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By applying certain integral operators to p-valent functions we define a comprehensive
family of analytic functins. The subordinations properties of this family is studied, which
in certain special cases yield some of the previously obtained results.
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1. Introduction

For the natural numbers p let A(p) denote the class of functions of the form f (z) =
zp + ap+1zp+1 + ap+2zp+2 + ··· , which are analytic in the open unit disk U = {z : |z| < 1}.
For f (z)∈A(p) we define

Iσ f (z)= (p+ 1)σ

zΓ(σ)

∫ z

0

(
log

z

t

)σ−1

f (t)dt

= zp +
∞∑

n=p+1

(
p+ 1
n+ 1

)σ
anz

n, σ > 0.
(1.1)

Also, for −1≤ B < A≤ 1 and λ≥ 0, let Ωσ
p(A,B,λ) be the class of functions f ∈ A(p) so

that

λ

p

Iσ−1 f (z)
zp

+
p− λ

p

Iσ f (z)
zp

≺ 1 +Az

1 +Bz
, λ≥ 0, (1.2)

where “≺” denotes the usual subordination. See [2].
The family Ωσ

p(A,B,λ) is a comprehensive family containing various well-known as
well as new classes of analytic functions. For example, for σ = 0 and λ= p+ 1 we obtain
the class Ω0

p(A,B, p+ 1) studied by Patel and Mohanty [3] or for nonzero σ see Liu [1].

2. Main results

Our first theorem examins the containment properties of the family Ωσ
p(A,B,λ).
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2 p-valent functions

Theorem 2.1. For f ∈ A(p) suppose that f ∈ Ωσ
p(A,B,λ) and 0 ≤ λ ≤ p(p + 1). Then

f ∈Ωσ
p(A,B,0).

To prove our theorem we will need the following lemma which is due to Miller and
Mocanu [2].

Lemma 2.2. Let g(z) be analytic and convex univalent in U and g(0)= 1. Also let p(z) be
analytic in U with p(0) = 1. If p(z) + (zp′(z))/γ ≺ g(z), where γ �= 0 and Reγ ≥ 0, then
p(z)≺ γz−γ

∫ z
0 t

γ−1g(t)dt.

Proof of Theorem 2.1. First, we note that

z
(
Iσ f (z)

)′ = (p+ 1)Iσ−1 f (z)− Iσ f (z). (2.1)

Setting p(z)= (Iσ f (z))/zp we also observe that

(
Iσ f (z)

)′
pzp−1 = p(z) +

zp′(z)
p

,

Iσ−1 f (z)
zp

= p(z) +
zp′(z)
p+ 1

.

(2.2)

Therefore, for f ∈Ωσ
p(A,B,λ), we conclude that

p(z) +
λ

p(p+ 1)
zp′(z)≺ 1 +Az

1 +Bz
. (2.3)

Now from Lemma 2.2 for γ = p(p+ 1)/λ it follows that

Iσ f (z)
zp

≺ p(p+ 1)
λ

z−p(p+1)/λ
∫ z

0
tp(p+1)/λ−1 1 +At

1 +Bt
dt = q(z)≺ 1 +Az

1 +Bz
. (2.4)

Thus f ∈Ωσ
p(A,B,0). �

As a special case to Theorem 2.1, we obtain the following.

Corollary 2.3. Let f ∈ A(p). Then (1/(p+ 1))[(z f ′(z) + f (z))/zp]≺ (1 +Az)/(1 +Bz),
implies f (z)/zp ≺ (1 +Az)/(1 +Bz).

Theorem 2.4. For f ∈A(p) suppose that f ∈Ωσ
p(A,B,λ). If 0≤ λ≤ p(p+ 1), then

Re
(
Iσ f (z)
zp

)
≥ p(p+ 1)

λ

∫ 1

0
up(p+1)/λ−1 1−Au

1−Bu
du. (2.5)

The result is sharp.

Proof. Set p(z)= Iσ f (z)/zp. Then, by Theorem 2.1, we have

p(z)≺ p(p+ 1)
λ

z−p(p+1)/λ
∫ z

0
tp(p+1)/λ−1 1 +At

1 +Bt
dt ≺ 1 +Az

1 +Bz
. (2.6)
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This is equivalent to

Iσ f (z)
zp

= p(p+ 1)
λ

∫ 1

0
up(p+1)/λ−1 1 +uAw(z)

1 +uBw(z)
du, (2.7)

where w(z) is analytic in U with w(0)= 0 and |w(z)| < 1 in U . Therefore

Re
(
Iσ f (z)
zp

)
= p(p+ 1)

λ

∫ 1

0
up(p+1)/λ−1 Re

{
1 +uAw(z)
1 +uBw(z)

}
du

≥ p(p+ 1)
λ

∫ 1

0
up(p+1)/λ−1 1−Au

1−Bu
du.

(2.8)

Therefore

Iσ f (z)
zp

= p(p+ 1)
λ

∫ 1

0
up(p+1)/λ−1 1 +Auz

1 +Buz
du, (2.9)

such that for this function we have

λ

p

Iσ−1 f (z)
zp

+
p− λ

p

Iσ f (z)
zp

= 1 +Az

1 +Bz
. (2.10)

Letting z→−1 yields

Iσ f (z)
zp

−→ p(p+ 1)
λ

∫ 1

0
up(p+1)/λ−1 1−Au

1−Bu
du. (2.11)

�
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