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1. Introduction

In this survey, we will be interested in Veronese webs (particular case of one parameter
families of foliations), as defined by [8, 16], and ordinary webs (finite families of foliations
in general position), as defined by Blaschke, Akivis and Goldberg [1–5, 9]. If we look at
the literature about webs, these two domains were developed apparently independently.
Our main goal is to establish the link between the two domains.

1.1. Classical webs.

Definition 1.1. A k-web of codimension c over a manifold V is a family of k foliations
F1,F2, . . . ,Fk of V , all of codimension c, in “general position.” This last condition means
that if Fi(m) denotes the tangent plane to Fi at the point m (the contact element to Fi at
m), then the c−codimensional subspaces F1(m),F2(m), . . . ,Fk(m) of TmV are in general
position (as transverse as possible).

Classical examples are k-webs of R2, that is, systems of k families of curves in a plane.
We will simply call 3-web any 3-web of codimension c on a 2c-dimensional manifold.

General position means here that we have Fi(m)∩F j(m) = {0} for i �= j and at any m.
These webs are related to binary laws: if (x, y) �→ x ◦ y is a smooth binary law on the
manifold M, then we can associate the three foliations x = Cte, y = Cte, and x ◦ y = Cte

on M×M; with further hypotheses, this gives a 3-web (e.g., if x ◦ y is a Lie group law. . .).
The 3-webs were intensively investigated in [1–5, 7, 10, 11].
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2 Veronese curves and webs: interpolation

More generally, a (p+ 1)-web will be a (p+ 1)-web of codimension c on a manifold of
dimension pc. Here general position means that, for all m∈V , we have

F1(m)∩···∩Fi−1(m)∩Fi+1(m)∩···∩Fp+1(m)= {0}, (1.1)

for any i= 1, . . . , p+ 1.

Remark 1.2. A p-web of codimension c on a manifold of dimension pc is locally trivial,
that is, we can find local coordinates

x1
1, . . . ,x1

c , . . . ,x
p
1 , . . . ,x

p
c , (1.2)

where Fi is given by the equations {xi1 = Cte, . . . ,xic = Cte}. So the first webs which have an
interesting local geometry are the above-defined (p+ 1)-webs.

1.2. Veronese webs.

Definition 1.3. Let V be a real vector space of dimension (n+ 1). A Veronese curve in the
projective space P(V) is a map

γ : P1R−→ PV (1.3)

which is the quotient of a map of the type

(x, y) �−→ xnvn + xn−1yvn−1 + ···+ ynv0, (1.4)

where (v0,v1, . . . ,vn) is a base in V .

Definition 1.4 (see [8, 13, 18]). A Veronese web of codimension c on a manifold V of
dimension pc is a one-parameter family of foliations (Ft)t∈P1R of codimension c on V
such that, for all m in V , the contact element Ft(m) is given by

α1
t = 0, . . . ,αct = 0 (1.5)

with

αit = γi0 + tγi1 + t2γi2 + ···+ tp−1γip−1, (1.6)

where (γij)i=1,...,c
j=0,...,p−1

form a local coframe; that is,

γ1
0, . . . ,γ1

p−1,γ2
0, . . . ,γ2

p−1, . . . ,γc0, . . . ,γcp−1 (1.7)

are differential forms, defined in a neighborhood of m such that

γ1
0(m), . . . ,γ1

p−1(m), . . . ,γc0(m), . . . ,γcp−1(m) (1.8)

is a basis of T�mV .



T. B. Bouetou and J. P. Dufour 3

Gelfand and Zakharevich [8] defined Veronese webs of codim 1 (c = 1) and the notion
was generalized by A. Panasyuk and J. Turiel. In the sequel, we will sketch the way these
notions appeared.

In the bihamiltonian “mechanics,” we study pencil of Poisson structures Π0 + tΠ∞ over
a manifold W . This means that (see [8]) Πt = Π0 + tΠ∞ are Poisson structures for all t
and Π∞ is also a Poisson structure. It is equivalent to say that Π0 and Π∞ are Poisson
structures with [Π0,Π∞]= 0 ([·,·] is the so-called Schouten bracket); in that case we say
that Π0 and Π∞ are “compatible.”

For some time it was believed that any integrable Hamiltonian system was a bihamil-
tonian system, that is, there exists a second Poisson structure compatible with the Pois-
son structure related to the initial symplectic structure, which should be invariant by the
Hamiltonian field. The correct idea is that any bihamiltonian system is integrable but
Brouzet [6] has shown that the former belief was wrong. Nevertheless the classical inte-
grable systems are all bihamiltonian.

Turiel [15] has classified the pairs of compatible Poisson structures (Π0,Π∞) with Π0

symplectic (here we are in an even-dimensional situation). On the other hand, I. Gelfand
and I. Zakharevich were the first to investigate the odd-dimensional case. Precisely, they
consider a pencil

Πt =Π0 + tΠ∞ (1.9)

on a 2p− 1-dimensional manifold such that Πt is, for all t, of maximum rank (2p− 2).
The symplectic foliation Ft of Πt is then of codimension 1 and locally given by the zeros
of a form αt. It is not yet a Veronese foliation in the sense of Definition 1.4, but we will
explain hereafter that it is the case up to a quotient.

In fact, we have the following local models:

Π0(m)= e1∧ f1 + e2∧ f2 + ···+ ep−1∧ fp−1,

Π∞(m)= f1∧ e2 + f2∧ e3 + ···+ fp−1∧ ep,
(1.10)

where e1, . . . ,ep, f1, . . . , fp−1 is a well-chosen base of TmV ; denote by e∗1 , . . . ,e∗p , f ∗1 , . . . , f ∗p−1

the dual base of T∗mV . The distribution Ft(m) is the symplectic foliation of

Πt(m)= e1∧ f1 + e2∧ f2 + ···+ ep−1∧ fp−1 + t
(
f1∧ e2 + f2∧ e3 + ···+ fp−1∧ ep

)
.

(1.11)
It is easy to see that the distribution annihilates the form

βt = e∗p + te∗p−1 + ···+ tp−1e∗1 (1.12)

and that Ft(m) contains 〈 f1, . . . , fp−1〉.
Take a submanifold V of dimension p transverse to 〈 f1, . . . , fp−1〉, the traces of Ft on

V form a Veronese web of codim 1 defined by

αt = e∗p + te∗p−1 + ···+ tp−1e∗1 . (1.13)

The theory initiated by Gelfand-Zakharevitch and ended by J. Turiel says that the local
invariants of the pair (Π0,Π∞) are the local invariants of this Veronese foliation restricted
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to V . Latter, the pairs (Π0,Π∞) such that Πt is of constant corank c > 1 where inves-
tigated and, by the use of the same method, one obtain Veronese webs in the sense of
Definition 1.4.

2. Link between (p+ 1)-webs and Veronese webs

Let (Ft)t be a Veronese web of codimension c over the pc-dimensional manifold V . As-
sume that t1, . . . , tp+1 are two by two distinct then (Fti)i=1,...,p+1 gives a (p+ 1)-web. In fact,
(Fti) is locally given by

α1
ti = 0, . . . ,αcti = 0, (2.1)

with

αit = γi0 + γi1t+ ···+ γip−1t
p−1. (2.2)

Since

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 ti1 ··· t
p−1
i1

1 ti2 ··· t
p−1
i2

...
...

...
...

1 tip ··· t
p−1
ip

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.3)

is a Van Der Monde determinant, it is clear that

α1
ti1

, . . . ,αcti1 , . . . ,α1
tip

, . . . ,αctip (2.4)

form a base of T∗V for all i1, . . . , ip, two by two distinct with {i1, . . . , ip} ⊂ {1, . . . , p + 1},
therefore we have the condition of general position.

The most difficult problem is the passage from the (p+ 1)-webs to Veronese webs. We
have a problem of interpolation of (Fi)i=1,...,p+1 to a curve (Ft)t∈P1R having good proper-
ties. We decompose this into two problems.

Algebraic interpolation. Given p+ 1 subspaces of codimension c in a pc-dimensional vec-
tor space V in general position, find a natural curve of subspaces of codimension c in V
passing through the given p+ 1 subspaces. It is a problem in Gc(V) the Grassmannian of
subspaces of codimension c in V . Let us assume that this problem has a unique solution.
Given p+ 1 distributions of codimension c on a manifold of dimension pc, there would
exist a natural method to interpolate these p + 1 distributions F1,F2, . . . ,Fp+1 in a curve
Ft of distributions.

Integrability. Under which condition these distributions are integrable? For example, is
the integrability of F1,F2, . . . ,Fp+1 sufficient to guaranty that of Ft for all t?

In the next sections, we will investigate these questions.
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3. Interpolation of a finite family of subspaces

Let V be a vector space and Gc(V) the Grassmannian of its codimension c subspaces. We
put N = dimV − c and denote by Sc(V) the open subset of VN formed by N-uples of
linearly independent vectors of V . Let β : P1R→Gc(V); it is said to be a degree q curve if
it pulls back as follows:

β̂ :R2 \ 0−→ Sc(V), β̂(x, y)= (β1(x, y), . . . ,βN (x, y)
)
, (3.1)

where βi has the form

βi =
∑

j

β
j
i (x, y)ej , (3.2)

(ej) j is a basis of V , and β
j
i are homogeneous polynomials of degree q; we have the fol-

lowing commutative diagram:

R2 \ 0
β̂

P

Sc(V)

P

P1R
β

Gc(V)

(3.3)

where P are canonical projections (P(v1, . . . ,vn)= 〈v1, . . . ,vn〉).
Let F1, . . . ,Fp+1 be given points of Gc(V); we will say that β : P1R→ Gc(V) is a min-

imal interpolation of (F1, . . . ,Fp+1) if β is a curve of minimal degree q passing through
F1, . . . ,Fp+1.

It is a difficult problem to find such minimal interpolations and see if they are unique:
in general it is wrong. Furthermore, these curves are not independent of the choice of the
parametrization: the sequences of ti such that β(ti)= Fi. In the sequel, we will show that
there are unique minimal interpolations in two important cases:

(i) the case where dimV = pc (dimFi = (p− 1)c),
(ii) the case where dimV = pN (dimFi =N).

In the first case, the minimal interpolations are pencils, that is, degree 1 curves, of c-
codimensional subspaces; in the second case we recover Veronese curves and their gener-
alization. Moreover, these cases are dual to each other.

3.1. Interpolation by pencils. In this section, we deal with a family F1, . . . ,Fp+1 of c-
codimensional subspaces of the pc-dimensional vector space V . We suppose that this
family is in general position: this means that, for every i, we have F1∩···∩Fi−1∩Fi+1∩
···∩Fp+1 = {0}.

Fix a system of linear coordinates (x1
1, . . . ,xc1; x1

2, . . . ,xc2; . . . ; x1
p, . . . ,xcp) such that the

equations of Fi are x1
i = 0, . . . ,xci = 0 for i= 1, . . . , p, and Fp+1 has equations

∑
i x

1
i = 0, . . . ,

∑
i x

c
i = 0. We denote by

(
e1

1, . . . ,ec1; e1
2, . . . ,ec2; . . . ; e1

p, . . . ,ecp
)

(3.4)

the corresponding basis.
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We fix also a system t1, . . . , tp of two by two different real numbers.
A pencil of c-dimensional subspaces is a degree 1 curve β of c-dimensional subspaces

of V : this means that β pulls back as a curve β̂ : R2 \ 0 → Sc(V) with β̂(x, y) = (xa1 +
yb1, . . . ,xa(p−1)c + yb(p−1)c), where aj and bj are vectors of V . With the identification t ≡
[t : 1], we can write β(t) = (G− tId)β(∞), where β(∞) is the space generated by the aj

and G : V →V is any linear map such that G(aj)=−bj for every j.
We want to interpolate the Fi by such a pencil. More precisely, we want a pencil β with

β(ti)= Fi, for i= 1, . . . , p and β(∞)= Fp+1. A simple solution is obtained by choosing G

such that G(e
j
i )= tie

j
i for every i= 1, . . . , p and j = 1, . . . ,c we have

β(∞)= 〈e jp− e
j
k; k = 1, . . . , p− 1; j = 1, . . . ,c

〉
, (3.5)

then

β(t)= 〈(tp− t
)
e
j
p−
(
tk − t

)
e
j
k; k = 1, . . . , p− 1; j = 1, . . . ,c

〉
, (3.6)

and it is easy to see that β(ti) has equations x1
i = 0, . . . ,xci = 0.

In the sequel, we will investigate the uniqueness of this pencil.
First we will suppose there is another linear map G′ with (G′ − tiId)(Fp+1) = Fi for

every i= 1, . . . , p. Put

G′
(
e
j
p− e

j
k

)
:= u

j
k =

∑

r=1···c,s=1···p
a
jr
kse

r
s . (3.7)

Then equations x
j
r (usi − tr(esp − esi)) = 0 for every s, j = 1, . . . ,c, i = 1, . . . , p − 1 and r =

1, . . . , p lead to

u
j
k = tpe

j
p− tke

j
k (3.8)

for every j = 1, . . . ,c and k = 1, . . . , p− 1. So the pencil attached to G′ is exactly β (the one
attached to G).

We can remark that the differenceΔ=G′ −G is a linear mapping ofV such thatΔ(e
j
p−

e
j
k)= 0 for every j and k. So Δ is characterized by the fact that there are arbitrary vectors

v1, . . . ,vc of V with Δ(e
j
k) = v j , for every j and k. In particular, we can always manage

such that G′ is invertible: if the ti are all nonzero, then G is invertible; if, for example, t1
vanishes, we can choose v j = e

j
1 for every j.

Next we remark that coordinates (x
j
i )

j=1,...,c
i=1,...,p are unique up to a linear change of the

form (x
j
i )′ =∑s=1,...,c a

j
s xsi ; this means that the matrix of this linear change is a pc× pc

matrix which has only null terms except p diagonal c× c blocs all equal to A= (ars )r,s=1,...,c.
This induces that β does not depend on the particular choice of the adapted coordinates

x
j
i .

Finally, we want to see how this interpolation depends on the parametrization, that
is, on the sequence t1, . . . , tp. First of all, remark that, if β is a pencil as above, then we
can perform a projective transform on the parameter space P1R and we keep the pencil.
This allows us to impose the values at three different points: this justifies a posteriori
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the particular choice of β(∞) in the preceding calculations. We could also have fixed two
other values, for example, t1 = 0 and t2 = 1 (imposing β(0) = F1 and β(1) = F2). The
following lemma says that two pencils which interpolate F1, . . . ,Fp+1 are the same if and
only if the sequences of parameters τ1, . . . ,τp+1, where these pencils pass respectively at
F1, . . . ,Fp+1, are the same up to a projective transformation of P1R.

Lemma 3.1. Let β and β′ be two pencils, interpolating F1, . . . ,Fp+1, such that

β(∞)= β′(∞)= Fp+1, β(0)= β′(0)= F1, β(1)= β′(1)= F2. (3.9)

Let ti and t′i for i= 3, . . . , p be the values of the parameters such that Fi = β(ti)= β′(t′i ). Then
β and β′ have the same image ({β(t); t ∈ P1R} = {β′(t); t ∈ P1R}) if and only if ti = t′i for
every i= 3, . . . , p.

Proof. The preceding calculations give the “if” part. To prove the converse, we suppose
that, for each t ∈ P1R, there is t′ ∈ P1R, with

β(t)= β′(t′). (3.10)

Formula (3.6) gives

〈(
tp− t

)
e
j
p−
(
tk − t

)
e
j
k; k = 1, . . . , p− 1; j = 1, . . . ,c

〉

= 〈(t′p− t′
)
e
j
p−
(
t′k − t′

)
e
j
k; k = 1, . . . , p− 1; j = 1, . . . ,c

〉
,

(3.11)

for every t. From this, we deduce equations

(
tp− t

)(
t′k − t′

)= (t′p− t′
)(
tk − t

)
, (3.12)

so relations

t′ = t
t′p− t′k
tp− tk

+
tpt

′
k − t′ptk
tp− tk

, (3.13)

for k = 1, . . . , p− 1. Then hypothesis t1 = t′1 and t2 = t′2 imply tk = t′k for every k. �

3.2. Veronese interpolations. To each subspace F of the vector space V , we associate its
annihilator F◦ which is the subset of V∗ formed by the linear forms on V which vanish
on F. Now if β is an interpolation of the family of subspaces F1, . . . ,Fp+1 of V , then β◦,
defined by β◦(t)= (β(t))◦, is an interpolation of the family of subspaces F◦1 , . . . ,F◦p+1.

Now suppose that V has dimension pN and the Fi have dimension N . Then F◦i have
codimension c :=N and the preceding section gives pencil interpolations, in the general
position cases, for F◦1 , . . . ,F◦p+1. Denote by γ such a pencil; we have (formula (3.6))

γ(t)= 〈(tp− t
)
α
j
p−
(
tk − t

)
α
j
k; k = 1, . . . , p− 1; j = 1, . . . ,c

〉
, (3.14)

for a good basis (α
j
k)i,k of V∗ and a parametrization such that

γ(∞)= F◦p+1, γ
(
ti
)= F◦i (3.15)
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for i= 1, . . . , p. If (e
j
k)i,k is the dual basis to (α

j
k)i,k, we have

γ◦(t)=
〈 p∑

i=1

(
t1− t

)···(ti−1− t
)(
ti+1− t

)···(t1− t
)
e
j
i ; j = 1, . . . ,c

�
. (3.16)

So we get a degree p− 1 interpolation of F1, . . . ,Fp+1. In the case where N(= c) = 1,
we can prove that γ◦ gives a Veronese curve in P(V). For this reason, we call these γ◦

Veronese interpolations, even in the case N > 1. Uniqueness properties of pencil interpo-
lations translate into corresponding uniqueness properties for Veronese interpolations.

Example 3.2. For p = 2, a Veronese interpolation is also a pencil.

Example 3.3. For p = 3 and N = 1, a Veronese interpolation is a degree 2 curve in a
projective plane: it is a conic. We recover that there are conics passing by four given points,
and the Lemma 3.1 is the generalization of the classical result which says that such a conic
is characterized by the cross-ratio of these four points on the conic.

4. Integrability of distributions

4.1. Distributions. The results of the preceding section are purely algebraic but they pass
to smooth distributions on manifolds. For example, when we have (p+ 1) smooth distri-
butions F1, . . . ,Fp+1 of codimension c, in general position, on a manifold W of dimension
pc, we can work point by point in each tangent space TmW to construct the distribution
Ft which interpolate them. The uniqueness of this procedure ensures their smoothness.
To be coherent with the vocabulary of our second section, we call these 1-parameter fam-
ilies of distribution Veronese distributions.

In the neighborhood � of each point m, we have a family of operators G(m), depend-
ing smoothly on m, such that

Ft(m)= (G(m)− tI
)
F∞(m). (4.1)

4.2. Integrability theorem. In this section, we will give a short proof of the following
theorem of Panasyuk (see [14]).

Theorem 4.1. Let (Ft)t be a Veronese distribution on a pc-dimensional manifold W . The
distribution Ft is integrable for any t if and only if there exist p+ 2 values of t for which Ft is
integrable.

This theorem is not evident in the covariant version, that is, when we define distribu-
tions as zeros of set of forms α1(t), . . . ,αc(t) using the Frobenius theorem, the integrability
of Ft, for any t, is locally equivalent to

dαi(t)∧α1(t)∧···∧αc(t)≡ 0, (4.2)

for all t. This gives a polynomial equation of degree (c+ 1)p in t. It will vanish identically
if it vanishes at (c+ 1)p+ 1 values of t which is, in general, bigger than p+ 2.
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It is not also evident in contravariant version, that is, when we define distribution by
means of vector fields: Ft is integrable, for any t, if and only if, for any t,

[
Xi(t),Xj(t)

]∧X1(t)∧···∧X(p−1)c(t)= 0, (4.3)

by denoting Ft = 〈X1, . . . ,X(p−1)c〉 where X1, . . . ,X(p−1)c form a local basis. This gives a
polynomial equation of degree 2 + (p− 1)c. It will vanish identically if it vanishes at 3 +
(p− 1)c values of t, still bigger than p+ 2.

Proof. It is sufficient to work locally in a neighborhood of any point of W : we choose
invertible operators G(m), depending smoothly on m, with Ft(m)= (G(m)− tI)F∞(m).
We choose also a family of vector fields (v1, . . . ,v(p−1)c) which generates locally F∞(m).

The integrability of Ft is given by equation

[
(G− tI)vi, (G− tI)vj

]=
∑

k

θki j(G− tI)vk (4.4)

for any i, j.
Let us assume that (Ft) is integrable for p+ 2 values of t; we can assume that it is true

for t = 0,∞ and t1, . . . , tp two by two distinct. This implies relations

[
vi,vj

]=
∑

k

αki jvk (4.5)

(for t =∞),

[
Gvi,Gvj

]=
∑

k

βki jG
(
vk
)

(4.6)

(for t = 0). We have

[
(G− tI)vi, (G− tI)vj

]= [Gvi,Gvj
]− tΔ

(
vi,vj

)
+ t2[vi,vj

]
, (4.7)

with Δ(vi,vj)= [Gvi,vj] + [vi,Gvj]. We introduce the Nijenhuis torsion NG [12] of G:

NG
(
vi,vj

)= [Gvi,Gvj
]−GΔ

(
vi,vj

)
+G2[vi,vj

]
. (4.8)

Then we get

Δ
(
vi,vj

)=G−1[Gvi,Gvj
]

+G
[
vi,vj

]−G−1NG
(
vi,vj

)
. (4.9)

Thus the first member of formula (4.7) becomes
(
I − tG−1)[Gvi,Gvj

]− t
(
(G− tI)

[
vi,vj

])
+ tG−1NG

(
vi,vj

)

=G−1(G− tI)
[
Gvi,Gvj

]− t
(
(G− tI)

[
vi,vj

])
+ tG−1NG

(
vi,vj

)

=G−1(G− tI)
∑

k

βki jG
(
vk
)− t

(
(G− tI)

∑

k

αki jvk

)
+ tG−1NG

(
vi,vj

)

= (G− tI)
∑

k

γki j(t)vk + tG−1NG
(
vi,vj

)

(4.10)
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with γki j(t)= βki j − tαki j . The integrability for t = t1, t2, . . . , tp gives us equations

trG
−1NG

(
vi,vj

)= (G− trI
)
(∑

k

μki j
(
tr
)
vk

)
(4.11)

for r = 1, . . . , p.
Therefore G−1NG(vi,vj) is in

⋂p
r=1 Ftr . As we have

p⋂

r=1

Ftr = {0}, (4.12)

(tr two by two distinct), we can conclude that

G−1NG
(
vi,vj

)= 0, (4.13)

then NG(vi,vj)= 0, for any i, j. So we have, for any t,

[
(G− tI)vi, (G− tI)vj

]=
∑

k

θki j(G− tI)vk. (4.14)

So we obtain the integrability of each Ft. �

Remark 4.2. In his study of Veronese webs (see [16, 17]), Turiel invented the above tech-
nics. He fixes p+ 1 foliations of the family, say F∞ and Fti , for i= 1, . . . , p. The p distribu-
tions Hi, defined by

Hi(m)=
⋂

j=1,...,i−1, i+1,...,p

F j(m), (4.15)

for i= 1 . . . , p, are integrable and decompose, at each pointm, the tangent space in a direct
sum. So the operator G defined by G= tiI in restriction to every Hi, has a null Nijenhuis
torsion. This simplifies the above calculations; nevertheless the integrability of F∞ and Fti ,
for i= 1, . . . , p does not ensure that of the whole family because either G is not invertible
or we do not know if F0 is integrable. As we saw in the paragraph preceding Lemma 3.1,
we can replace our G with G′ = G+Δ for a well-chosen Δ; doing this we can get G′ with
nonzero Nijenhuis torsion.
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Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
E-mail address: dufourj@math.univ-montp2.fr

mailto:tbouetou@darboux.math.univ-montp2.fr
mailto:dufourj@math.univ-montp2.fr

	1. Introduction
	1.1. Classical webs
	1.2. Veronese webs

	2. Link between (p+1)-webs and Veronese webs
	3. Interpolation of a finite family of subspaces
	3.1. Interpolation by pencils
	3.2. Veronese interpolations

	4. Integrability of distributions
	4.1. Distributions
	4.2. Integrability theorem

	References

