SUBORDINATION PROPERTIES OF p-VALENT FUNCTIONS DEFINED BY INTEGRAL OPERATORS

SAEID SHAMS, S. R. KULKARNI, AND JAY M. JAHANGIRI

Received 20 June 2005; Revised 14 November 2005; Accepted 28 November 2005

By applying certain integral operators to p-valent functions we define a comprehensive family of analytic functins. The subordinations properties of this family is studied, which in certain special cases yield some of the previously obtained results.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

For the natural numbers p let $A(p)$ denote the class of functions of the form $f(z)=$ $z^{p}+a_{p+1} z^{p+1}+a_{p+2} z^{p+2}+\cdots$, which are analytic in the open unit disk $U=\{z:|z|<1\}$. For $f(z) \in A(p)$ we define

$$
\begin{align*}
I^{\sigma} f(z) & =\frac{(p+1)^{\sigma}}{z \Gamma(\sigma)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t) d t \\
& =z^{p}+\sum_{n=p+1}^{\infty}\left(\frac{p+1}{n+1}\right)^{\sigma} a_{n} z^{n}, \quad \sigma>0 . \tag{1.1}
\end{align*}
$$

Also, for $-1 \leq B<A \leq 1$ and $\lambda \geq 0$, let $\Omega_{p}^{\sigma}(A, B, \lambda)$ be the class of functions $f \in A(p)$ so that

$$
\begin{equation*}
\frac{\lambda}{p} \frac{I^{\sigma-1} f(z)}{z^{p}}+\frac{p-\lambda}{p} \frac{I^{\sigma} f(z)}{z^{p}} \prec \frac{1+A z}{1+B z}, \quad \lambda \geq 0 \tag{1.2}
\end{equation*}
$$

where " $<$ " denotes the usual subordination. See [2].
The family $\Omega_{p}^{\sigma}(A, B, \lambda)$ is a comprehensive family containing various well-known as well as new classes of analytic functions. For example, for $\sigma=0$ and $\lambda=p+1$ we obtain the class $\Omega_{p}^{0}(A, B, p+1)$ studied by Patel and Mohanty [3] or for nonzero σ see Liu [1].

2. Main results

Our first theorem examins the containment properties of the family $\Omega_{p}^{\sigma}(A, B, \lambda)$.

Theorem 2.1. For $f \in A(p)$ suppose that $f \in \Omega_{p}^{\sigma}(A, B, \lambda)$ and $0 \leq \lambda \leq p(p+1)$. Then $f \in \Omega_{p}^{\sigma}(A, B, 0)$.

To prove our theorem we will need the following lemma which is due to Miller and Mocanu [2].

Lemma 2.2. Let $g(z)$ be analytic and convex univalent in U and $g(0)=1$. Also let $p(z)$ be analytic in U with $p(0)=1$. If $p(z)+\left(z p^{\prime}(z)\right) / \gamma \prec g(z)$, where $\gamma \neq 0$ and $\operatorname{Re} \gamma \geq 0$, then $p(z) \prec \gamma z^{-\gamma} \int_{0}^{z} t^{\gamma-1} g(t) d t$.

Proof of Theorem 2.1. First, we note that

$$
\begin{equation*}
z\left(I^{\sigma} f(z)\right)^{\prime}=(p+1) I^{\sigma-1} f(z)-I^{\sigma} f(z) \tag{2.1}
\end{equation*}
$$

Setting $p(z)=\left(I^{\sigma} f(z)\right) / z^{p}$ we also observe that

$$
\begin{align*}
& \frac{\left(I^{\sigma} f(z)\right)^{\prime}}{p z^{p-1}}=p(z)+\frac{z p^{\prime}(z)}{p} \tag{2.2}\\
& \frac{I^{\sigma-1} f(z)}{z^{p}}=p(z)+\frac{z p^{\prime}(z)}{p+1} .
\end{align*}
$$

Therefore, for $f \in \Omega_{p}^{\sigma}(A, B, \lambda)$, we conclude that

$$
\begin{equation*}
p(z)+\frac{\lambda}{p(p+1)} z p^{\prime}(z) \prec \frac{1+A z}{1+B z} . \tag{2.3}
\end{equation*}
$$

Now from Lemma 2.2 for $\gamma=p(p+1) / \lambda$ it follows that

$$
\begin{equation*}
\frac{I^{\sigma} f(z)}{z^{p}} \prec \frac{p(p+1)}{\lambda} z^{-p(p+1) / \lambda} \int_{0}^{z} t^{p(p+1) / \lambda-1} \frac{1+A t}{1+B t} d t=q(z) \prec \frac{1+A z}{1+B z} . \tag{2.4}
\end{equation*}
$$

Thus $f \in \Omega_{p}^{\sigma}(A, B, 0)$.
As a special case to Theorem 2.1, we obtain the following.
Corollary 2.3. Let $f \in A(p)$. Then $(1 /(p+1))\left[\left(z f^{\prime}(z)+f(z)\right) / z^{p}\right] \prec(1+A z) /(1+B z)$, implies $f(z) / z^{p} \prec(1+A z) /(1+B z)$.

Theorem 2.4. For $f \in A(p)$ suppose that $f \in \Omega_{p}^{\sigma}(A, B, \lambda)$. If $0 \leq \lambda \leq p(p+1)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{I^{\sigma} f(z)}{z^{p}}\right) \geq \frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \frac{1-A u}{1-B u} d u . \tag{2.5}
\end{equation*}
$$

The result is sharp.
Proof. Set $p(z)=I^{\sigma} f(z) / z^{p}$. Then, by Theorem 2.1, we have

$$
\begin{equation*}
p(z) \prec \frac{p(p+1)}{\lambda} z^{-p(p+1) / \lambda} \int_{0}^{z} t^{p(p+1) / \lambda-1} \frac{1+A t}{1+B t} d t \prec \frac{1+A z}{1+B z} . \tag{2.6}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\frac{I^{\sigma} f(z)}{z^{p}}=\frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \frac{1+u A w(z)}{1+u B w(z)} d u \tag{2.7}
\end{equation*}
$$

where $w(z)$ is analytic in U with $w(0)=0$ and $|w(z)|<1$ in U. Therefore

$$
\begin{align*}
\operatorname{Re}\left(\frac{I^{\sigma} f(z)}{z^{p}}\right) & =\frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \operatorname{Re}\left\{\frac{1+u A w(z)}{1+u B w(z)}\right\} d u \tag{2.8}\\
& \geq \frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \frac{1-A u}{1-B u} d u .
\end{align*}
$$

Therefore

$$
\begin{equation*}
\frac{I^{\sigma} f(z)}{z^{p}}=\frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \frac{1+A u z}{1+B u z} d u, \tag{2.9}
\end{equation*}
$$

such that for this function we have

$$
\begin{equation*}
\frac{\lambda}{p} \frac{I^{\sigma-1} f(z)}{z^{p}}+\frac{p-\lambda}{p} \frac{I^{\sigma} f(z)}{z^{p}}=\frac{1+A z}{1+B z} . \tag{2.10}
\end{equation*}
$$

Letting $z \rightarrow-1$ yields

$$
\begin{equation*}
\frac{I^{\sigma} f(z)}{z^{p}} \longrightarrow \frac{p(p+1)}{\lambda} \int_{0}^{1} u^{p(p+1) / \lambda-1} \frac{1-A u}{1-B u} d u . \tag{2.11}
\end{equation*}
$$

References

[1] J.-L. Liu, Notes on Jung-Kim-Srivastava integral operator, Journal of Mathematical Analysis and Applications 294 (2004), no. 1, 96-103.
[2] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, The Michigan Mathematical Journal 28 (1981), no. 2, 157-172.
[3] J. Patel and A. K. Mohanty, On a class of p-valent analytic functions with complex order, Kyungpook Mathematical Journal 43 (2003), no. 2, 199-209.

Saeid Shams: Department of Mathematics, University of Urmia, Urmia-57153, Iran E-mail address: sa40shams@yahoo.com
S. R. Kulkarni: Department of Mathematics, Fergusson College, Pune-411004, India

E-mail address: kulkarni_ferg@yahoo.com
Jay M. Jahangiri: Department of Mathematical Sciences, Kent State University, Ohio, USA E-mail address: jjahangi@kent.edu

