N∑

i, j=1

εiε
�

jxi j

∥∥∥∥∥
L2(Ω×Ω�;E)

(1.16)

for all N ∈N, xi, j ∈ E, αi j ∈ {0,1}, i, j = 1,2, . . . ,N , and all choices of independent, sym-
metric, {-1,1}-valued random variables ε1,ε2, . . . ,εN ,ε�

1,ε�

2, . . . ,ε�

N on probability spaces Ω,
Ω�. For example the spaces Lp(Ω), 1≤ p <∞, has the property (α).

Remark 1.2. If E is UMD space with property (α) then these spaces satisfy the multiplier
condition with respect to p ∈ (1,∞) (see [18]).

It is well known (see, e.g., [26]) that any Hilbert space satisfies the multiplier condition.
There are, however, Banach spaces which are not Hilbert spaces but satisfy the multiplier
condition, for example, UMD spaces (see [11, 12, 18, 36]).

Definition 1.3. A positive operator A is said to beR-positive in the Banach space E if there
exists ϕ∈ (0,π] such that the set

LA =
{(

1 + |ξ|)(A+ ξI)−1 : ξ ∈ Kϕ
}

(1.17)

is R-bounded.
Note that in Hilbert spaces every norm bounded set is R-bounded. Therefore, in

Hilbert spaces all positive operators are R-positive. If A is a generator of a contraction
semigroup on Lq, 1≤ q ≤∞ [23], A has bounded imaginary powers with ‖(−Ait)‖B(E) ≤
Ceν|t|,ν < π/2 [14], or if A is a generator of a semigroup with Gaussian bound [19] in E ∈
UMD, then this operator is R-positive.

Let Ω ∈ Rn and l = (l1, l2, . . . , ln). Let E0 and E be two Banach spaces and E0 contin-
uously and densely embedded into E. Let us consider a Banach-valued function space
Wl

p(Ω;E0,E) that consists of functions u∈ Lp(Ω;E0) such that has the generalized deriva-

tives Dlk
k u= (∂lk /∂xlkk ),u∈ Lp(Ω;E), with norm

‖u‖Wl
p(Ω;E0,E) = ‖u‖Lp(Ω;E0) +

n∑
k=1

∥∥Dlk
k u
∥∥
Lp(Ω;E) <∞. (1.18)

For E0 = E the space Wl
p(Ω;E0,E) will be denoted by Wl

p(Ω;E). For Ω = (a,b) ∈ R
and l1 = l2 = ··· = ln =m the space Wl

p(Ω;E0,E) will be denoted by Wm
p (a,b;E0,E).

By σ∞(E) will be denoted a space of all compact operators in E.
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2. Background materials

Embedding theorems of vector-valued Sobolev spaces played important role in the
present investigation. Embedding theorems in Banach-valued function spaces have been
studied, for example, in [6, 25, 29, 31, 33]. This section concentrates on anisotropic
Banach-valued Sobolev spaces Wl

p(Ω;E0,E) associated with Banach spaces E0, E. Several
conditions are found that ensure the continuity and compactness of embedding opera-
tors that are optimal regular in these spaces in terms of interpolations of E0 and E. In
particular, the most regular class of interpolation spaces Eα between E0, E, depending on
α and order of spaces are found that mixed derivatives Dα are bounded and compact from
this space to Eα-valued Lp spaces. This results are generalized and improve the result of
Lions and Peetre [25] for Banach-valued spaces and the embedding theorems for scalar
Sobolev spaces [8, Section 9]. Multiplier theorems in the operator-valued Lp spaces, are
important tools in the theory of embedding of function spaces and PDE. Since the prob-
lems under consideration established the uniformly parameterized estimates, so we have
to generalize multiplier theorems [18] for the case of Lp multipliers depending on pa-
rameters. So, firstly by using a similar technique as [18] we show the following multiplier
theorem.

Theorem 2.1. Let E be a UMD space with property (α) and let Ψh ∈ Cn(Rn/{0};B(E)) and
there is some C > 0 such that

sup
x∈Rn/{0},|α|≤n

∥∥DαΨh(x)
∥∥
B(E) ≤ C (2.1)

for all h= (h1,h2, . . . ,hL)∈ B(h). If

R
{
ξβD

β
ξΨh(ξ) : ξ ∈Vn, β ∈Un

}= Kβ <∞ (2.2)

uniformly with respect to h, then Ψh(ξ) is a uniform collection of multipliers in Lp(Rn;E).
If n= 1, then the result remains true for E without having the property (α).

Note 2.2. It is clear that Theorem 2.1 is valid for the case of multipliers without parameter
and without assumption of the uniformly boundedness condition.

By virtue of [33] we obtain the following.

Theorem 2.3. Suppose the following conditions are satisfied:
(1) E is a Banach space that satisfies the multiplier condition with respect to p and A is

an R-positive operator in E for ϕ with 0 < ϕ≤ π;
(2) α = (α1,α2, . . . ,αn), l = (l1, l2, . . . , ln) are n-tuples of nonnegative integer numbers

such that

κ = |α : l| =
n∑

k=1

αk
lk
≤ 1, 1 < p <∞, 0 < μ≤ 1−κ; (2.3)

(3) Ω∈Rn is a region such that there exists a bounded linear extension operator acting
from Lp(Ω;E) to Lp(Rn;E) and also from Wl

p(Ω;E(A),E) to Wl
p(Rn;E(A),E).
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Then an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lp
(
Ω;E

(
A1−κ−μ)) (2.4)

is continuous and there exists a positive constant Cμ such that

∥∥Dαu
∥∥
Lp(Ω;E(A1−κ−μ)) ≤ Cμ

[
hμ‖u‖Wl

p(Ω;E(A),E) +h−(1−μ)‖u‖Lp(Ω;E)
]

(2.5)

for all u∈Wl
p(Ω;E(A),E) and h with 0 < h < h0 <∞.

Theorem 2.4. Suppose all conditions of Theorem 2.3 are satisfied and suppose Ω is a bound-
ed region in Rn, A−1 ∈ σ∞(E). Then for 0 < μ < 1−κ, an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lp
(
Ω;E

(
A1−κ−μ)) (2.6)

is compact.

Indeed, putting h = ‖u‖Lp(Ω;E)/‖u‖Wl
p(Ω;E(A),E) in (1.12), we obtain a multiplicative

inequality

∥∥Dαu
∥∥
Lp(Ω;E(A1−κ−μ)) ≤ Cμ‖u‖μLp(Ω;E)‖u‖1−μ

Wl
p(Ω;E(A),E)

. (2.7)

By virtue of [29] the embedding

Wl
p

(
Ω;E(A),E

)⊂ Lp(Ω;E) (2.8)

is compact. Then from the estimate (2.7) we obtain assertion of Theorem 2.4.
By a similar manner as Theorem 2.3 we have the following.

Theorem 2.5. Suppose all conditions of Theorem 2.3 are satisfied.
Then for 0 < μ < 1−κ an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lp

(
Ω;
(
E(A),E

)
κ,p

)
(2.9)

is continuous and there exists a positive constant Cμ such that
∥∥Dαu

∥∥
Lp(Ω;(E(A),E)κ+μ,p)

≤ Cμ

[
hμ
(
‖Au‖Lp(Ω;E) +

n∑
k=1

∥∥Dlk
k u
∥∥
Lp(Ω;E)

)
+h−(1−μ)‖u‖Lp(Ω;E)

]
(2.10)

for all u∈Wl
p(Ω;E(A),E) and h with 0 < h < h0 <∞ .

By a similar manner as Theorem 2.4 we have the following.

Theorem 2.6. Suppose all conditions of Theorem 2.3 are satisfied and suppose Ω is a
bounded region in Rn,A−1 ∈ σ∞(E). Then for 0 < μ < 1−κ an embedding

DαWl
p

(
Ω;E(A),E

)⊂ Lp

(
Ω;
(
E(A),E

)
κ+μ,p

)
(2.11)

is compact.



Veli B. Shakhmurov 7

Theorem 2.7 [32]. Let E be a Banach space and A a positive operator in E. Let m be a
positive integer, 1≤ p <∞, and 1/2p < α < m+ 1/2p. Let 0≤ γ < 1. Then for λ∈ S(ϕ) the
operator −A1/2

λ generates a semigroup e−A
1/2
λ x which is holomorphic for x > 0 and strongly

continuous for x ≥ 0. Moreover, there exists a constant C > 0 such that for every u ∈ (E,
E(Am))α/m−(1+γ)/2pm,p and λ∈ S(ϕ),

∫∞
0

∥∥Aα
λe
−xA1/2

λ u
∥∥p
Ex

γdx ≤ C
(
‖u‖p(E,E(Am))α/m−(1+γ)/2mp,p

+ |λ|pα−(1+γ)/2‖u‖pE
)
. (2.12)

By using a similar techniques as [25] (or [35, Section 1.8.1]) we obtain the following.

Theorem 2.8. Let the following conditions be satisfied:
(1) l and s are integer numbers, and 0≤ s≤ l− 1;
(2) θ = (ps+ 1)/pl, x0 ∈ [0,b], 0 < h≤ h0, 0 < μ≤ 1− θ, 1 < p <∞;

Then, for u∈Wl
p(0,b;E0,E), the following inequality holds:

∥∥u(s)(x0
)∥∥

(E0,E)θ+μ,p
≤ hμ‖u‖Wl

p(0,b;E0,E) +h−(1−μ)‖u‖Lp (0,b;E). (2.13)

3. Statement of problems

Consider a nonlocal BVP for elliptic DOE

n∑
k=1

ak(x)D2
ku(x) +Aλ(x)u(x) +

n∑
k=1

Ak(x)
∂u(x)
∂xk

= f (x), x ∈G⊂Rn,

Lk ju=
[
αk ju

(mkj)
(
Gk0

)
+βk ju

(mkj )
(
Gkb

)]= 0,

j = 1,2, k = 1,2, . . . ,n,

(3.1)

and nonlocal IBVP parabolic problem

∂u(t,x)
∂t

+
n∑

k=1

ak(x)D2
ku(t,x) +Aλ(x)u(t,x) +

n∑
k=1

Ak(x)
∂u(t,x)
∂xk

= f (t,x),

Lk ju=
[
αk ju

(mkj)
(
t,Gk0

)
+βk ju

(mkj )
(
t,Gkb

)]= 0, u(0,x)= 0,

j = 1,2, k = 1,2, . . . ,n, t ∈R+, x ∈G⊂Rn,

(3.2)

where

G= {x = (x1,x2, . . . ,xn
)
,0 < xk < bk,

}
, G+ =R+×G,Aλ(x)=A(x) + λ,

Gk0 =
(
x1,x2, . . . ,xk−1,0,xk+1, . . . ,xn

)
, Gkb =

(
x1,x2, . . . ,xk−1,bk,xk+1, . . . ,xn

)
,

mk ∈ {0,1}, D2
k =

∂2

∂x2
k

, k = 1,2, . . . ,n;

(3.3)

αjk, βjk, δjki are complex numbers, ak is real-valued function on G, and A(x), Ak(x) for
x, y ∈G are generally speaking, unbounded operators in E.
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We say that the elliptic problem (3.1) is a maximal Lp-regular, if for all f ∈ Lp(G;E)
there exists a unique solution u ∈W2

p(G;E(A),E) of the problem (3.1) satisfying this
problem almost everywhere and there exists a positive constant C independent of f , such
that has an estimate

n∑
k=1

∥∥D2
ku
∥∥
Lp(G;E) +‖Au‖Lp(G;E) ≤ C‖ f ‖Lp(G;E). (3.4)

We say that the parabolic problem (3.2) is a maximal Lp-regular, if for all f ∈ Lp(G+;E)
there exists a unique solution u satisfying the (3.2) problem almost everywhere and there
exists a positive constant C independent of f , such that has an estimate

∥∥∥∥∂u(t,x)
∂t

∥∥∥∥
Lp(G+;E)

+‖Au‖Lp(G+;E) ≤ C‖ f ‖Lp(G+;E). (3.5)

4. Ordinary DOE with constant coefficients

Let us first consider a nonlocal and nonhomogenous boundary value problem for ordi-
nary DOE

(L+ λ)u= au��(x) +Aλu(x)= f (x), x ∈ (0,b),

Lku= αku
(mk)(0) +βku

(mk)(b) +
Nk∑
j=1

δk ju
(mk)(xk j)= fk, k = 1,2,

(4.1)

where fk ∈ Ek = (E(A),E)θk ,p, θk =mk/2 + 1/2p, p ∈ (1,∞), mk ∈ {0,1}; a, αk, βk, δk j ,
are complex numbers and xk j ∈ (0,b); A is a possible unbounded operator in E. Let ωj ,
j = 1,2, be roots of the equation

aω2 + 1= 0. (4.2)

Condition 4.1. Let the following conditions be satisfied:
(1) A is a positive operator in a Banach space E for ϕ∈ (0,π/2);
(2) a �= b2 for all b ∈R;
(3) η = (−1)m1α1β2− (−1)m2α2β1 �= 0.

Consider the problem

(L+ λ)u= au��(x) + (A+ λ)u(x)= 0, (4.3)

Lku=
[
αku

(mk)(0) +βku
(mk)(b) +

Nk∑
j=1

δk ju
(mk)(xk j)

]
= fk, k = 1,2. (4.4)

Lemma 4.2. Let Condition 4.1 be satisfied. Then the problem (4.3)–(4.4) for fk ∈ Ek, λ ∈
S(ϕ), and sufficiently large |λ| has a unique solution u that belongs to W2

p(0,b;E(A),E) and
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the coercive uniform estimate

2∑
i=0

|λ|1−i/2∥∥u(i)
∥∥
Lp

+‖Au‖Lp ≤M
2∑

k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥) (4.5)

holds with respect to parameter λ .

Proof. From conditions (1.12) and (1.13), by virtue of [39, Lemma 5.3.2/1], for λ∈ S(ϕ0),
there exists the holomorphic for x > 0 and strongly continuous for x ≥ 0 semigroups
exω1A

1/2
λ , e−(b−x)ω2A

1/2
λ , and the arbitrary solution of (4.3), belonging to space W2

p(0,b;E(A),
E), has a form

u(x)= exω1A
1/2
λ g1 + e−(b−x)ω2A

1/2
λ g2, (4.6)

where

Aλ = A+ λI ,gk ∈
(
E(A),E

)
1/2p,p, k = 1,2. (4.7)

By taking into account boundary conditions (4.4) we obtain algebraic linear equations
with respect to g1, g2;

(−1)mk

[
αk +βke

−bω1A
1/2
λ +

Nk∑
j=1

δk je
−xk jω1A

1/2
λ

]
Amk/2
λ g1

+

[
αke

−bω2A
1/2
λ +βk +

Nk∑
j=1

δk je
−(b−xk j)ω2A

1/2
λ

]
Amk/2
λ g2 = fk, k = 1,2.

(4.8)

A system (4.8) is matrix-operator equations. Let D(λ) be a main operator determinant
of (4.8). By virtue of the properties of positive operators and holomorphic semigroups
[35, Section 1.14] it is clear to see that ‖D(λ)‖B(E2) → 0 for |λ| →∞. Then by conditions
η �= 0 and λ ∈ S(ϕ), λ→∞, the operator-matrix Q(λ) = [θ + D(λ)]−1 is invertible and
bounded uniformly with respect to the parameters λ. Consequently, the system (4.8) has a
unique solution for λ∈ S(ϕ) and sufficiently large |λ|. From the expressions of operators
D(λ) and Q(λ) it follows that these operators are bounded, and operators containing
the expression D(λ) are commuting with any powers of operators A1/2

λ . Consequently,
substituting the values of g1, g2 into (4.8), we obtain a representation of the solution of
the problem (4.3)-(4.4):

u(x)=
∑

B1 j(λ)U1λ
(
xj
)
f1 +B2 j(λ)U2λ

(
xj
)
f2, (4.9)

where Bk j(λ) are bounded operators in E uniformly with respect to λ and

U1λ(x)= exω1A
1/2
λ , U2λ(x)= e−(b−x)ω1A

1/2
λ , xj ∈ [0,b]. (4.10)

By virtue of Theorem 2.7, the properties of holomorphic semigroups, in view of uni-
formly boundedness of operator Q(λ), and the representation of the solution (4.9), we
obtain the estimate (4.5). �
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Theorem 4.3. Let Condition 4.1 be satisfied for ϕ∈ (0,π/3). Let E be a Banach space sat-
isfying the multiplier condition with respect to p ∈ (1,∞) and A an R-positive operator in
E. Then an operator u→ D(λ)u = {L(λ)u,L1u,L2u} for λ ∈ S(ϕ) and sufficiently large |λ|
is an isomorphism from W2

p(0,b;E(A),E) onto Lp(0,b;E) +E1 +E2. Moreover, the coercive
uniform estimate

2∑
j=0

|λ|1− j/2
∥∥u( j)

∥∥
Lp

+‖Au‖Lp ≤ C

[
‖ f ‖Lp +

2∑
k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
)]

(4.11)

holds with respect to parameter λ.

Proof. We have proved the uniqueness of the solution of the problem (4.1) in Lemma 4.2.
Let

f̄ (x)=
⎧⎪⎨
⎪⎩
f (x) if x ∈ [0,b]

0 if x /∈ [0,b].
(4.12)

We now show that a solution of the problem (4.1) which belongs to space W2
p(0,b;

E(A)E) can be represented as a sum υ(x) = u1(x) + u2(x), where u1 is a restriction on
[0,b] of a solution u of an equation

L(λ)u= f̄ (x), x ∈R= (−∞,∞), (4.13)

and u2 is a solution of a problem

L(λ)u= 0, Lku= fk −Lku1. (4.14)

The solution of (4.13) is given by formula

u(x)= F−1L−1(λ,ξ)F f̄ = 1
2π

∫∞
−∞

eiξxL−1(λ,ξ)
(
F f̄
)
(ξ)dξ, (4.15)

where F f̄ is a Fourier transform of a function f̄ , and

L(λ,ξ)= (− aξ2 + λ
)
I +A. (4.16)

Due to R-positivity of operator A and by virtue of Kahane’s contraction principle, we
obtain

R
({
ξβD

β
ξ AL

−1(λ,ξ) : β ∈ {0,1}, ξ �= 0
})≤M,

R
({
ξβD

β
ξ |λ|1− j/2ξ jL−1(λ,ξ) : β ∈ {0,1}, ξ �= 0, j = 0,1,2

})≤Mβ.
(4.17)
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Then in view of Definition 1.1 it follows from (4.17) that the operator-valued func-
tions AL−1(λ,ξ), |λ|1− j/2ξ jL−1(λ,ξ), j = 0,1,2, are uniformly bounded Fourier multipli-
ers in Lp(R;E). Therefore, we obtain that the problem (4.13) has a solution u0 ∈W2

p(R;
E(A),E) and

2∑
j=0

|λ|1− j/2
∥∥u( j)

0

∥∥
Lp(R;E) +

∥∥Au0
∥∥
Lp(R;E) ≤ C‖ f̄ ‖Lp(R;E). (4.18)

So, we obtain that u1 ∈W2
p(0,b;E(A),E) is the solution of (4.13) on (0,b). By virtue of

[25] we get that

u(mk)(·)∈ (E(A);E
)
θk ,p, k = 1,2. (4.19)

Hence, Lku1 ∈ Ek. Thus by virtue of Theorem 4.3 the problem (4.14) has a unique solu-
tion u2(x) that belongs to space W2

p(0,b;E(A),E), and for sufficiently large |λ| we have

2∑
j=0

|λ|1− j/2
∥∥u( j)

2

∥∥
Lp(R;E) +

∥∥Au2
∥∥
Lp(R;E)

≤ C
2∑

k=1

[∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E + |λ|1−θk∥∥Lku1
∥∥
E

+
∥∥u(mk)

1

∥∥
C([0,b];Ek) +

∣∣λ1−θk∣∣‖u‖C([0,b];E)

]
.

(4.20)

From (4.18) for λ∈ S(ϕ) we obtain

2∑
j=0

|λ|1− j/2
∥∥u( j)

1

∥∥
Lp

+
∥∥Au1

∥∥
Lp
≤ C‖ f ‖Lp . (4.21)

Therefore, by virtue of [25] and by the estimate (4.21) for x0 ∈ [0,b], we have

∥∥u(mk)
1 (x0)

∥∥
Ek
≤ C

∥∥u1
∥∥
W2

pt(0,b;E(A),E) ≤ C‖ f ‖Lp(0,b;E). (4.22)

By virtue of Theorem 2.8 for λ= μ2, u∈W2
p(0,b;E), we have

|μ|2−mk
∥∥u(mk)(x0

)∥∥
E ≤ C

[
|μ|1/p‖u‖W2

p(0,b;E) + |μ|2+1/p‖u‖Lp

]
. (4.23)

Hence from estimates (4.20), (4.22), and (4.23) we obtain

2∑
j=0

|λ|1− j/2
∥∥u( j)

2

∥∥
Lp

+
∥∥Au2

∥∥
Lp
≤ C

(
‖ f ‖Lp +

2∑
k=1

(∥∥ fk∥∥Ek + |λ|1−θk∥∥ fk∥∥E
))

. (4.24)

Then estimates (4.21) and (4.24) imply (4.11).
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Consider a BVP

Lu= au��(x) +Au(x)= f (x), x ∈ (0,b), (4.25)

Lku= αku
(mk)(0) +βku

(mk)(b) +
Nk∑
j=1

δk ju
(mk)(xk j)= 0, k = 1,2. (4.26)

Let B denote a differential operator in Lp(0,b;E) generating by BVP (4.25)–(4.26), that
is,

D(B)=W2
p

(
0,b;E(A),E,Lk

)
,

Bu= au(2)(x) +Au(x), x ∈ (0,b).
(4.27)

�

Theorem 4.4. Let all conditions of Theorem 4.3 hold for ϕ∈ (0,π/3). Then the operator B
is positive in Lp(0,b;E).

Proof. From (1.12)-(1.13), part of Condition 4.1, we have

(L+ λ)= a
(
d

dt
−ω1Aλ

)(
d

dt
−ω2Aλ

)
. (4.28)

By using the above representation and by using a similar technique as [39, Lemma
5.3.2/1] we obtain that ωkAλ, k = 1,2, for λ∈ S(ϕ) are generators of the bounded analytic
C0-semigroups U1λ(x) = exω1A

1/2
λ , U2λ(x) = e−(b−x)ω2A

1/2
λ in E and a solution of (4.11) is

represented as

u(x)=U1λ(x)g1 +U2λ(x)g2 +
∫ b

0
U0λ(x− y) f (y)dy, gk ∈ E, (4.29)

where

U0λ(x− y)=
⎧⎨
⎩
−a−1A−1

λ

(
ω2−ω1

)−1
U1λ(x− y), x ≥ y,

a−1A−1
λ

(
ω2−ω1

)−1
U2λ(x− y), x ≤ y.

(4.30)

By taking into account boundary conditions (4.26) we obtain from (4.29) a represen-
tation of the solution of problem (4.25)–(4.26):

u(x)=
∫ b

0
Gλ(x, y) f (y)dy,

Gλ(x, y)=
∑

B1 j(λ)U1λ(y) +B2 j(λ)U2λ(y) +U0λ(x− y),

(4.31)

where Bk j(λ) are bounded operators in E uniformly with respect to λ. Due to holomor-
phic semigroups of Ukλ, we have (see, e.g., [35, Section 1.14])

∥∥U1λ(x)
∥∥≤ C1e

−ν1x,
∥∥U2λ(x)

∥∥≤ C2e
−ν2(b−x),

∥∥U0λ(x− y)
∥∥≤ C0

e−ν0|x−y|

|x− y| , Ci,νi ∈R+, i= 0,1,2.
(4.32)
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So in view of the representation (4.31), by virtue of the above estimate, by using [12,
Lemma 7.1] and a similar technique as [12, Theorem 7.4], we obtain the positivity of
operator B. �

Remark 4.5. If a is a real negative number then (1.13), part of Condition 4.1, is satisfied
for 0 < ϕ≤ π and Theorems 4.3, 4.4 are valid for 0 < ϕ≤ π.

5. Partial DOE with constant coefficients

n∑
k=1

akD
2
ku(x) +Aλu(x)= f (x), x ∈G, (5.1)

Lk ju=
[
αk ju

(mkj )
(
Gk0

)
+βk ju

(mkj )
(
Gkb

)]

+
Nk j∑
i=1

δk jiu
(mkj)

(
Gki
)= 0, j = 1,2, k = 1,2, . . . ,n,

(5.2)

αk, βk, δk j are complex numbers, ak are complex numbers, and A is, generally speaking,
an unbounded operator in E and

Gki =
(
x1,x2, . . . ,xk−1,xki,xk+1, . . . ,xn

)
, xki ∈

(
0,bk

)
. (5.3)

Condition 5.1. Let the following conditions be satisfied:
(1) E is a Banach space satisfying multiplier condition with respect to p ∈ (1,∞);
(2) ak(x) �= b2

k, where bk ∈R;
(3) ηk = (−1)m1αk1βk2− (−1)m2αk2βk1 �= 0, k = 1,2, . . . ,n.

Theorem 5.2. Let Condition 5.1 be satisfied and A is an R-positive operator in E. Then
(a) the problem (5.1)-(5.2) for f ∈ Lp(G;E), λ∈ S(ϕ), and for sufficiently large |λ| has

a unique solution that belongs to the space W2
p(G;E(A),E) and the coercive uniform

estimate

n∑
k=1

2∑
i=0

(
1 + |λ|)1−i/2∥∥Di

ku
∥∥
Lp(G;E) +‖Au‖Lp(G;E) ≤M‖ f ‖Lp(G;E) (5.4)

holds with respect to parameter λ;
(b) the operator L0, generated by BVP (5.1)-(5.2), is positive in Lp(G;E).

Proof. Let us first consider a nonlocal boundary value problem for ordinary DOE

Lu= a1u
(2)(x1

)
+Aλu

(
x1
)= f

(
x1
)
, x1 ∈

(
0,b1

)
,

L1 ju=
[
α1 ju

(m1 j )(0) +β1 ju
(m1 j )

(
b1
)]

+
N1 j∑
i=1

δ1 jiu
(m1 j )

(
x1i
)= 0,

x1i ∈
(
0,b1

)
, j = 1,2,

(5.5)

in Lp(0,b1;E), where A is a positive operator in E and α1 j , β1 j , δ1 ji are complex numbers.
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By virtue of Theorem 4.3 we obtain that for all f ∈ Lp(0,b1;E), λ ∈ S(ϕ), and suf-
ficiently large |λ| the problem (5.5) has a unique solution that belongs to the space
W2

p(0,b1;E(A),E), and coercive uniformity is defined by

2∑
i=0

(
1 + |λ|)1−i/2∥∥u(i)

∥∥
p +‖Au‖p ≤M‖ f ‖p (5.6)

with respect to λ; the estimate holds for the solution of the problem (5.5). Consider in
Lp(G2;E) a BVP

2∑
k=1

akD
2
ku(x) + (A+ λ)u(x)= f (x),

Lk ju=
[
αk ju

(mkj )
(
Gk0

)
+βk ju

(mkj )
(
Gkb

)]
+

Nk j∑
i=1

δk jiu
(mkj )

(
Gki
)= 0, j,k = 1,2,

(5.7)

where G2 = (0,b1)× (0,b2). It is clear that

Lp
(
G2;E

)= Lp
(
0,b2;Lp

(
0,b1;E

))
. (5.8)

The problem (5.7) can be expressed in the following view:

D2
2u
(
x2
)

+Bu
(
x2
)

+ λu
(
x2
)= f

(
x2
)
, L2 ju= 0, (5.9)

where B is a differential operator in Lp(0,b1;E) generated by problem (5.5). It is known
(see, e.g., [10, 11]) due to E ∈UMD, p ∈ (1,∞), that the space Lp(0,b1;E) is UMD space.
Moreover, by virtue of Theorem 4.4 operator B is R-positive in Lp(0,b1;E). Then again
applying Theorem 4.3 we obtain that for all f ∈ Lp(G2;E), λ∈ S(ϕ), and sufficiently large
|λ| the problem (5.9), that is, the problem (5.7), has a unique solution that belongs to the
space W2

p(G2;E(A),E), and the coercive uniform estimate

2∑
i=0

(
1 + |λ|)1−(i/2)∥∥Di

2(B+ λ)−1u
∥∥
Lp(G2;E) +‖Bu‖Lp(G2;E) ≤M‖ f ‖Lp(G2;E) (5.10)

holds with respect to λ. Moreover, the estimate (5.6) implies

‖Bu‖Lp(0,b1;E) ∼ ‖u‖W2
p(0,b1,E(A),E). (5.11)

Then estimates (5.10) and (5.11) imply the assertion of Theorem 4.3 for n = 2. By ex-
pending this process we obtain the assertion (a). The assertion (b) is obtained by using
Theorem 4.4. �

5.1. Partial DOE with variable coefficients. Consider the boundary value problem (3.1).

Theorem 5.3. Let Condition 5.1 be satisfied for all x ∈G and
(1) A(x) is an R positive in E uniformly with respect to x and A(G0k)= A(Gbk), ak(x)

are continuous functions on Ḡ such that ak(Gj0)= ak(Gjb), k, j = 1,2, . . . ,n;
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(2) A(x)A−1(x0)∈ C(G;B(E)) and for any ε > 0, for a.e. x ∈G, and for u∈(E(A),E)1/2,∞ ,

∥∥Ak(x)u
∥∥≤ ε‖u‖(E(A),E)1/2,∞ +C(ε)‖u‖. (5.12)

Then
(a) the problem (3.1) for f ∈ Lp(G;E), λ ∈ S(ϕ), and for sufficiently large |λ| has a

unique solution that belongs to the space W2
p(G;E(A),E). And the coercive uniform

estimate

n∑
k=1

2∑
i=0

(
1 + |λ|)1−i/2∥∥Di

ku
∥∥
Lp(G;E) +‖Au‖Lp(G;E) ≤M‖ f ‖Lp(G;E) (5.13)

holds with respect to parameter λ;
(b) the operator O generating by BVP (3.1) is positive in Lp(G;E).

Proof. Let G1,G2, . . . ,GN be regions in R and ϕ1,ϕ2, . . . ,ϕN be corresponding a partition
of unique that, functions ϕj are smooth on R, σj = suppϕj ⊂ Gj and

∑N
j=1ϕj(x) = 1.

Then for all u ∈W2
p(G;E(A),E) we have u(x) =∑N

j=1uj(x), where uj(x) = u(x)ϕj(x).
Moreover, due to the nonlocalness of boundary conditions, functions ϕj are chosen such
that σj = suppϕj adjoin with boundary Gk0, Gkb and consist of the sets; σjk0 and σjkb that
is, σ̃ jk = σjk0∪ σjkb, where σjk0 are parts of σ̃ jk adjoin with Gk0 and σjkb is the part of σ̃ jk
adjoin with Gkb. Let us consider the case when the regions Gj adjoin with the boundary
points and contain σ̃ jm. Let u∈W2

p(G;E(A),E). Then from (3.1) we obtain

(L+ λ)uj =
n∑

k=1

akD
2
kuj(x) +Aλ(y)uj(x)= f j(x), (5.14)

where

f j = f ϕj +
n∑

k=1

ak

[
2
∂u

∂xk

∂ϕj

∂xk
+u

∂2ϕj

∂x2
k

]
−

n∑
k=1

ϕjAk(x)
∂u(x)
∂xk

, j = 1,2, . . . ,N. (5.15)

Let suppϕj partially belong to G. Freezing coefficients in (5.14) obtain that

n∑
k=1

ak
(
xj
)
D2

kuj(x) +Aλ
(
xj
)
uj(x)= Fj(x), (5.16)

where

Fj = f j +
[
A
(
xj
)−A(x)

]
uj +

n∑
k=1

[
ak(x)− a

(
xj
)]
D2

kuj(x). (5.17)

Suppose functions ϕj(x) such that Lmkuj = 0, m = 1,2, for all u ∈W2
p(G;E(A),E).

Since functions uj(x) have the compact supports, then extending uj(x) on outsides of
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suppϕj from (5.16) we obtain boundary value problems with constant coefficients:

n∑
k=1

ak
(
xj
)
D2

kuj(x) +Aλ
(
xj
)
uj(x)= Fj(x),

Lmkuj = 0, m= 1,2, j = 1,2, . . . ,N.

(5.18)

By using Theorem 5.2 we obtain that the problem (5.18) has a unique solution uj and
for λ∈ S(ϕ) and sufficiently large |λ| the following coercive estimate:

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kuj

∥∥
Gj ,p

+
∥∥Auj

∥∥
Gj ,p

≤ C
∥∥Fj

∥∥
Gj ,p

(5.19)

holds. Whence, using properties of the smoothness of coefficients of (5.15), (5.17) and
choosing diameters of σj sufficiently small, we get that

∥∥Fj

∥∥
Gj ,p

≤ ε
∥∥uj

∥∥
W2

p(Gj ;E(A),E) +C(ε)
∥∥uj

∥∥
Gj ,p

, (5.20)

where ε is a sufficiently small and C(ε) is a continuous function. Consequently, from
(5.19) and (5.20), we get

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kuj

∥∥
Gj ,p

+
∥∥Auj

∥∥
Gj ,p

≤ C‖ f ‖Gj ,p + ε
∥∥uj

∥∥
W2

p
+C(ε)

∥∥uj

∥∥
Gj ,p

.

(5.21)

Choosing ε < 1 from the above inequality, we have

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kuj

∥∥
Gj ,p

+
∥∥Auj

∥∥
Gj ,p

≤ C
[‖ f ‖Gj ,p +

∥∥uj

∥∥
Gj ,p

]
. (5.22)

By a similar manner we also obtain estimates (5.22) for regions Gj entirely belonging

to G. Then using the equality u(x)=∑N
j=1uj(x) and by virtue of the estimate (5.22) for

u∈W2
p(G;E(A),E), we have

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kuj

∥∥
p +
∥∥Auj

∥∥
p ≤ C

[∥∥(L+ λ)u
∥∥
p +‖u‖p

]
. (5.23)

Let u∈W2
p(G;E(A),E) be a solution of the problem (3.1). Then for λ∈ S(ϕ), we have

‖u‖p =
∥∥(L+ λ)u−Lu

∥∥
p ≤

1
λ

[∥∥(L+ λ)u
∥∥
p +‖u‖W2

p

]
. (5.24)

Then by embedding Theorems 2.3, 2.5 and by virtue of (5.23), (5.24) for sufficiently
large |λ| we have

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kuj

∥∥
p +
∥∥Auj

∥∥
p ≤ C

∥∥(L+ λ)u
∥∥
p. (5.25)
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Let us consider an operator Oλ, acting in Lp(G;E), that is generated by the problem
(3.1), that is,

D
(
Oλ
)=W2

p

(
G;E(A),E,Lkm

)
,

Oλu=
n∑

k=1

ak(x)D2
ku(x) +Aλ(x)u(x) +

n∑
k=1

Ak(x)
∂u(x)
∂xk

.
(5.26)

The estimate (5.25) implies that the problem (3.1) has only a unique solution and the
operator Oλ has an invertible operator in its rank space. We need to show that this rank
space coincide with the space Lp(0,b;E). We consider the smooth functions gj = gj(x)
with respect to the partition of the unique ϕj = ϕj(y) on the region G that equals one on
suppϕj , where suppgj ⊂Gj and |gj(x)| < 1. Let us construct for all j the function uj , that
is defined on the regions Ω j = G∩Gj and satisfying the problem (3.1). Consider at first
when Gj adjoin to the boundary points. The problem (3.1) can be expressed in the form

n∑
k=1

ak
(
xj
)
D2

kuj(x) +Aλ
(
xj
)
uj(x)

= gj

{
f +

[
A
(
xj
)−A(x)

]
uj +

n∑
k=1

[
ak(x)− ak

(
xj
)]
D2

kuj −
n∑

k=1

Ak(x)
∂uj(x)

∂xk

}
,

Lkmuj = 0, j = 1,2, . . . ,N.
(5.27)

Consider operators Ojλ, acting in Lp(Gj ;E) that is generated by boundary value prob-
lems (5.18). By virtue of Theorem 4.4 for all f ∈ Lp(Gj ;E), for λ∈ S(ϕ), and sufficiently
large |λ| we have

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kO

−1
jλ f

∥∥
p +
∥∥AO−1

jλ f
∥∥
p ≤ C‖ f ‖p. (5.28)

Extending uj zero on the outside of suppϕj in equalities (5.27) and passing substitu-
tions uj =O−1

jλ υj obtained from (5.1), operator equations with respect to υj ,

υj = Kjλυj + gj f , j = 1,2, . . . ,N. (5.29)

By virtue of Theorem 2.3 and the estimate (5.28), in view of the smoothness of the
coefficients of the expression Kjλ, and in view of condition (2.7) for λ ∈ S(ϕ) and suffi-
ciently large |λ|, we have ‖Kjλ‖ < ε, where ε is sufficiently small. Consequently, (5.29) has
unique solutions υj = [I −Kjλ]−1gj f . Moreover,

∥∥υj

∥∥
p =

∥∥[I −Kjλ
]−1

gj f
∥∥
p ≤ ‖ f ‖p. (5.30)

Whence, [I −Kjλ]−1gj are bounded linear operators from Lp(G;E) to Lp(Gj ;E). Thus, we
obtain that the functions

uj =Ujλ f =O−1
jλ
−1[I −Kjλ

]−1
gj f (5.31)
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are solutions of (5.27). Consider a linear operator (U + λI) in Lp(G;E) such that

(U + λI) f =
N∑
j=1

ϕj(y)Ujλ f . (5.32)

It is clear from the constructions Uj and the estimate (5.28) that operators Ujλ are
bounded linear from Lp(G;E) to W2

p(G;E(A),E) and for λ ∈ S(ϕ) and sufficiently large
|λ| we have

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
kU

−1
jλ f

∥∥
p +
∥∥AU−1

jλ f
∥∥
p ≤ C‖ f ‖p. (5.33)

Therefore, (U + λI) is a bounded linear operator from Lp to Lp. Then act of Oλ to u=∑N
j=1ϕjUjλ f gives Oλu = f +

∑N
j=1Φ jλ f , where Φ jλ are linear combination of Ujλ and

(d/dy)Ujλ. By virtue of Theorem 2.3 and the estimate (5.33) from the expression Φ jλ we
obtain that operators Φ jλ are bounded linear from Lp(G;E) to Lp(Gj ;E) and ‖Φ jλ‖ < ε.

Therefore, there exists a bounded inverse of operator I +
∑N

j=1Φ jλ. Whence, we obtain
that for all f ∈ Lp(G;E) the boundary value problem (3.1) has a unique solution

u(x)=O−1
λ f =

N∑
j=1

ϕjO
−1
jλ

[
I −Kjλ

]−1
gj

(
I +

N∑
j=1

Φ jλ

)−1

f , (5.34)

that is, we obtain assertion (a) of Theorem 5.3. Moreover, by virtue of (b), part of Theo-
rem 5.2, operators Ojλ are positive and operators

[
I −Kjλ

]−1
gj

(
I +

N∑
j=1

Φ jλ

)−1

(5.35)

are bounded uniformly with respect λ. Then from (5.34) we obtain the assertion (b). �

Result 5.4. Theorem 5.3 implies that the operator O has a resolvent (O + λI)−1 for λ ∈
S(ϕ), ϕ∈ (0,π/3), and the following estimate holds:

n∑
k=1

2∑
i=0

|λ|1−i/2∥∥Di
k(O+ λI)−1

∥∥
B(Lp(G;E)) +

∥∥A(O+ λI)−1
∥∥
B(Lp(G;E)) ≤ C. (5.36)

Theorem 5.5. Let all conditions of Theorem 5.3 hold and A−1 ∈ σ∞(E). Then the operator
O is Fredholm from W2

p(G;E(A),E) into Lp(G;E).

Proof. Theorem 5.3 implies that the operator O+ λI sufficiently large |λ| have a bounded
inverse (O + λI)−1 from Lp(G;E) to W2

p(G;E(A),E), that is the operator O + λI is Fred-
holm from W2

p(G;E(A),E) into Lp(G;E). Moreover, by virtue of Theorem 5.3 and the
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perturbation theory [12] we obtain that the operator O is Fredholm from W2
p(G;E(A),E)

into Lp(G;E). �

Remark 5.6. If ak are negative-valued functions, then (1.13), part of Condition 5.1, is
satisfied for 0 < ϕ≤ π and Theorems 5.2–5.5 are valid for 0 < ϕ≤ π.

Remark 5.7. Conditions ak(Gj0)= ak(Gjb), A(Gk0)= A(Gkb) arise due to nonlocality of
the boundary conditions (3.1). If boundary conditions are local then conditions men-
tioned above are not required any more.

5.2. IBVP for parabolic DOE. By applying Theorem 5.3 and by using [36, Theorem 4.2],
we obtain the following.

Theorem 5.8. Let all conditions of Theorem 5.3 hold. Then the parabolic problem (3.2) for
λ∈ S(ϕ), ϕ∈ (0,π/3) and sufficiently large |λ| is maximal Lp-regular.

Proof. Really, problem (3.2) can be expressed in space Lp(R+;F) in the following form:

du

dt
+Oλu(t)= f (t), u(0)= 0, t > 0, (5.37)

where F = Lp(G;E) and O is differential operator in Lp(G;E) generating by BVP (3.1). In
view of (b), part of Theorem 5.3, operator O is R-positive in Lp(G;E) for ϕ ∈ (0,π/3).
Then by virtue of [36, Theorem 4.2] we obtain the assertion. �

Result 5.9. (a) If we put ak(x) = −1, Ak(x) = 0, k = 1,2, . . . ,n, in (3.1) then, we obtain
from Theorem 5.3 the maximal regularity,R-positivity, and Fredholmness of Schrodinger
type operator

S1u=−Δu(x) +A(x)u(x) (5.38)

with nonlocal boundary conditions in Banach-valued Lp(G;E) space.
(b) If we put ak(x)=−i,Ak(x)=0, k=1,2, . . . ,n, in (3.2), then we obtain from Theorem

5.8 the maximal regularity of Schrodinger type operator

S2u= ∂u(x, t)
∂t

− iΔu(x, t) +A(x)u(x, t) (5.39)

with nonlocal boundary conditions in Lp(G+;E) space.

5.3. Nonlocal boundary value problems for elliptic equations. The Fredholm property
of boundary value problems for elliptic equations with parameters in smooth domains
was studied in [1–3, 12, 24] also for nonsmooth domains was investigated in [17, 21, 28,
34].
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Let Ω⊂Rl be an open connected set with compact C2m-boundary ∂Ω. Let us consider
a nonlocal boundary value problem on cylindrical domain Ω̃=G×Ω for an elliptic dif-
ferential equation

Lu=
n∑

k=1

ak(x)D2
ku(x, y) +

n∑
k=1

dk(x, y)Dku(x, y)

+
∑

|α|≤2m

aα(y)Dα
yu(x, y)= f (x, y), x ∈G, y ∈Ω,

Lk ju= αk jD
mkj
x u

(
Gk0, y

)
+βk juD

mkj
x
(
Gkb, y

)= 0, j = 1,2, k = 1,2, . . . ,n, y ∈Ω,

Bju=
∑

|β|≤mj

bjβ(y)D
β
yu(x, y)= 0, x ∈G, y ∈ ∂Ω, j = 1,2, . . . ,m,

(5.40)

where Dj =−i(∂/∂yj), mk ∈ {0,1}, αk, βk, δk ji are complex numbers, y = (y1, . . . , yl), and

G= {x = (x1,x2, . . . ,xn
)
, 0 < xk < bk,

}
,

Gk0 =
(
x1,x2, . . . ,xk−1,0,xk+1, . . . ,xn

)
,

Gkb =
(
x1,x2, . . . ,xk−1,bk,xk+1, . . . ,xn

)
,

mk ∈ {0,1}, D2
k =

∂2

∂x2
k

, k = 1,2, . . . ,n.

(5.41)

Let Ω⊂Rl be an open connected set with compact C2m-boundary ∂Ω. Recall that for
all y0 ∈ ∂Ω local coordinates corresponding to y0 are defined as coordinates obtained
from the original ones by a rotation and a shift which transfers y0 to the origin and after
which the positive yl-axis has the direction of the interior normal to ∂Ω at y0.

Theorem 5.10. Let the following conditions be satisfied:
(1) aα ∈ C(Ω̄) for each |α| = 2m, and aα ∈ [L∞ + Lrk ](Ω) for each |α| = k < 2m with

rk ≥ q and 2m− k > l/rk;
(2) bjβ ∈ C2m−mj (∂Ω) for each j,β,mj < 2m;
(3) for y ∈ Ω̄, ξ ∈Rl, λ∈ S(ϕ), ϕ∈ (0,π/3), |ξ|+ |λ| �= 0, let λ+

∑
|α|=2maα(y)ξα �= 0;

(4) for each y0 ∈ ∂Ω local BVP in local coordinates corresponding to y0

λ+
∑

|α|=2m

aα
(
y0
)
Dαϑ(y)= 0,

Bj0ϑ=
∑

|β|=mj

bjβ
(
y0
)
Dβu(y)= hj , j = 1,2, . . . ,m,

(5.42)

has a unique solution ϑ∈ C0(R+) for all h= (h1,h2, . . . ,hm)∈Rm, and for ξ � ∈Rl−1

with
∣∣ξ �

∣∣+ |λ| �= 0; (5.43)
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(5) ak ∈ C(Ḡ), ak(x) �= 0, and ak �= b2, b ∈ R, x ∈ G, ak(Gj0) = ak(Gjb), dk ∈ L∞(G),
j = 1,2, . . . ,n;

(6) ηk = (−1)mk1αk1βk2− (−1)mk2αk2βk1 �= 0, k = 1,2, . . . ,n.
Then

(a) the coercive estimate

n∑
k=1

∥∥D2
ku
∥∥
Lp,q(Ω̃) +

∑
|β|=2m

∥∥Dβ
yu
∥∥
Lp,q(Ω̃) +‖u‖Lp,q(Ω̃)

≤ C
[‖Lu‖Lp,q(Ω̃) +‖u‖Lp,q(Ω̃)

]
(5.44)

holds for the solution u∈W2,2m
p,q (Ω̃) of the problem (5.40);

(b) the problem (5.40) is Fredholm in Lp,q(Ω̃).

Proof. Let E = Lq(G). Then by virtue of [18, Theorem 3.6] part (1) of Condition 5.1 is
satisfied. Consider an operator A which is defined by the equalities

D(A)=W2m
q

(
G;Bju= 0

)
, Au=

∑
|α|≤2m

aα(y)Dαu(y). (5.45)

For x ∈G also consider operators

Ak(x)u= dk(x, y)u(y), k = 1,2, . . . ,n. (5.46)

The problem (5.40) can be rewritten in the form (3.1), where u(x) = u(x,·), f (x) =
f (x,·) are functions with values in E = Lq(G). By virtue of [12, Theorem 8.2] the problem

λu(y) +
∑

|α|≤2m

aα(y)Dα
yu(y)= f (y),

Bju=
∑

|β|≤mj

bjβ(y)D
β
yu(y)= 0, j = 1,2, . . . ,m,

(5.47)

has a unique solution for f ∈ Lq(G), and for argλ ∈ S(ϕ), |λ| → ∞; and the differen-
tial operator A generating by (5.47) is R-positive in Lq. Then by virtue of (3.1)–(3.2)
Condition 5.1 is fulfilled. It is known that the embedding W2m

q (G) ⊂ Lq(G) is compact
(see, e.g., [35, Theorem 3.2.5]). Then by using interpolation properties of Sobolev spaces
(see, e.g., [35, Section 4]) it is clear to see that conditions (1.12) and (1.13) of Theorem 5.3
are fulfilled too. �

5.4. Nonlocal boundary value problems for infinite systems of elliptic equations. Con-
sider the following infinity systems of boundary value problem:

n∑
k=1

ak(x)D2
kum(x) +

(
dm(x) + λ

)
um(x) +

n∑
k=1

∞∑
j=1

dkmj(x)Dkuj(x)

= fm(x), x ∈G, m= 1,2, . . . ,∞,

αk jD
mkj um

(
Gk0

)
+βk jD

mkj um
(
Gkb

)= 0, j = 1,2, k = 1,2, . . . ,n,

(5.48)
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where

G= {x = (x1,x2, . . . ,xn
)
,0 < xk < bk,

}
,

Gk0 =
(
x1,x2, . . . ,xk−1,0,xk+1, . . . ,xn

)
,

Gkb =
(
x1,x2, . . . ,xk−1,bk,xk+1, . . . ,xn

)
, mkj ∈ {0,1}.

(5.49)

Let

D(x)= {Dm(x)
}

, dm > 0, u= {um}, Du= {dmum}, m= 1,2, . . . ,∞,

lq(D)=
{
u : u∈ lq, ‖u‖lq(D) = ‖Du‖lq =

( ∞∑
m=1

∣∣dmum∣∣q
)1/q

<∞
}

,

x ∈G, 1 < q <∞.

(5.50)

Let Q denote a differential operator in Lp(G; lq) generating by problem (5.48). Let

B = B
(
Lp(G; lq)

)
. (5.51)

Theorem 5.11. Let the following conditions hold:
(1) ak ∈ C(Ḡ), ak(x) �= 0, and ak(x) �= 0, and ak �= b2,b ∈R, x ∈G, ak(Gj0)= ak(Gjb),

j,k = 1,2, . . . ,n;
(2) dm ∈ C(G), dmα ∈ L∞(G) such that

dm
(
Gj0
)= dm

(
Gjb

)
,

∞∑
m, j=1

d
q1
m (x)b

−(q1/2)
k jm <∞,

1
q1

+
1
q
= 1, (5.52)

a.e. for x ∈G and 1 < p,q <∞.
Then
(a) for all f (x) = { fm(x)}∞1 ∈ Lp(G; lq), for λ ∈ S(ϕ), ϕ ∈ (0,π/3), and for sufficiently

large |λ| the problem (5.48) has a unique solution u = {um(x)}∞1 that belongs to
space W2

p(G, lq(D), lq) and the coercive estimate

n∑
k=1

[(∫
G

∞∑
m=1

∣∣D2
kum(x)

∣∣q
)p/q

dx

]1/p

+

[(∫
G

∞∑
m=1

∣∣dmum(x)
∣∣q
)p/q

dx

]1/p

≤ C

[(∫
G

∞∑
m=1

∣∣ fm(x)
∣∣q
)p/q

dx

]1/p
(5.53)

holds for the solution of the problem (5.48);
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(b) for sufficiently large |λ| > 0 there exists a resolvent (Q+ λ)−1 of operator Q and

n∑
k=1

2∑
j=0

(
1 + |λ|)1− j/2∥∥Dj

k(Q+ λ)−1
∥∥
B +

∥∥A(Q+ λ)−1
∥∥
B ≤M; (5.54)

(c) operator Q is positive in Lp(G; lq).

Proof. Really, let E = lq, A, and Ak(x) be infinite matrices, such that

A= [dmδmj
]
, Aα(x)= [dk jm(x)

]
, m, j = 1,2, . . . ,∞. (5.55)

It is clear to see that this operator A is positive in lq. Therefore, by virtue of Theorem 5.3
we obtain that the problem (5.48) for all f ∈ Lp(G; lq), for λ ∈ S(ϕ) , ϕ ∈ (0,π/3), and
sufficiently large |λ| has a unique solution u that belongs to space Wl

p(G; lq(D), lq) and

n∑
k=1

∥∥D2
ku
∥∥
Lp(G;lq) +‖du‖Lp(G;lq) ≤ C‖ f ‖Lp(G;lq). (5.56)

From the above estimate we obtain (5.53). The estimate (5.54) is obtained from Result 5.4.
�

5.5. IBVP for infinite systems of parabolic equations. Consider an infinity system of
parabolic nonlocal IBVP:

∂um(t,x)
∂t

+
n∑

k=1

ak(x)D2
kum(t,x) +

(
dm(x) + λ

)
um(t,x)

+
n∑

k=1

∞∑
j=1

dkmj(x)Dkuj(t,x)= fm(t,x), m= 1,2, . . . ,∞,

Lk jum = αk jD
mkj um

(
Gk0

)
+βk jD

mkj um
(
Gkb

)= 0,

j = 1,2, k = 1,2, . . . ,n, um(0,x)= 0, t ∈R+, x ∈G.

(5.57)

Theorem 5.12. Let all conditions of Theorem 5.11 hold. Then the parabolic systems (5.57)
for λ ∈ S(ϕ), ϕ ∈ (0,π/3), and for sufficiently large |λ| have the property of maximal Lp-
regularity.

Proof. Really, let E = lq, A, and Ak(x) be infinite matrices, such that

A= [dmδmj
]
, Aα(x)= [dk jm(x)

]
, m, j = 1,2, . . . ,∞. (5.58)
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Then the problem (5.57) can be expressed in the form

∂u(t,x)
∂t

+
n∑

k=1

ak(x)D2
ku(t,x) +Aλu(t,x) +

n∑
k=1

Ak(x)
∂u(t,x)
∂xk

= f (t,x),

Lk ju=
[
αk ju

(mkj)
(
t,Gk0

)
+βk ju

(mkj )
(
t,Gkb

)]= 0,

u(0,x)= 0, j = 1,2, k = 1,2, . . . ,n, t ∈R+, x ∈G⊂Rn,

(5.59)

where

A= [dmδmj
]
, Aα(x)= [dk jm(x)

]
, m, j = 1,2, . . . ,∞. (5.60)

Then by virtue of Theorems 5.3 and 5.8 we obtain the assertion. �

Remark 5.13. There are many positive operators in the different concrete Banach spaces.
Therefore, putting concrete Banach spaces instead of E and concrete positive differential,
pseudodifferential operators or finite or infinite matrices for instance, instead of operator
A, on DOE’s (3.1) or (3.2) by virtue of Theorems 5.3, 5.8 we can obtain different class
of maximal regular and Fredholm boundary value problems for partial differential or
pseudodifferential equations, and maximal regular parabolic problems or their finite and
infinite systems.
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