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LetG be any Hausdorff topological group and let βGX denote the maximalG-compactifi-
cation of a G-Tychonoff space X . We prove that if X and Y are two G-Tychonoff spaces
such that the product X ×Y is pseudocompact, then βG(X ×Y)= βGX ×βGX .
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1. Introduction

Let G be any Hausdorff topological group and let βGX denote the maximal G-compac-
tification of a G-Tychonoff space X (i.e., a Tychonoff G-space possessing a G-compac-
tification). Recall that a completely regular Hausdorff topological space is called pseudo-
compact if every continuous function f : X →R is bounded.

In this paper, we prove that if X and Y are two G-Tychonoff spaces such that the
product X ×Y is pseudocompact, then βG(X ×Y)= βGX ×βGX (see Theorem 2.2). This
is a G-equivariant version of the well-known result of Glicksberg [16], which for G a
locally compact group was proved earlier by de Vries in [10]. Note that even in the case
of a locally compact acting group G, our proof is shorter than that of [10, Theorem 4.1].
It follows from Proposition 2.7 that the equality βG(X ×Y)= βGX ×βGX does not imply,
in general, the pseudocompactness of X ×Y even if X and Y both are infinite (cf. [16,
Theorem 1]).

Theorem 2.10 says that if a pseudocompact group G acts continuously on a pseudo-
compact space X , then βGX = βX .

Let us introduce some terminology we will use in the paper.
Throughout the paper, all topological spaces are assumed to be Tychonoff (i.e., com-

pletely regular and Hausdorff). The letter “G” will always denote a Hausdorff (and hence,
completely regular) topological group unless otherwise stated.

For the basic ideas and facts of the theory of G-spaces or topological transformation
groups, we refer the reader to [5, 7, 11]. However, we recall below some more special
notions and facts we need in the paper.
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2 On the maximal G-compactification

By a G-space we mean a Tychonoff space X endowed with a continuous action G×
X → X of a topological group G. A continuous map of G-spaces f : X → Y is called a
G-map or an equivariant map if f (gx)= g f (x) for all x ∈ X and g ∈G.

If X is a G-space and S a subset of X , then G(S) denotes the G-saturation of S, that
is, G(S) = {gs | g ∈ G, s ∈ S}. In particular, G(x) denotes the G-orbit {gx ∈ X | g ∈ G}
of x. If G(S)= S, then S is said to be an invariant set. The orbit space endowed with the
quotient topology is denoted by X/G.

For a closed subgroup H ⊂ G, by G/H we will denote the G-space of cosets {gH | g ∈
G} under the action induced by left translations.

On any product of G-spaces we always consider the diagonal action of G.

AG-compactification of aG-space X is a pair (b,bX), where b : X → bX is aG-homeo-
morphic embedding into a compact G-space bX such that the image b(X) is dense in bX .
Usually bX alone is a sufficient denotation. We will say that two G-compactifications
b1X and b2X are equivalent if there exists a G-homeomorphism f : b1X → b2X such
that f (b1(x))= b2(x) for all x ∈ X . Clearly, the equivalence of G-compactifications is an
equivalence relation in the class of all G-compactifications of X . We will identify equiva-
lent G-compactifications; any class of equivalent G-compactifications will be denoted by
the same symbol bX , where bX is any G-compactification from this equivalence class. An
order relation in the family of all G-compactifications is defined as follows: b1X � b2X
if there exists a G-map f : b2X → b1X such that f b2 = b1. It is easy to see that b1X and
b2X are equivalent if and only if b1X � b2X and b2X � b1X . We will write b1X = b2X
whenever b1X and b2X are equivalent G-compactifications. In a standard way, one can
show that each nonempty family of G-compactifications of X has a least upper bound
with respect to the order �. In particular, if a G-space X has a G-compactification, then
there exists a largest G-compactification βGX with respect to the order �; βGX is called
the maximal G-compactification of X .

A continuous real-valued function f : X →R on a G-space X is said to be G-uniform
if for any ε > 0, there exists a neighborhood U of the identity element in G such that
| f (gx)− f (x)| < ε for all x ∈ X , g ∈U .

A G-space X is said to be G-Tychonoff if for any closed set A ⊂ X and any point x ∈
X \A, there exists aG-uniform function f : X → [0,1] such that f (x)= 0 andA⊂ f −1(1).

It is evident that each continuous function on a compact G-space is G-uniform, and
hence every compact G-space is G-Tychonoff. Since an invariant subspace of a G-Tych-
onoff space is again G-Tychonoff, we see that if a G-space has a G-compactification,
then it is G-Tychonoff. The converse is also true (see, e.g., [1, 2]). Thus, a G-space is
G-Tychonoff if and only if it admits a G-compactification, and in particular, a maximal
G-compactification. In [8, 9], it was proved that if G is a locally compact group, then ev-
ery Tychonoff G-space is G-Tychonoff. The local compactness of G is essential here (see
[18]).

Given a space Z, we will denote by C(Z,R) the space of all continuous real-valued
functions f : Z → R equipped with the compact-open topology (see, e.g., [13, Chapter
12, Section 1]). A subset K ⊂ C(Z,R) is called equicontinuous at a point z0 ∈ Z if for any
ε > 0, there exists a neighborhood O of z0 ∈ Z such that | f (z)− f (z0)| < ε for all z ∈ O
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and f ∈ K . If K is equicontinuous at each point z0 ∈ Z, then we will say that it is an
equicontinuous set.

If additionally Z is a G-space for a group G, then one can define the following (in
general not continuous) action of G on C(Z,R):

(gψ)(z)= ψ(g−1z
)
, ψ ∈ C(Z,R), z ∈ Z, g ∈G. (1.1)

If G is locally compact, then this action is continuous, otherwise it may be discontinuous
(see, e.g., [7, Chapter I, Section 2.1]). However, the following result is true.

Lemma 1.1. Let Z be a G-space and K an invariant equicontinuous subset of C(Z,R). Then
the closure K is also an invariant set and the restriction of the action (1.1) to G×K is con-
tinuous.

Proof. For every g ∈ G, define the map g∗ : C(Z,R) → C(Z,R) by setting g∗(ψ) = gψ,
where gψ is defined as in (1.1). First we show that g∗ is a continuous map.

Indeed, let C be a compact set in Z,U an open set inR, andM(C,U)= {ψ ∈ C(Z,R) |
ψ(C) ⊂ U}. Since all the sets of the form M(C,U) constitute a subbase of the compact-
open topology of C(Z,R) and g−1∗ (M(C,U))=M(g−1C,U), we infer that g∗ is continu-
ous.

Now choose ϕ ∈ K and h ∈ G arbitrary. One needs to show that hϕ ∈ K . Let V be a
neighborhood of gϕ. Since the above-defined map h∗ is continuous, the set h−1∗ (V) =
h−1V is a neighborhood of ϕ. Consequently, h−1(V)∩K �= ∅, which is equivalent to
V ∩ hK �= ∅. But hK = K because K is invariant. Hence, V ∩K �= ∅, as required. Thus,
the proof that the closure K is an invariant subset is complete.

Next we observe that the closure of an equicontinuous set is again equicontinuous [17,
Chapter 7, Theorem 14]; so K is an equicontinuous invariant subset of C(Z,R).

Now the continuity of the restriction of the action (1.1) to G×K follows easily from
the continuity of the evaluation map ω : K × Z → R defined by ω(ψ,z) = ψ(z), ψ ∈ K ,
z ∈ Z (see, e.g., [17, Chapter 7, Theorem 15]). We refer the reader to [2, Lemma 2] for
more details. �

We will need this lemma in the proof of Theorem 2.2.
In what follows, we will need also the following two characterizations of the maximal

G-compactification βGX established in [8] (see also [4]).

Proposition 1.2. Let G be a group and X a G-Tychonoff space. Then the following hold.
(1) EachG-map f : X → B to a compactG-space has a uniqueG-extension F : βGX → B.
(2) Let bX be a G-compactification of X such that every G-map f : X → B to a compact

G-space has a G-extension F : bX → B. Then bX is equivalent to βGX .

Proposition 1.3. Let G be a group and X a G-Tychonoff space. Then the following hold.
(1) Each bounded G-uniform function f : X → R possesses a unique continuous exten-

sion F : βGX →R.
(2) If bX is a G-compactification such that each boundedG-uniform function f : X →R

admits a continuous extension F : bX →R, then bX is equivalent to βGX .
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2. Main results

Lemma 2.1. Let G be any group, X a G-space, and A a dense G-subset of X . Assume that
f : X →R is a continuous map such that the restriction f |A : A→R is G-uniform. Then f
is G-uniform as well.

Proof. Define the map f ′ : X → C(G,R) by setting f ′(x)(g) = f (gx), x ∈ X , g ∈ G. The
continuity of f ′ follows from the fact that the compact-open topology is proper (see [14,
Theorem 3.4.1]).

It is easy to see that the G-uniformness of f is just equivalent to the equicontinuity of
the image f ′(X) in C(G,R). Since the restriction f |A is G-uniform, we infer that the set
f ′(A) is equicontinuous. But closure of an equicontinuous set is again equicontinuous
[17, Chapter 7, Theorem 14]; so f ′(A) is equicontinuous. By continuity of f ′, f ′(X) ⊂
f ′(A), yielding that f ′(X) is also equicontinuous. Hence, f is G-uniform. �

Theorem 2.2. Let G be any group and let X and Y be G-Tychonoff spaces such that X ×Y
is pseudocompact. Then βG(X ×Y)= βGX ×βGY .

Proof. According to Proposition 1.3, it suffices to prove that every bounded G-uniform
function f : X ×Y →R has a continuous extension F : βGX ×βGY →R.

The idea is first to extend f to a bounded G-uniform function ϕ : βGX ×Y → R, and
then to extend in a similar way ϕ to obtain the desired extension F. In the nonequivariant
case, this is due to Todd [21].

Define the map f ′ : X → C(G×Y ,R) by setting

f ′(x)(g, y)= f (gx,g y) ∀x ∈ X , (g, y)∈G×Y. (2.1)

Continuity of f ′ follows from the fact that the compact-open topology is proper (see
[13, Theorem 3.1]).

Claim 2.3. The image f ′(X) is an equicontinuous set in C(G×Y ,R).

Proof of the claim. Let ε > 0 and (g0, y0)∈G×Y . We have to show that there exist neigh-
borhoods U of g0 and V of y0 such that

∣
∣ f ′(x)(g, y)− f ′(x)

(
g0, y0

)∣∣ < ε ∀x ∈ X , g ∈U , y ∈V. (2.2)

Since f is a G-uniform function, one can choose a neighborhood U of the unity in G
such that

∣
∣ f (tx, ty)− f (x, y)

∣
∣ <

ε

3
∀(x, y)∈ X ×Y , t ∈U. (2.3)

Then
∣
∣ f ′(x)(g, y)− f ′(x)

(
g0, y0

)∣∣= ∣∣ f (gx,g y)− f
(
g0x,g0y0

)∣∣

≤ ∣∣ f (gx,g y)− f
(
gx,g0y0

)∣∣+
∣
∣ f
(
gx,g0y0

)− f
(
gx,g y0

)∣∣

+
∣
∣ f
(
gx,g y0

)− f
(
g0x,g0y0

)∣∣.

(2.4)
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It follows from (2.3) that for all x ∈ X and g ∈Ug0, we have

∣
∣ f
(
gx,g y0

)− f
(
g0x,g0y0

)∣∣ <
ε

3
. (2.5)

It is known that the formula

ϕ(y)= sup
x∈X

∣
∣ f (x, y)− f

(
x,g0y0

)∣∣, y ∈ Y , (2.6)

defines a continuous function ϕ : Y →R (see [15, Lemma 1.3]).
Since ϕ(g0y0)= 0, we conclude that there is a neighborhood V of g0y0 in Y such that

ϕ(v) < ε/3 for all v ∈V . Hence, one has

∣
∣ f (x,v)− f

(
x,g0y0

)∣∣ <
ε

3
∀v ∈V , x ∈ X. (2.7)

By continuity of the action on Y , there exist neighborhoods O and W of g0 and y0,
respectively, such that OW ⊂ V and O ⊂ Ug0. Consequently, if g ∈ O and y ∈W , then
g y ∈V and g y0 ∈V . Hence, (2.7) yields for all x ∈ X

∣
∣ f (gx,g y)− f

(
gx,g0y0

)∣∣ <
ε

3
,

∣
∣ f
(
gx,g y0

)− f
(
gx,g0y0

)∣∣ <
ε

3
. (2.8)

Now, (2.4), (2.5), and (2.8) imply for all g ∈Ug0 and y ∈W that

∣
∣ f ′(x)(g, y)− f ′(x)

(
g0, y0

)∣∣ <
ε

3
+
ε

3
+
ε

3
= ε, (2.9)

as required. Thus, f ′(X) is indeed an equicontinuous set, and the proof of the claim is
complete. �

Now we continue with the proof of Theorem 2.2. Consider G× Y as a G-space en-
dowed with the action h∗ (g, y)= (gh−1,hy). Then the induced action (1.1) becomes the
following action:

(hψ)(g, y)= ψ(gh,h−1y
) ∀ψ ∈ C(G×Y ,R), g,h∈G, y ∈ Y. (2.10)

We claim that f ′ is algebraically equivariant, that is, h f ′(x)= f ′(hx) for all x ∈ X and
h∈G. Indeed, if (g, y)∈G×Y , then we have

(
h f ′(x)

)
(g, y)= f ′(x)

(
gh,h−1y

)= f (ghx,g y)= f ′(hx)(g, y)= (h f ′(x)
)
(g, y),

(2.11)

which means that h f ′(x)= f ′(hx).
Consequently, f ′(X) is an invariant subset of C(G× Y ,R). By Lemma 1.1 and the

above claim, the closure T = f ′(X) also is an invariant subset of C(G×Y ,R), and the
restriction of the action (2.10) to G×T is continuous.

Further, since f ′(X) is a bounded subset of C(G×Y ,R), it follows from the Arzela-
Ascoli theorem [13, Theorem 6.4] that T is compact.

Thus, T is a compact G-space. Next, since f ′ : X → T is a G-map, by Proposition 1.2,
f ′ extends to a G-map F′ : βGX → T ⊂ C(G×Y ,R).
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Define the map φ : βGX ×Y → R by the formula φ(z, y) = F′(z)(e, y), where (z, y) ∈
βGX ×Y and e is the unity of G. Clearly, φ is bounded.

Since the evaluation map ω : T × (G×Y)→ R defined by ω(ψ, t) = ψ(t), ψ ∈ T , t ∈
G× Y , is continuous (see, e.g., [17, Chapter 7, Theorem 15]), we infer that φ is also
continuous.

If (x, y)∈ X ×Y , then φ(x, y)= F′(x)(e, y)= f ′(x)(e, y)= f (x, y), showing that φ ex-
tends f . Since f is G-uniform, it follows from Lemma 2.1 that φ is G-uniform.

Since the product of a pseudocompact space and a compact space is pseudocompact
(see, e.g., [14, Corollary 3.10.27]), βGX ×Y is a pseudocompact G-space. Consequently,
by the same way, one can prove that the bounded G-uniform function φ : βGX ×Y → R
extends to a continuous function F : βGX × βGY → R, which is the desired extension of
f . This completes the proof. �

Remark 2.4. For G a locally compact group, Theorem 2.2 was proved earlier by de Vries
in [10] in a different way. If G, as a topological space, is a k-space (i.e., a quotient image
of a locally compact space) and X is a pseudocompact G-space, then βGX = βX (see [10,
Lemma 5.5]). Hence, Theorem 2.2 follows in this case directly from the classical result of
Glicksberg [16] (this is just [10, Corollary 5.7]).

In the following lemma, we just list two known important cases when the product of
two pseudocompact spaces is pseudocompact.

Lemma 2.5. The product X ×Y of two spaces is pseudocompact, if at least one of the follow-
ing conditions is fulfilled:

(1) X is a pseudocompact k-space and Y is a pseudocompact space;
(2) X is a pseudocompact topological group and Y is a pseudocompact space.

Proof. For the first statement, see, for example, [14, Theorem 3.10.26]. The second one is
proved in [20, Corollary 2.14]. �

Corollary 2.6. Let G be any group, H a closed subgroup of G such that G/H is compact,
and let X be a pseudocompact G-Tychonoff space. Then βG(G/H ×X)=G/H ×βGX .

The following simple result shows that the converse of Theorem 2.2 is not true even if
X and Y both are infinite (cf. [16, Theorem 1]).

Proposition 2.7. Let G be any group, H a closed subgroup of G such that G/H is compact,
and let X be a Tychonoff space endowed with the trivial action of G. Then βG(G/H ×X)=
G/H ×βX .

Proof. Evidently, G/H × βX is a G-compactification of G/H × X . Hence, according to
Proposition 1.3, it suffices to prove that every bounded G-uniform function f : G/H ×
X →R has a continuous extension F :G/H ×βX →R.

Define a function f ′ : X → C(G/H ,R) by f ′(x)(t) = f (t,x), where (t,x) ∈ G/H ×X .
Then f ′ is continuous, and it follows from the G-uniformness of f that the image f ′(X)
is an equicontinuous set in C(G/H ,R). Besides, the set f ′(X)(t0)= { f ′(x)(t0) | x ∈ X} is
bounded for all t0 ∈G/H . Consequently, by the Arzela-Ascoli theorem [13, Theorem 6.4],
f ′(X) has a compact closure f ′(X) in C(G/H ,R). Hence, f ′ has a continuous extension
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F′ : βX → f ′(X)⊂ C(G/H ,R). Define F : G/H × βX →R by F(t,z)= f ′(z)(t). The com-
pactness of G/H insures that F is continuous (see, e.g., [14, Theorem 3.4.3]). It remains
only to observe that F extends f . �

Recall that a G-space X is called free if for every x ∈ X , the equality gx = x implies that
g = e, the unity of G.

Below, we will need the following well-known result.

Lemma 2.8. Let G be a compact group and X a free G-space. Then (G×X)/G is G-homeo-
morphic to X , where G acts on the orbit space (G×X)/G according to the rule h∗G(g,x)=
G(gh−1,x).

Proof. The desired G-homeomorphism f : (G×X)/G→ X is defined as follows:

f
(
G(g,x)

)= g−1x ∀(g,x)∈G×X , (2.12)

where G(g,x) stands for the G-orbit of the pair (g,x).
It is easy to verify that f is continuous and bijective. The closedness of f follows from

that of the map G×X → X , (g,x) → g−1x (see [5, Chapter I, Theorem 1.2]). �

If the action of G on X is not trivial, then Proposition 2.7 is no longer true. Namely,
we have the following proposition.

Proposition 2.9. LetG be an infinite, compact, metrizable group andX a finite-dimension-
al, paracompact, noncompact, free G-space. Then βG(G×X) �=G×βGX .

Proof. Suppose the contrary, that βG(G×X) = G× βGX . Passing to the orbit spaces, we
have

G×βGX
G

= βG(G×X)
G

. (2.13)

Using the formula (βGZ)/G= β(Z/G) (see [4, Corollary 4.10]), we get

βG(G×X)
G

= β
(
G×X
G

)
. (2.14)

Hence,

G×βGX
G

= β
(
G×X
G

)
. (2.15)

It is known that a finite-dimensional, paracompact, freeG-space has a free G-compac-
tification and in this case βGX is also a free G-space (see [3, Proposition 3.7]). Conse-
quently, by virtue of Lemma 2.8, one has that (G×X)/G= X and (G×βGX)/G= βGX . In
sum, we get βX = βGX , which implies that each bounded continuous function f : X →R
is G-uniform. However, this is not true.

Indeed, since X is paracompact and noncompact, it is not countably compact [14,
Theorem 3.10.3]. Hence, there exists a locally finite, disjoint, countable family {U1,U2, . . .}
of open subsets of X . Since G is infinite, one can choose a countable base {O1,O2, . . .} of
neighborhoods of the unity in G. For each n≥ 1, choose a point xn ∈Un arbitrary. Then,
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by continuity of the G-action at xn ∈ X , there exists an element gn ∈ On such that gn is
different from the unity of G and gnxn ∈Un, n= 1,2, . . . . Since X is a free G-space, we see
that gnxn �= xn, n≥ 1.

Now, let fn : X → [0,1] be a continuous function such that fn(xn) = 1, fn(gnxn) = 0
and fn(X \Un)= {0}. Define f (x)=∑∞

n=1 fn(x), x ∈ X . Since {U1,U2, . . .} is disjoint and
locally finite, f is a well-defined, continuous, bounded function X →R. Hence, it should
be also G-uniform, which yields a neighborhood Q of the unity in G such that | f (gx)−
f (x)| < 1/2 for all x ∈ X and g ∈Q. We choose n≥ 1 so large that On ⊂Q. This implies
that gn ∈Q, and hence 1= | f (gnxn)− f (xn)| < 1/2, a contradiction. �

In general, if the acting group G is not discrete, an action G×X → X cannot be ex-
tended (continuously) to an actionG×βX → βX ; the natural rotation-action of the circle
group on the plane R2 provides a counterexample (see [19, Section 1.5]). However, the
following result holds true.

Theorem 2.10. Let G be a pseudocompact group and X a pseudocompact G-space. Then X
is G-Tychonoff and βGX = βX .

Proof. The action α : G×X → X uniquely extends to a continuous map ϕ : β(G×X)→
βX . By Lemma 2.5(2), the product G× X is pseudocompact, and hence, according to
Glicksberg’s theorem [16], β(G×X)= βG× βX . Thus, ϕ can be treated as a continuous
map of βG× βX in βX which extends α. But remember that βG is a topological group
containing G as a dense subgroup (see, e.g., [6, Theorem 4.1(f)]).

Further, the fact that α satisfies the two algebraic conditions of action implies easily
that the map ϕ : βG× βX → βX satisfies these conditions as well. Thus, ϕ is an action,
and hence βX is a βG-space. In particular, βX is a G-space. Consequently, βX is a G-
compactification of X , and hence X is a G-Tychonoff space. It is also clear that βX is the
maximal G-compactification of X , that is, βGX = βX , as required. �

Remark 2.11. It is worth to mention that there exists a pseudocompact group whose
underlying topological space is not a k-space (see, e.g., [12, 20]).
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Distrito Federal, México
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