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1. Introduction

One of the interesting questions in the theory of functional equations concerning the
problem of the stability of functional equations is as follows: when is it true that a map-
ping satisfying a functional equation approximately must be close to an exact solution of
the given functional equation?

The first stability problem was raised by Ulam during his talk at the University of
Wisconsin in 1940 [18].

Given a group G1, a metric group (G2,d), and a positive number ε, does there exist a
δ > 0 such that if a mapping f : G1 → G2 satisfies the inequality d( f (xy), f (x) f (y)) < δ
for all x, y ∈G1, then there exists a homomorphismT : G1 →G2 such that d( f (x),T(x)) <
ε for all x ∈G1?

Ulam’s problem was partially solved by Hyers in 1941 in the context of Banach spaces
with δ = ε as shown below [7].

Suppose that E1, E2 are Banach spaces and f : E1 → E2 is a mapping for which there
exists ε > 0 such that ‖ f (x+ y)− f (x)− f (y)‖ < ε for all x, y ∈ E1. Then there is a unique
additive mapping T : E1 → E2 defined by Tx = limn→∞( f (2nx)/2n) such that ‖ f (x)−
T(x)‖ < ε for all x ∈ E1.

Now assume that E1 and E2 are real normed spaces with E2 complete, f : E1 → E2 is a
mapping such that for each fixed x ∈ E1 the mapping t �→ f (tx) is continuous on R, and
that there exist ε ≥ 0 and p �= 1 such that

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε

(‖x‖p +‖y‖p) (1.1)

for all x, y ∈ E1.
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It was shown by Rassias [15] for p ∈ [0,1) (and indeed p < 1) and Gajda [4] following
the same approach as in [15] for p > 1 that there exists a unique linear map T : E1 → E2

such that

∥
∥ f (x)−T(x)

∥
∥≤ 2ε

∣
∣2p− 2

∣
∣
‖x‖p (1.2)

for all x ∈ E1. This phenomenon is called Hyers-Ulam-Rassias stability. It is shown that
there is no analogue of Rassias result for p = 1 (see [4, 17]).

In 1994, a generalization of the Rassias theorem was obtained by Găvruţa as follows
[5].

Suppose (G,+) is an abelian group, E is a Banach space, and that the so-called admis-
sible control function ϕ : G×G→ [0,∞) satisfies

ϕ̃(x, y) := 1
2

∞
∑

n=0

2−nϕ
(

2nx,2ny
)

<∞ (1.3)

for all x, y ∈G. If f : G→ E is a mapping with

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ϕ(x, y) (1.4)

for all x, y ∈G, then there exists a unique mapping T : G→ E such that T(x+ y)= T(x) +
T(y) and ‖ f (x)−T(x)‖ ≤ ϕ̃(x,x) for all x, y ∈G.

Since then several stability problems of various functional equations have been inves-
tigated by many mathematicians. The reader is referred to [3, 16] for a comprehensive
account of the subject.

Generalized derivations first appeared in the context of operator algebras [8]. Later,
these were introduced in the framework of pure algebra [6]. There is also another gener-
alization of the notion of derivation which is called (σ ,τ)-derivation (cf. [9]).

Let � be an algebra and let � be an �-bimodule. A linear mapping μ : �→� is called
a generalized derivation if there exists a derivation (in the usual sense) δ : �→� such that
μ(ab)= aμ(b) + δ(a)b for all a,b ∈�. Familiar examples are the derivations from � to �
and all so-called inner generalized derivations; those are defined by μx,y(a)= xa− ay for
fixed arbitrary elements x, y ∈�. Moreover, every right multiplier (i.e., an additive map
h of � satisfying h(ab)= ah(b) for all a,b ∈�) is a generalized derivation.

The stability of derivations was studied by Park in [13, 14]. A discussion of the sta-
bility of the so-called (σ − τ)-derivations and a study of the so-called generalized (θ,φ)-
derivations are given in [2, 11], respectively. The present paper is devoted to the study of
the stability of generalized derivations. The results of this paper are a generalization of
those of Park’s papers [13, 14].

Throughout the paper, A denotes a unital normed algebra with unit 1 and � is a unit-
linked Banach �-bimodule in the sense that 1x = x1= x for all x ∈�.

2. Main results

Our aim is to establish the generalized Hyers-Ulam-Rassias stability of generalized der-
ivations. We extend main results of Park [14] to generalized derivations from a unital
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normed algebra to a unit linked Banach �-bimodule. We apply the direct method which
was first devised by Hyers [7] to construct an additive function from an approximate one
and use some ideas of [11, 13].

Theorem 2.1. Suppose f : �→� is a mapping with f (0)= 0 for which there exist a map
g : �→� and a function ϕ : �×�×�×�→ [0,∞) such that

ϕ̃(a,b,c,d) := 1
2

∞
∑

n=0

2−nϕ
(

2na, 2nb, 2nc, 2nd
)

<∞, (2.1)

∥
∥ f (λa+ λb+ cd)− λ f (a)− λ f (b)− c f (d)− g(c)d

∥
∥≤ ϕ(a, b, c, d) (2.2)

for all λ∈ T= {λ∈ C : |λ| = 1} and all a,b,c,d ∈�. Then there exists a unique generalized
derivation μ : �→� such that

∥
∥ f (a)−μ(a)

∥
∥≤ ϕ̃(a,a,0,0) (2.3)

for all a∈�.

Proof. Setting c = d = 0 and λ= 1 in (2), we have

∥
∥ f (a+ b)− f (a)− f (b)

∥
∥≤ ϕ(a, b, 0, 0) (2.4)

for all a,b ∈�. Now we use the Rassias method on inequality (2.4) (see [5, 10]). One can
use induction on n to show that

∥
∥
∥
∥

f
(

2na
)

2n
− f (a)

∥
∥
∥
∥≤

1
2

n−1
∑

k=0

2−kϕ
(

2ka,2ka,0,0
)

(2.5)

for all n∈N and all a∈�, and that

∥
∥
∥
∥

f
(

2na
)

2n
− f

(

2ma
)

2m

∥
∥
∥
∥≤

1
2

n−1
∑

k=m
2−kϕ

(

2ka,2ka,0,0
)

(2.6)

for all n > m and all a ∈ �. It follows from the convergence (2.1) that the sequence
{ f (2na)/2n} is Cauchy. Due to the completeness of �, this sequence is convergent. Set

μ(a) := lim
n→∞

f
(

2na
)

2n
. (2.7)

Putting c = d = 0 and replacing a, b by 2na, 2nb, respectively, in (2.2), we get

∥
∥2−n f

(

2n(λa+ λb)
)− 2−nλ f

(

2na
)− 2−nλ f

(

2nb
)∥
∥≤ 2−nϕ

(

2na,2nb,0,0
)

(2.8)
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Taking the limit as n→∞ we obtain

μ(λa+ λb)= λμ(a) + λμ(b) (2.9)

for all a,b ∈� and all λ∈ T.
Next, let γ = θ1 + iθ2 ∈ C where θ1,θ2 ∈R. Let γ1 = θ1− [θ1], let γ2 = θ2− [θ2]. Then

0≤ γi < 1, (1≤ i≤ 2) and by using [12, Remark 2.2.2] one can represent γi as γi = (λi,1 +
λi,2)/2 in which λi, j ∈ T (1≤ i, j ≤ 2). Since μ satisfies (2.9) we infer that

μ(γx)= μ
(

θ1x
)

+ iμ
(

θ2x
)

= [θ1
]

μ(x) +μ
(

γ1x
)

+ i
([

θ2
]

μ(x) +μ
(

γ2x
))

=
(
[

θ1
]

μ(x) +
1
2
μ
(

λ1,1x+ λ1,2x
)
)

+ i
(
[

θ2
]

μ(x) +
1
2
μ
(

λ2,1x+ λ2,2x
)
)

=
(
[

θ1
]

μ(x) +
1
2
λ1,1μ(x) +

1
2
λ1,2μ(x)

)

+ i
(
[

θ2
]

μ(x) +
1
2
λ2,1μ(x) +

1
2
λ2,2μ(x)

)

= θ1μ(x) + iθ2μ(x)= γμ(x)
(2.10)

for all x ∈�. So μ is C-linear.
Moreover, it follows from (2.5) and (2.7) that ‖ f (a)− μ(a)‖ ≤ ϕ̃(a,a,0,0) for all a ∈

�. It is known that additive mapping μ satisfying (2.3) is unique [1].
Putting λ= 1, a= b = 0, and replacing c, d by 2nc, 2nd, respectively, in (2.2) we obtain

∥
∥ f
(

22ncd
)− 2nc f

(

2nd
)− 2ng

(

2nc
)

d
∥
∥≤ ϕ

(

0, 0, 2nc, 2nd
)

, (2.11)

whence
∥
∥2−2n f

(

22ncd
)− 2−nc f

(

2nd
)− 2−ng

(

2nc
)

d
∥
∥≤ 2−2nϕ

(

0,0,2nc,2nd
)

. (2.12)

Put d = 1 in (2.12). By (2.7), limn→∞ 2−2n f (22na)= μ(a) and by the convergence of series
(2.1), limn→∞ 2−2nϕ(0,0,2nc,2nd)= 0. Hence the sequence {2−ng(2nc)} is convergent. Set
δ(c) := limn→∞ 2−ng(2nc), c ∈�. Let n tend to∞ in (2.12). Then

μ(cd)= cμ(d) + δ(c)d. (2.13)

Next we claim that δ is a derivation. Put d = 1 in (2.13). Then δ(c) = μ(c)− cμ(1).
Hence δ is linear. Further,

δ
(

c1c2
)= μ

(

c1c2
)− c1c2μ(1)

= (c1μ
(

c2
)

+ δ
(

c1
)

c2
)− c1c2μ(1)

= c1μ
(

c2
)

+
(

μ
(

c1
)− c1μ(1)

)

c2− c1c2μ(1)

= c1
(

μ
(

c2
)− c2μ(1)

)

+
(

μ
(

c1
)− c1μ(1)

)

c2

= c1δ
(

c2
)

+ δ
(

c1
)

c2.

(2.14)

Thus δ satisfies the Leibnitz rule. It then follows from (2.13) that μ is a generalized
derivation. �
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Remark 2.2. The significance of functional equation (2.2) is that the required derivation
δ is naturally constructed. In other words, we do not need any additional functional
inequality for existence of δ.

Remark 2.3. As � is unital, the mapping δ that appeared in the definition of generalized
derivation is unique. In fact, δ(a)= μ(a)− aμ(1).

Corollary 2.4. Suppose that f : �→� is a mapping with f (0)= 0 for which there exist
constants β ≥ 0 and 0 < p < 1 such that

∥
∥ f (λa+ λb+ cd)− λ f (a)− λ f (b)− c f (d)− g(c)d

∥
∥≤ β

(‖a‖p +‖b‖p +‖c‖p +‖d‖p)
(2.15)

for all λ∈ T and all a,b,c,d ∈�.
Then there is a unique generalized derivation μ : �→� such that

∥
∥ f (a)−μ(a)

∥
∥≤ β‖a‖p

1− 2p−1 (2.16)

for all a∈�.

Proof. Put ϕ(a,b,c,d)= β(‖a‖p +‖b‖p +‖c‖p +‖d‖p) in Theorem 2.1. �

Proposition 2.5. Suppose that f : �→� is a mapping with f (0)= 0 for which there exists
a function ϕ : �×�×�×�→ [0,∞) such that

ϕ̃(a,b,c,d) := 1
2

∞
∑

n=0

2−nϕ
(

2na,2nb,2nc,2nd
)

<∞,

∥
∥ f (λa+ λb+ cd)− λ f (a)− λ f (b)− c f (d)− g(c)d

∥
∥≤ ϕ(a,b,c,d)

(2.17)

for λ= 1, i and for all a,b,c,d ∈�. If for each fixed a∈� the function t �→ f (ta) is contin-
uous on R, then there exists a unique generalized derivation μ : �→ � such that ‖ f (a)−
μ(a)‖ ≤ ϕ̃(a,a,0,0) for all a∈�.

Proof. Put c = d = 0 and λ = 1 in (2.2). It follows from the proof of Theorem 2.1 that
there exists a unique additive mapping μ : �→ � given by μ(a) = limn→∞( f (2na)/2n),
a ∈�. By the same reasoning as in the proof of the theorem of [15], the mapping μ is
R-linear.

Assuming b = c = d = 0 and λ = i, it follows from (2.2) that ‖ f (ia) − i f (a)‖ ≤
ϕ(a,0,0,0), a ∈�. Hence (1/2n)‖ f (2nia)− i f (2na)‖ ≤ ϕ(2na,0,0,0) for all n ∈ N and
a∈�. The right-hand side tends to zero as n→∞ so that

μ(ia)= lim
n→∞

f
(

2nia
)

2n
= lim

n→∞
i f
(

2na
)

2n
= iμ(a) (2.18)

for all a∈�. For each λ∈ C, λ= r1 + ir2 (r1,r2 ∈R). Hence

μ(λa)= μ
(

r1a+ ir2a
)= r1μ(a) + r2μ(ia)

= r1μ(a) + ir2μ(a)= (r1 + ir2
)

μ(a)= λμ(a).
(2.19)
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Thus μ is C-linear. The fact that μ is a generalized derivation can be deduced in the same
fashion as in the proof of Theorem 2.1. �

Proposition 2.6. Let � be a unital C∗-algebra. Suppose that f : �→� is a mapping with
f (0)= 0 for which there exists a function ϕ : �×�×�×�→ [0,∞) such that

ϕ̃(a,b,c,d) := 1
2

∞
∑

n=0

2−nϕ
(

2na,2nb,2nc,2nd
)

<∞,

∥
∥ f (λa+ λb+ cd)− λ f (a)− λ f (b)− c f (d)− g(c)d

∥
∥≤ ϕ(a,b,c,d),

∥
∥ f
(

2nu∗
)− f

(

2nu
)∗∥
∥≤ ϕ

(

2nu,2nu,0,0
)

(2.20)

for all λ∈ T, all a,b,c,d ∈�, all nonnegative integers n, and all unitaries u in �. Then there
exists a unique generalized derivation μ : �→� such that ‖ f (a)− μ(a)‖ ≤ ϕ̃(a,a,0,0) for
all a∈�.

Proof. It follows from the proof of Theorem 2.1 that there exists a unique generalized
derivation μ : �→� given by μ(a)= limn→∞( f (2na)/2n), a∈� satisfying (2.3).

Using (2.20), we have

∥
∥2−n f

(

2nu∗
)− 2−n f

(

2nu
)∗∥
∥≤ 2−nϕ

(

2nu,2nu,0,0
)

. (2.21)

Letting n→∞ we conclude that μ(u∗) = μ(u)∗. Since μ is linear and every element of a
C∗-algebra can be represented as a linear combination of unitaries [12], we deduce that
μ(a∗)= μ(a)∗. �

Now let � be a unital Banach algebra. The mapping f : �→� is called an approxi-
mately generalized derivation if f (0)= 0 and there exist a positive number ε and a map-
ping g : �→� such that

∥
∥ f (λa+ λb+ cd)− λ f (a)− λ f (b)− c f (d)− g(c)d

∥
∥≤ ε (2.22)

for all λ∈ T and all a,b,c,d ∈�.

Theorem 2.7. Let � be a unital Banach algebra and let f : �→� be an approximately
generalized derivation with the corresponding mapping g. Then f is a generalized derivation
and g is a derivation.

Proof. Put ϕ(a,b)= ε in Theorem 2.1. Then we get a generalized derivation μ defined by
μ(a) := limn→∞( f (2na)/2n) such that

∥
∥μ(a)− f (a)

∥
∥≤ ε (2.23)
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for all a∈�. We have
∥
∥2n
(

f
(

2ma
)− 2m f (a)

)∥
∥≤ ∥∥2n1 f

(

2ma
)− g

(

2n1
)

2ma− f
((

2n1
)(

2ma
))∥
∥

+
∥
∥ f
((

2n1
)(

2ma
))− g

(

2n1
)

2ma− 2n+m1 f (a)
∥
∥

≤ ε+
∥
∥ f
((

2n1
)(

2ma
))− g

(

2n1
)

2ma− 2n+m1 f (a)
∥
∥

≤ ε+
∥
∥ f
((

2n1
)(

2ma
))−μ

((

2n1
)(

2ma
))∥
∥

+
∥
∥μ
((

2n1
)(

2ma
))− 2n+m1 f (a)− g

(

2n1
)

2ma
∥
∥

≤ 2ε+
∥
∥μ
((

2n1
)(

2ma
))− 2n+m1 f (a)− g

(

2n1
)

2ma
∥
∥

≤ 2ε+ 2m
∥
∥μ
(

2n1a
)− f

(

2n1a
)‖

+ 2m
∥
∥ f
(

2n1a
)− 2n1 f (a)− g

(

2n1
)

a
∥
∥

≤ (2 + 2m+1)ε

(2.24)

for all nonnegative integers m, n and all a∈�. Fix m and let n tend to∞ in the following
inequality:

∥
∥ f
(

2ma
)− 2m f (a)

∥
∥≤ 2 + 2m+1

2n
ε. (2.25)

Then f (2ma)= 2m f (a) for all m and all a∈�. Therefore μ(a)= limm→∞( f (2ma)/2m)=
f (a) for all a∈�. �
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