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J. M. Aarts introduced and studied a new dimension function, Hind, in 1975 and obtained
several results on this function. In this paper, a new local inductive dimension function
called local huge inductive dimension function denoted by locHind is introduced and
studied. Furthermore, an effort is made to introduce and study dimension functions for
fuzzy topological spaces. It has been possible to introduce and study the small inductive
dimension function indf X and large inductive dimension function Indf X for a fuzzy
topological space X .

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In Section 2, a new local dimension function called local huge inductive dimension func-
tion denoted by locHind is introduced and studied. Its relationship with other local di-
mension functions is established. A closed subset theorem and an open subset theorem
are obtained for the local huge inductive dimension function. Further it is also proved
that the local huge inductive dimension function coincides with the huge inductive di-
mension function for the class of weakly paracompact totally normal spaces.

The concept of a fuzzy subset was introduced and studied by Zadeh [9] and the con-
cept of fuzzy topological spaces by Chang [2]. Many mathematicians have contributed to
the development of fuzzy topological spaces.

In Section 3, two inductive types of dimension functions for fuzzy topological spaces
have been introduced and studied. Several results have been obtained. It is observed that
such dimensions are integers and not fractions.

2. A new local dimension function for topological spaces

The following definition is due to Aarts [1].

Definition 2.1 [1]. The huge inductive dimension function Hind is defined for every
hereditarily normal space as follows. HindX = −1 if and only if X = φ. For each in-
teger n ≥ 0, HindX ≤ n provided that for each pair of closed subsets F and G with
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Hind(F ∩G)≤ n− 1 there exists a pair of closed subsets K and L such that F −G⊂ K −L,
G− F ⊂ L−K , K ∪ L = X , and Hind(K ∩ L) ≤ n− 1. HindX = n if and only if Hind
X ≤ n is true and HindX ≤ n− 1 is not true. HindX =∞ if and only if Hind X ≤ n is not
true for every n.

The following result is due to Aarts [1].

Proposition 2.2 [1]. For each integer n ≥ 0, HindX ≤ n if and only if for each pair of
closed subsets F and G with Hind(F ∩G)≤ n− 1 there exists a closed set S such that F −G
and G−F are separated by S and HindS≤ n− 1. That is, X − S=U ∪V , where U , V are
disjoint open sets in X , F −G⊂U , G−F ⊂V , and HindS≤ n− 1.

The following concept of a barrier is due to Vaı̆nšteı̆n [6].

Definition 2.3 [6]. Let A, B be a pair of closed subsets of a space X . Then a closed subset
C of X is said to be a barrier between A and B if X − [C∪ (A∩B)]=G∪H , where G, H
are disjoint open sets in X such that A−B ⊂G and B−A⊂H .

The following result is proved.

Theorem 2.4. Let X be a hereditarily normal space. If, for any two closed sets A, B in X with
Hind (A∩B)≤ n− 1, there is a barrier C between A and B in X such that Hind C ≤ n− 1,
then HindX ≤ n.

Proof. By hypothesis, there is a barrier C between A and B such that HindC ≤ n− 1.
Since C is a barrier between A and B, X − [C∪ (A∩B)]=G∪H , where G, H are disjoint
open sets in X such that A− B ⊂ G and B−A ⊂ H . Clearly the closed set C∪ (A∩ B)
separates A−B and B−A. Also HindC ≤ n− 1 and Hind(A∩B) ≤ n− 1. Therefore by
the countable sum theorem for the huge inductive dimension [1, Theorem 1] it follows
that Hind[C∪ (A∩ B)] ≤ n− 1. Hence by Proposition 2.2 [1, Proposition 1] it follows
that HindX ≤ n. �

The concept of local dimension for the huge inductive dimension function is intro-
duced in the following.

Definition 2.5. The local huge inductive dimension, locHind, is defined for every hered-
itarily normal space X as follows. locHindX = −1 if and only if X = φ. locHindX ≤ n
if and only if for each point x ∈ X there exists an open set U containing x such that
HindU ≤ n. locHindX = n, for n= 0,1,2, . . . ,∞, are defined as usual.

Remark 2.6. If locHindX ≤ n, x ∈ X , and U is an open set containing x, then there exists
an open set V in X such that x ∈V ⊂U and HindV ≤ n. Thus, for a hereditarily normal
space X , locHindX ≤ n if and only if every open cover of X has an open refinement
{Uλ : λ∈Λ} such that HindUλ ≤ n for each λ∈Λ.

The relationships of locHind with some of the other dimension functions are obtained
in the following.
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Theorem 2.7. For a hereditarily normal space X , the following statements are true.
(i) locHindX ≤HindX .
(ii) locdimX ≤ locIndX ≤ locHindX .

Proof. (i) Let Hind X ≤ n. Then every point x ∈ X has the neighborhood X such that
HindX =HindX ≤ n. Therefore locHindX ≤ n.

(ii) Since X is hereditarily normal, it is normal, and hence locdim X ≤ locInd X .
It is required to show that locIndX ≤ locHindX . Let locHindX ≤ n. Then each point
x ∈ X has a neighborhood U in X with HindU ≤ n. Now U ⊂ X and X is hereditarily
normal. Therefore U is also hereditarily normal. Then from [1, Proposition 2] it follows
that IndU ≤HindU . Therefore IndU ≤ n and hence locHindX ≤ n. Hence locIndX ≤
locHindX . �

Corollary 2.8. If X is hereditarily normal regular space, then indX ≤ locHindX .

Proof. The result follows since indX ≤ locIndX on the class of regular spaces [5]. �

The closed subset theorem for local huge inductive dimension function is obtained,
which is contained in the following.

Theorem 2.9. If A is a closed subset of a hereditarily normal space X , then locHindA ≤
locHindX .

Proof. Let locHindX ≤ n. Let x ∈ A. Now x ∈ X and locHindX ≤ n. Therefore there
exists an open set U in X such that x ∈ U and HindU ≤ n. Then U ∩A is an open set
in A containing x. Now clA(U ∩A) is a closed subset of A and HindU ≤ n. Then by the
closed subset theorem for Hind [1, Proposition 3] it follows that Hind[clA(U ∩A)]≤ n.
Therefore locHindA≤ n. Hence locHindA≤ locHindX . �

The open subset theorem for locHind is proved in the following.

Theorem 2.10. If X is a hereditarily normal regular space and Y is an open subset of X ,
then locHindY ≤ locHindX .

Proof. Let locHindX ≤ n. Let y ∈ Y . Then y ∈ X and locHindX ≤ n. Therefore there
exists an open set U in X containing y such that HindU ≤ n. Now U ∩ Y is an open
set in X containing y and X is regular. Therefore there exists an open set V such that
y ∈ V ⊂ V ⊂ U ∩Y . Then V is an open neighborhood of y in Y and V is the closure
of V in Y . Since V ⊂ U , it follows that HindV ≤ n. Therefore locHindX ≤ n. Hence
locHindY ≤ locHindX . �

The next result is a sum theorem that is obtained for locHind.

Theorem 2.11. If a hereditarily normal space X is the union of two closed sets A, B and if
locHindA≤ n and locHindB ≤ n, then locHindX ≤ n.

Proof. Let x ∈ X . If x ∈ X −A, then x ∈ B and locHindB ≤ n. Therefore there exists an
open set U ∩B in B containing x, where U is open in X such that HindU ∩B ≤ n. Let
W = U ∩ (X −A). Then W is an open set in X containing x such that W ⊂ U ∩B and
HindU ∩B ≤ n. Therefore HindW ≤ n and hence locHindX ≤ n. Similarly if x ∈ X −B,
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then there exists an open set in X containing x, the closure of which has huge inductive
dimension not exceeding n. If x ∈ A∩ B, then x ∈ A and x ∈ B. Since locHindA ≤ n
and locHindB ≤ n, there exist open sets U ∩A and V ∩B in A and B, respectively, each
containing x such that HindU ∩A ≤ n and HindV ∩B ≤ n. Let W = [X − (A−U)]−
(B −V). Then W is an open set containing x and W ⊂ (U ∩A)∪ (V ∩ B). Therefore
W ⊂ (U ∩A)∪ (V ∩B).

Therefore

HindW ≤Hind
[
(U ∩A)∪ (V ∩B)

]

≤ sup
{

Hind(U ∩A), Hind(V ∩B)
} (2.1)

by using the countable sum theorem for Hind [1]. Therefore HindX ≤ n. Hence locHind
X ≤ n. �

The above result can be extended to a finite family and furthermore to a locally finite
family which is contained in the following corollary.

Corollary 2.12. If {Aλ : λ∈ Λ} is a locally finite closed covering of a hereditarily normal
space X such that locHindAλ ≤ n for each λ∈Λ, then locHindX ≤ n.

Proof. The straightforward proof is omitted. �

The following result shows that locHind coincides with Hind on the class of weakly
paracompact totally normal spaces.

Theorem 2.13. If X is a weakly paracompact totally normal space, then locHindX =
HindX .

Proof. Since X is totally normal, it is hereditarily normal, and hence from Theorem 2.7 it
follows that locHindX ≤HindX .

On the other hand, since X is weakly paracompact totally normal, locIndX = IndX
from [5, Page 197]. But Ind = Hind on the class of totally normal spaces. Therefore
HindX = locIndX ≤ locHindX , since for hereditarily normal spaces locInd ≤ locHind
from Theorem 2.7. Therefore HindX ≤ locHindX . Hence locHindX =HindX . �

3. Inductive dimension functions for fuzzy topological spaces

The main purpose of this section is to introduce and study dimension functions on fuzzy
topological spaces. It has been possible to introduce the small inductive dimension func-
tion, indf X , and the large inductive dimension function, Indf X , for a fuzzy topological
space X . A subset theorem is obtained for indf X . It is proved that if X is a fuzzy topologi-
cal space such that Indf X = 0 then X is a normal fuzzy topological space. A closed subset
theorem for Indf is also obtained.

The following concept is due to Zadeh [9].

Definition 3.1 [9]. A fuzzy subset A in a set X is a function A : X → [0,1].
The elementary properties related to fuzzy sets are contained in [9]. The fuzzy topo-

logical spaces were introduced and studied by Chang [2].
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Definition 3.2 [2]. Let X be a set and let T be family of fuzzy subsets of X . Then T is called
a fuzzy topology on X if T satisfies the following conditions.

(i) 0,1∈ T .
(ii) If {Gλ : λ∈Λ} ⊂ T , then ∨Gλ ∈ T .
(iii) If G,H ∈ T , then G∧H ∈ T .
The pair (X ,T) is called a fuzzy topological space (abbreviated as fts). The members

of T are called open fuzzy sets. A fuzzy set B is called a closed fuzzy set if 1−A is an open
fuzzy set.

The concept of the boundary of a fuzzy subset was introduced and studied by Warren
[7], which is contained in the following.

Definition 3.3 [7]. Let A be a fuzzy set in an fts X . The fuzzy boundary of A denoted by
bd(A) is defined as the infimum of all the closed fuzzy sets D in X with the following
property. D(x)≥A(x) all x ∈ X for which (A∧ 1−A)(x) > 0.

The following results of Warren [7] are used in the sequel.

Theorem 3.4 [7]. Let A and B be fuzzy sets in an fts X . Then the following results hold
good.

(1) bd(A)= 0 if and only if A is open, closed, and crisp.
(2) bd(A∧B)≤ bd(A)∨bd(B).
The other elementary concepts, results, and developments on fuzzy topological spaces

can be found in [2–4, 7, 8].
A new inductive dimension function for fuzzy topological spaces is introduced in the

following.

Definition 3.5. Let X be a fuzzy topological space. The small inductive dimension of X ,
denoted by indf X , is defined as follows. indf X =−1 if X = φ. For any nonnegative inte-
ger n, indf X ≤ n if for each x ∈ X and each open fuzzy setG such thatG(x) > 0 there exists
an open fuzzy set U in X such that U(x) > 0, U ≤G and indf bd(U)≤ n− 1. indf X = n if
indf X ≤ n is true and indf X ≤ n− 1 is not true. indf X =∞ if there is no integer n such
that indf X ≤ n.

Note that if X is a general topological space, then this concept reduces to that of ind.
A subset theorem for indf is proved in the following.

Theorem 3.6. If A is a crisp subset of an fts X , then indf A≤ indf X .

Proof. This is proved by induction on n. For n=−1, if indf X ≤−1, then indf X =−1, so
that X = φ. Since A is a crisp subset of X , it follows that A= φ, and therefore indf A=−1,
that is, indf A≤−1. Thus if indf X ≤−1, then indf A≤−1. Therefore the result holds for
n = −1. Assume the result for n− 1. Then, to prove the result for n, that is, to prove
if indf X ≤ n, then indf A ≤ n, let indf X ≤ n. Then to prove indf A ≤ n, let x ∈ A and
let G be an open fuzzy set in A, such that G(x) > 0. Since G is open in A by induced
fuzzy topology on A [8], there exists an open fuzzy set H in X such that G= A∧H . Now
G(x) > 0 implies H(x) > 0 and A(x) > 0. Since indf X ≤ n, H is an open fuzzy set in X such
that H(x) > 0. By Definition 3.5 there exists an open fuzzy set V in X such that V(x) > 0,
V ≤ H , and indf bd(V) ≤ n− 1. Let U = A∧V . Since V is an open fuzzy set in X , it
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follows that U is an open fuzzy set in A. Now U(x) > 0. We have A(x) > 0 and V(x) > 0.
Therefore A(x)∧V(x) > 0, so that (A∧V)(x) > 0, and hence U(x) > 0. Also U ≤ G. We
have V ≤H . Therefore A∧V ≤ A∧H , so that U ≤ G. Further, indf bdA(U)= bdA(A∧
V)≤ bdA(A)∨ bdA(V)= 0∨ bdA(V)= bdA(V)≤ A∧ bd(V)≤ bd(V). Thus bdA(U)≤
bd(V). Since indf bd(V) ≤ n− 1, by induction hypothesis it follows that indf bdA(U) ≤
n− 1. Thus, for each x ∈ A and each open fuzzy set G in A such that G(x) > 0, there exists
an open fuzzy set U in A such that U(x) > 0, U ≤G, and indf bdA(U)≤ n− 1. Therefore
by Definition 3.5 it follows that indf A≤ n. Thus if indf X ≤ n, then indf A≤ n. Therefore
the result holds for n. Hence indf A≤ indf X . �

Another new inductive dimension function for fuzzy topological spaces is introduced
in the following.

Definition 3.7. Let X be an fts. The large inductive dimension of X , denoted by Indf X ,
is defined as follows. Indf X = −1 if and only if X = φ.Indf X ≤ n, for any nonnegative
integer n, if for each closed fuzzy set E and each open fuzzy set G in X such that E ≤
G, there exists an open fuzzy set U in X such that E ≤ U ≤ G and Indf bd(U) ≤ n− 1.
Indf X = n if Indf X ≤ n is true and Indf X ≤ n− 1 is not true. Indf X =∞ if Indf X ≤ n
is not true for every n.

Note that if X is a general topological space, then this concept reduces to that of Ind.
A relationship between indf and Indf is obtained in the following.

Theorem 3.8. If X is an fts with the property that each open fuzzy set in X is union of closed
fuzzy sets in X , then indf X ≤ Indf X .

Proof. This is proved by induction on n. For n = −1, if Indf X ≤ −1, then Indf X = −1,
so that X = φ. Therefore indf X = −1, so that indf X ≤ −1. Thus if Indf X ≤ −1, then
indf X ≤−1. Therefore the result holds for n=−1. Assume that the result holds for n=
k− 1. That is, assume that if Indf X ≤ k− 1, then indf X ≤ k− 1. To prove that the result
holds for n = k, suppose Indf X ≤ k. Then, to prove indf X ≤ k, let x ∈ X and let G be
an open fuzzy set in X such that G(x) > 0. Now G is an open fuzzy set. By hypothesis,
G is union of closed fuzzy sets say G = ∨Eλ, where each Eλ is a closed fuzzy set. Since
G(x) > 0, (∨Eλ)(x) > 0, so that there exists a λ0 such that Eλ0 (x) > 0. Also Eλ0 ≤ Eλ ≤ G.
Now Eλ0 ≤ G, where Eλ0 is a closed fuzzy set and G is an open fuzzy set. Since Indf X ≤
k by Definition 3.7, there exists an open fuzzy set U in X such that Eλ0 ≤ U ≤ G and
Indf bd(U) ≤ k − 1. By induction hypothesis, it follows that indf bd(U) ≤ k − 1. Thus,
for each x ∈ X and each open fuzzy set G such that G(x) > 0, there exists an open fuzzy
setU inX such that U(x) > 0,U ≤G, and indf bd(U)≤ k− 1. Therefore by Definition 3.5
it follows that indf X ≤ k. Thus, if Indf X ≤ k, then indf X ≤ k. Therefore the result holds
for n= k. Hence indf X ≤ Indf X . �

We also have the following result.

Theorem 3.9. If X is an fts such that Indf X = 0, then X is a normal fts.

Proof. Let a, b be closed fuzzy sets in X such that a ≤ 1− b. Note that 1− b is an open
fuzzy set. Since Indf X ≤ 0, by Definition 3.7, there exists an open fuzzy set c in X such
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that a ≤ c ≤ 1− b and Indf bd(c) ≤ 0− 1. That is, a ≤ c, c ≤ 1− b, and Indf bd(c) ≤
−1. Let d = 1− c. Then a ≤ c, b ≤ d, c = 1− d, and bd(c) = 0. Since bd(c) = 0, from
Theorem 3.4, c is open, closed, and crisp. Thus, for each pair a, b of closed fuzzy sets in X
with a≤ 1− b, there exist open fuzzy sets c, d in X , such that a≤ c, b ≤ d, and c ≤ 1− d.
Therefore from [3, Theorem 5.2, page 36] it follows that X is a normal fts. �

A closed subset theorem for Indf is obtained, which is contained in the following.

Theorem 3.10. If A is a closed crisp subspace of an ftsX , then Indf A≤ Indf X .

Proof. This is proved by induction on n. For n = −1, if Indf X ≤ −1, then Indf X = −1,
so that X = φ. Therefore A= φ and so Indf A=−1, so that Indf A≤−1. Thus if Indf X ≤
−1, then Indf A ≤ −1. Therefore the result is true for n = −1. Assume that the result
holds for n= k− 1. That is, assume that if Indf X ≤ k− 1, then Indf A≤ k− 1. Then the
result is to be proved for n = k, that is, to prove if Indf X ≤ k, then Indf A ≤ k. Suppose
Indf X ≤ k. To prove Indf A ≤ k, let E be a closed fuzzy set in A and let G be an open
fuzzy set in A such that E ≤ G. Since E is closed in A and A is closed in X , it follows that
E is closed in X . Also G is an open fuzzy set in A. Therefore G = A∧H , where H is an
open fuzzy set in X . Also since E ≤G, we have E ≤ A∧H ≤H , so that E ≤H , where E is
closed fuzzy set in X and H is open fuzzy set in X . Since Indf X ≤ k, by definition, there
exists an open fuzzy set V in X such that E ≤ V ≤H and Indf bd(V)≤ k− 1. Therefore
E∧A≤ V ∧A≤H ∧A which implies E ≤U ≤G, where V ∧A=U is a closed fuzzy set
in A. Also bdA(U) is a closed fuzzy set in A [7] and A is a closed fuzzy set in X . Therefore
bdA(U) is a closed fuzzy set in X . Further bdA(U)≤ bd(V). Therefore bdA(U) is closed in
bd(V) and Indf bd(V)≤ k− 1. Therefore by induction hypothesis Indf bdA(U)≤ k− 1.

Thus for each closed fuzzy set E in A and open fuzzy set G in A such that E ≤ G,
there exists an open fuzzy set U in A such that E ≤ U ≤ G and Indf bdA(U) ≤ k − 1.
Therefore, by definition, it follows that Indf A ≤ k. Thus, if Indf X ≤ k, then Indf A ≤
k. Therefore the result holds for n = k. Thus the result holds for all values of n. Hence
Indf A≤ Indf X . �
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