WEYL TRANSFORMS ASSOCIATED WITH THE RIEMANN-LIOUVILLE OPERATOR

N. B. HAMADI AND L. T. RACHDI

Received 4 January 2006; Revised 21 June 2006; Accepted 8 August 2006

For the Riemann-Liouville transform $\mathscr{R}_{\alpha}, \alpha \in \mathbb{R}_{+}$, associated with singular partial differential operators, we define and study the Weyl transforms W_{σ} connected with \mathscr{R}_{α}, where σ is a symbol in $S^{m}, m \in \mathbb{R}$. We give criteria in terms of σ for boundedness and compactness of the transform W_{σ}.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In his book [14], Wong studies the properties of pseudodifferential operators arising in quantum mechanics, first envisaged by Weyl [13], as bounded linear operators on $L^{2}\left(\mathbb{R}^{n}\right)$ (the space of square integrable functions on \mathbb{R}^{n} with respect to the Lebesgue measure). For this reason, M. W. Wong calls the operators treated in his book Weyl transforms.

Here, we consider the singular partial differential operators

$$
\begin{gather*}
\Delta_{1}=\frac{\partial}{\partial x}, \\
\left.\Delta_{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}-\frac{\partial^{2}}{\partial x^{2}}, \quad(r, x) \in\right] 0,+\infty[\times \mathbb{R}, \alpha \geqslant 0 . \tag{1.1}
\end{gather*}
$$

We associate to Δ_{1} and Δ_{2} the Riemann-Liouville transform \mathscr{R}_{α} defined on $\mathscr{C}_{*}\left(\mathbb{R}^{2}\right)$ (the space of continuous functions on \mathbb{R}^{2}, even with respect to the first variable) by

$$
\mathscr{R}_{\alpha}(f)(r, x)= \begin{cases}\frac{\alpha}{\pi} \iint_{-1}^{1} f\left(r s \sqrt{1-t^{2}}, x+r t\right)\left(1-t^{2}\right)^{\alpha-1 / 2}\left(1-s^{2}\right)^{\alpha-1} d t d s & \text { if } \alpha>0 \tag{1.2}\\ \frac{1}{\pi} \int_{-1}^{1} f\left(r \sqrt{1-t^{2}}, x+r t\right) \frac{d t}{\sqrt{1-t^{2}}} & \text { if } \alpha=0\end{cases}
$$

For more general integral transforms, we can see [2].

The transform \mathscr{R}_{α} generalizes the mean operator defined by

$$
\begin{equation*}
\mathscr{R}_{0}(f)(r, x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(r \sin \theta, x+r \cos \theta) d \theta \tag{1.3}
\end{equation*}
$$

The mean operator \mathscr{R}_{0} and its dual play an important role and have many applications, for example, in image processing of the so-called synthetic aperture radar (SAR) data [5, 6], or in the linearized inverse scattering problem in acoustics [3].

In [1], we have defined a convolution product and a Fourier transform \mathscr{F}_{α} associated with \mathscr{R}_{α}, and, we have established many harmonic analysis results (inversion formula, Paley-Wiener, and Plancherel theorems, etc.).

Using these results, we define and study, in this paper the Weyl transforms associated with \mathscr{R}_{α}, we give criteria in terms of symbols to prove the boundedness and compactness of these transforms. To obtain these results, we have first defined the Fourier-Wigner transform associated with the operator \mathscr{R}_{α}, and we have established for it an inversion formula.

More precisely, in Section 2, we recall some properties of harmonic analysis for the operator \mathscr{R}_{α}. In Section 3, we define the Fourier-Wigner transform associated with \mathscr{R}_{α}, study some of its properties, and prove an inversion formula.

In Section 4, we introduce the Weyl transform W_{σ} associated with \mathscr{R}_{α}, with σ a symbol in class S^{m}, for $m \in \mathbb{R}$, and we give its connection with the Fourier-Wigner transform. We prove that for σ sufficiently smooth, W_{σ} is a compact operator from $L^{2}(d \nu)$, the space of square integrable functions on $[0,+\infty[\times \mathbb{R}$, with respect to the measure

$$
\begin{equation*}
d \nu(r, x)=\frac{1}{2^{\alpha} \Gamma(\alpha+1) \sqrt{2 \pi}} r^{2 \alpha+1} d r \otimes d x \tag{1.4}
\end{equation*}
$$

into itself.
In Section 5, we define W_{σ} for σ in a certain space $L^{p}(d \nu \otimes d \gamma)$, with $p \in[1,2]$, and we establish that W_{σ} is again a compact operator.

In Section 6, we define W_{σ} for σ in another function space, and use this to prove in Section 7 that for $p>2$, there exists a function $\sigma \in L^{p}(d \nu \otimes d \gamma)$, with the property that the Weyl transform W_{σ} is not bounded on $L^{2}(d \nu)$.

For more Weyl transforms, we can see [8, 15].

2. Riemann-Liouville transform associated with the operators Δ_{1} and Δ_{2}

In this section, we recall some properties of the Riemann-Liouville transform that we use in the next sections. For more details, see [1].

For all $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}$, the system

$$
\begin{gather*}
\Delta_{1} u(r, x)=-i \lambda u(r, x), \\
\Delta_{2} u(r, x)=-\mu^{2} u(r, x) \tag{2.1}\\
u(0,0)=1, \quad \frac{\partial u}{\partial r}(0, x)=0, \quad \forall x \in \mathbb{R}
\end{gather*}
$$

admits a unique solution given by

$$
\begin{equation*}
\varphi_{\mu, \lambda}(r, x)=j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) \exp (-i \lambda x), \tag{2.2}
\end{equation*}
$$

where j_{α} is the modified Bessel function defined by

$$
\begin{equation*}
j_{\alpha}(s)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(s)}{s^{\alpha}}=\Gamma(\alpha+1) \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}\left(\frac{s}{2}\right)^{2 k}, \tag{2.3}
\end{equation*}
$$

and J_{α} is the Bessel function of first kind and index α (see [7, 12]).
Moreover, we have

$$
\begin{equation*}
\sup _{(r, x) \in \mathbb{R}^{2}}\left|\varphi_{\mu, \lambda}(r, x)\right|=1 \quad \text { iff }(\mu, \lambda) \in \Gamma \tag{2.4}
\end{equation*}
$$

where Γ is the set defined by

$$
\begin{equation*}
\Gamma=\mathbb{R}^{2} \cup\left\{(i \mu, \lambda) ;(\mu, \lambda) \in \mathbb{R}^{2},|\mu| \leqslant|\lambda|\right\} . \tag{2.5}
\end{equation*}
$$

Proposition 2.1. The eigenfunction $\varphi_{\mu, \lambda}$ given by (2.2) has the following Mehler integral representation:

$$
\varphi_{\mu, \lambda}(r, x)= \begin{cases}\frac{\alpha}{\pi} \iint_{-1}^{1} \cos \left(\mu r s \sqrt{1-t^{2}}\right) e^{-i \lambda(x+r t)}\left(1-t^{2}\right)^{\alpha-1 / 2}\left(1-s^{2}\right)^{\alpha-1} d t d s & \text { if } \alpha>0 \tag{2.6}\\ \frac{1}{\pi} \int_{-1}^{1} \cos \left(r \mu \sqrt{1-t^{2}}\right) e^{-i \lambda(x+r t)} \frac{d t}{\sqrt{1-t^{2}}} & \text { if } \alpha=0\end{cases}
$$

This result shows that

$$
\begin{equation*}
\varphi_{\mu, \lambda}(r, x)=\mathscr{R}_{\alpha}(\cos (\mu .) \exp (-i \lambda .))(r, x), \tag{2.7}
\end{equation*}
$$

where \mathscr{R}_{α} is the Riemann-Liouville transform associated with the operators Δ_{1} and Δ_{2}, given in the introduction.

We denote by
(i) $\mathscr{C}_{*, c}\left(\mathbb{R}^{2}\right)$ the subspace of $\mathscr{C}_{*}\left(\mathbb{R}^{2}\right)$ consisting of functions with compact support;
(ii) $d v(r, x)$ the measure defined on $[0,+\infty[\times \mathbb{R}$ by

$$
\begin{equation*}
d \nu(r, x)=c_{\alpha} r^{2 \alpha+1} d r \otimes d x \tag{2.8}
\end{equation*}
$$

with $c_{\alpha}=1 / \sqrt{2 \pi} 2^{\alpha} \Gamma(\alpha+1)$;
(iii) $L^{p}(d \nu)$ the space of measurable functions f on $[0,+\infty[\times \mathbb{R}$, satisfying

$$
\begin{gather*}
\|f\|_{p, v}=\left(\int_{\mathbb{R}} \int_{0}^{+\infty}|f(r, x)|^{p} d v(r, x)\right)^{1 / p}<+\infty \quad \text { if } p \in[1,+\infty[, \tag{2.9}\\
\|f\|_{\infty, v}=\underset{(r, x) \in[0,+\infty[\times \mathbb{R}}{\operatorname{esssup}}|f(r, x)|<+\infty \quad \text { if } p=+\infty
\end{gather*}
$$

(iv) $d \gamma(\mu, \lambda)$ the measure defined on Γ by

$$
\begin{align*}
\iint_{\Gamma} f(\mu, \lambda) d \gamma(\mu, \lambda)=c_{\alpha}\{ & \left\{\int_{\mathbb{R}} \int_{0}^{+\infty} f(\mu, \lambda)\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \mu d \mu d \lambda\right. \\
& \left.+\int_{\mathbb{R}} \int_{0}^{|\lambda|} f(i \mu, \lambda)\left(\lambda^{2}-\mu^{2}\right)^{\alpha} \mu d \mu d \lambda\right\} ; \tag{2.10}
\end{align*}
$$

(v) $L^{p}(d \gamma), p \in[1,+\infty]$, the space of measurable functions on Γ satisfying

$$
\begin{gather*}
\|f\|_{p, \gamma}=\left(\iint_{\Gamma}|f(\mu, \lambda)|^{p} d \gamma(\mu, \lambda)\right)^{1 / p}<+\infty \quad \text { if } p \in[1,+\infty[\tag{2.11}\\
\|f\|_{\infty, \gamma}=\operatorname{esssup}_{(\mu, \lambda) \in \Gamma}|f(\mu, \lambda)|<+\infty \quad \text { if } p=+\infty
\end{gather*}
$$

Defintion 2.2. (i) The translation operator associated with Riemann-Liouville transform is defined on $L^{1}(d \nu)$, for all $(r, x),(s, y) \in[0,+\infty[\times \mathbb{R}$, by

$$
\begin{equation*}
\mathscr{T}_{(r, x)} f(s, y)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha+1 / 2)} \int_{0}^{\pi} f\left(\sqrt{r^{2}+s^{2}+2 r s \cos \theta}, x+y\right) \sin ^{2 \alpha} \theta d \theta \tag{2.12}
\end{equation*}
$$

(ii) The convolution product associated with the Riemann-Liouville transform of $f, g \in$ $L^{1}(d \nu)$ is defined by

$$
\begin{equation*}
\forall(r, x) \in\left[0,+\infty\left[\times \mathbb{R}, \quad f * g(r, x)=\int_{\mathbb{R}} \int_{0}^{+\infty} \mathscr{T}_{(r,-x)} \check{f}(s, y) g(s, y) d v(s, y),\right.\right. \tag{2.13}
\end{equation*}
$$

where $\check{f}(s, y)=f(s,-y)$.
We have the following properties.
(i) We have the following product formula:

$$
\begin{equation*}
\mathscr{T}_{(r, x)} \varphi_{\mu, \lambda}(s, y)=\varphi_{\mu, \lambda}(r, x) \varphi_{\mu, \lambda}(s, y) . \tag{2.14}
\end{equation*}
$$

(ii) Let f be in $L^{1}(d \nu)$. Then, for all $(s, y) \in[0,+\infty[\times \mathbb{R}$, we have

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{\infty} \mathscr{T}_{(s, y)} f(r, x) d v(r, x)=\int_{\mathbb{R}} \int_{0}^{\infty} f(r, x) d v(r, x) . \tag{2.15}
\end{equation*}
$$

(iii) If $f \in L^{p}(d \nu), 1 \leqslant p \leqslant+\infty$, then for all $(s, y) \in\left[0,+\infty\left[\times \mathbb{R}\right.\right.$, the function $\mathscr{T}_{(s, y)} f$ belongs to $L^{p}(d \nu)$, and we have

$$
\begin{equation*}
\left\|\mathscr{T}_{(s, y)} f\right\|_{p, v} \leqslant\|f\|_{p, v} \tag{2.16}
\end{equation*}
$$

(iv) For $f, g \in L^{1}(d \nu), f * g$ belongs to $L^{1}(d \nu)$, and the convolution product is commutative and associative.
(v) For $f \in L^{1}(d \nu), g \in L^{p}(d \nu), 1<p \leqslant+\infty$, the function $f * g \in L^{p}(d \nu)$ and

$$
\begin{equation*}
\|f * g\|_{p, v} \leqslant\|f\|_{1, v}\|g\|_{p, v} . \tag{2.17}
\end{equation*}
$$

(vi) For $f, g \in \mathscr{C}_{*, c}\left(\mathbb{R}^{2}\right)$, such that $\operatorname{supp} f \subset\left[-a_{1}, a_{1}\right] \times\left[-a_{2}, a_{2}\right]$ and $\operatorname{supp} g \subset\left[-b_{1}\right.$, $\left.b_{1}\right] \times\left[-b_{2}, b_{2}\right]$, the function $f * g$ belongs to $\mathscr{C}_{*, c}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{equation*}
\operatorname{supp}(f * g) \subset\left[-\left(a_{1}+b_{1}\right), a_{1}+b_{1}\right] \times\left[-\left(a_{2}+b_{2}\right), a_{2}+b_{2}\right] . \tag{2.18}
\end{equation*}
$$

Defintion 2.3. The Fourier transform associated with the Riemann-Liouville operator is defined on $L^{1}(d \nu)$, by

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) \varphi_{\mu, \lambda}(r, x) d v(r, x), \tag{2.1}
\end{equation*}
$$

where Γ is the set defined by the relation (2.5).
We have the following properties.
(i) Let f be in $L^{1}(d \nu)$. For all $(r, x) \in[0,+\infty[\times \mathbb{R}$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathscr{F}_{\alpha}\left(\mathscr{T}_{(r,-x)} f\right)(\mu, \lambda)=\varphi_{\mu, \lambda}(r, x) \mathscr{F}_{\alpha}(f)(\mu, \lambda) . \tag{2.20}
\end{equation*}
$$

(ii) For $f, g \in L^{1}(d \nu)$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathscr{F}_{\alpha}(f * g)(\mu, \lambda)=\mathscr{F}_{\alpha}(f)(\mu, \lambda) \mathscr{F}_{\alpha}(g)(\mu, \lambda) . \tag{2.21}
\end{equation*}
$$

(iii) For $f \in L^{1}(d \nu)$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\mathrm{B} \circ \tilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda), \tag{2.22}
\end{equation*}
$$

where, for every $(\mu, \lambda) \in \mathbb{R}^{2}$,

$$
\begin{align*}
& \tilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda)=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) j_{\alpha}(r \mu) \exp (-i \lambda x) d \nu(r, x), \tag{2.23}\\
& \forall(\mu, \lambda) \in \Gamma, \quad \mathrm{B} f(\mu, \lambda)=f\left(\sqrt{\mu^{2}+\lambda^{2}}, \lambda\right) . \tag{2.24}
\end{align*}
$$

(iv) For $f \in L^{1}(d \nu)$ such that $\mathscr{F}_{\alpha}(f) \in L^{1}(d \gamma)$, we have the inversion formula for \mathscr{F}_{α}, for almost every $(r, x) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
f(r, x)=\iint_{\Gamma} \mathscr{F}_{\alpha}(f)(\mu, \lambda) \bar{\varphi}_{\mu, \lambda}(r, x) d \gamma(\mu, \lambda) . \tag{2.25}
\end{equation*}
$$

Proposition 2.4. Let f be in $L^{p}(d \nu)$, with $p \in[1,2]$. Then, $\mathscr{F}_{\alpha}(f)$ belongs to $L^{p^{\prime}}(d \gamma)$, with $1 / p+1 / p^{\prime}=1$, and $\left\|\mathscr{F}_{\alpha}(f)\right\|_{p^{\prime}, \gamma} \leqslant\|f\|_{p, v}$.

Proof. The mapping $\tilde{\mathscr{F}}_{\alpha}$ given by the relation (2.23) is an isometric isomorphism from $L^{2}(d \nu)$ onto itself, then $\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{2, v}=\|f\|_{2, v}$.

On the other hand, we have $\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{\infty, v} \leqslant\|f\|_{1, v}$.
Thus, from these relations and the Riesz-Thorin theorem [10,11], we deduce that for all $f \in L^{p}(d \nu)$, with $p \in[1,2]$, the function $\widetilde{\mathscr{F}}_{\alpha}(f)$ belongs to $L^{p^{\prime}}(d \nu)$, with $p^{\prime}=p /(p-1)$, and we have

$$
\begin{equation*}
\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{p^{\prime}, \nu} \leqslant\|f\|_{p, v} . \tag{2.26}
\end{equation*}
$$

We complete the proof by using the fact that

$$
\begin{equation*}
\left\|\mathscr{F}_{\alpha}(f)\right\|_{p^{\prime}, \gamma}=\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{p^{\prime}, \nu} \tag{2.27}
\end{equation*}
$$

which is a consequence of the relation (2.22).
We denote by (see $[1,9]$)
(i) $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ the space of infinitely differentiable functions on \mathbb{R}^{2} rapidly decreasing together with all their derivatives, even with respect to the first variable;
(ii) $\mathscr{S}_{*}(\Gamma)$ the space of functions $f: \Gamma \rightarrow \mathbb{C}$ infinitely differentiable, even with respect to the first variable and rapidly decreasing together with all their derivatives, that is, for all $k_{1}, k_{2}, k_{3} \in \mathbb{N}$,

$$
\begin{equation*}
\sup _{(\mu, \lambda) \in \Gamma}\left(1+|\mu|^{2}+|\lambda|^{2}\right)^{k_{1}}\left|\left(\frac{\partial}{\partial \mu}\right)^{k_{2}}\left(\frac{\partial}{\partial \lambda}\right)^{k_{3}} f(\mu, \lambda)\right|<+\infty, \tag{2.28}
\end{equation*}
$$

where

$$
\frac{\partial f}{\partial \mu}(\mu, \lambda)= \begin{cases}\frac{\partial}{\partial r}(f(r, \lambda)) & \text { if } \mu=r \in \mathbb{R}, \tag{2.29}\\ \frac{1}{i} \frac{\partial}{\partial t}(f(i t, \lambda)) & \text { if } \mu=i t,|t| \leqslant|\lambda| .\end{cases}
$$

Each of these spaces is equipped with its usual topology.
Remark 2.5. From [1], the Fourier transform \mathscr{F}_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{O}_{*}(\Gamma)$. The inverse mapping is given by

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2}, \quad \mathscr{F}_{\alpha}^{-1}(f)(r, x)=\iint_{\Gamma} f(\mu, \lambda) \bar{\varphi}_{\mu, \lambda}(r, x) d \gamma(\mu, \lambda) . \tag{2.30}
\end{equation*}
$$

3. Fourier-Wigner transform associated with Riemann-Liouville operator

Defintion 3.1. The Fourier-Wigner transform associated with the Riemann-Liouville operator is the mapping V defined on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right) \times \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, for all $((r, x),(\mu, \lambda)) \in \mathbb{R}^{2} \times \Gamma$, by

$$
\begin{equation*}
V(f, g)((r, x),(\mu, \lambda))=\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) \varphi_{\mu, \lambda}(s, y) \mathscr{T}_{(r, x)} g(s, y) d v(s, y) . \tag{3.1}
\end{equation*}
$$

Remark 3.2. The transform V can also be written in the forms
(i) $V(f, g)((r, x),(\mu, \lambda))=\mathscr{F}_{\alpha}\left(f \mathscr{T}_{(r, x)} g\right)(\mu, \lambda)$;
(ii) $V(f, g)((r, x),(\mu, \lambda))=\check{g} *\left(\varphi_{\mu, \lambda} f\right)(r,-x)$,
where $\check{g}(s, y)=g(s,-y)$ and $*$ is the convolution product given in Definition 2.2.
We denote by
(i) $\mathscr{T}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$ the space of infinitely differentiable functions $f((r, x),(s, y))$ on $\mathbb{R}^{2} \times \mathbb{R}^{2}$, even with respect to the variables r and s, and rapidly decreasing together with all their derivatives;
(ii) $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$ the space of infinitely differentiable functions $f((r, x),(\mu, \lambda))$ on $\mathbb{R}^{2} \times$ Γ, even with respect to the variables r and μ, and rapidly decreasing together with all their derivatives;
(iii) $L^{p}(d \nu \otimes d \nu), 1 \leqslant p \leqslant+\infty$, the space of measurable functions on $([0,+\infty[\times \mathbb{R}) \times$ ([0, $+\infty[\times \mathbb{R}$), verifying for $p \in[1,+\infty[$;

$$
\begin{equation*}
\|f\|_{p, v \otimes v}=\left(\iint_{\mathbb{R}} \iint_{0}^{+\infty}|f((r, x),(s, y))|^{p} d v(r, x) d v(s, y)\right)^{1 / p}<+\infty \tag{3.2}
\end{equation*}
$$

for $p=+\infty$,

$$
\begin{equation*}
\|f\|_{\infty, v \otimes v}=\operatorname{ess}_{(r, x),(s, y) \in[0,+\infty[\times \mathbb{R}}|f((r, x),(s, y))|<+\infty ; \tag{3.3}
\end{equation*}
$$

(iv) $L^{p}(d \nu \otimes d \gamma), 1 \leqslant p \leqslant+\infty$, the space similarly defined (with $d \nu(r, x) d \gamma(\mu, \lambda)$ in the integrand).

Proposition 3.3. (i) The Fourier-Wigner transform V is a bilinear, continuous mapping from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right) \times \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$.
(ii) For $p \in] 1,2]$,

$$
\begin{equation*}
\|V(f, g)\|_{p^{\prime}, \nu \otimes \gamma} \leqslant\|f\|_{p, v}\|g\|_{p^{\prime}, v} . \tag{3.4}
\end{equation*}
$$

The transform V can be extended to a continuous bilinear operator, denoted also by V, from $L^{p}(d \nu) \times L^{p^{\prime}}(d \nu)$ into $L^{p^{\prime}}(d \nu \otimes d \gamma)$, where $p^{\prime}=p /(p-1)$ is the conjugate exponent of p.
Proof. (i) Let $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, and let F be the function defined on $\mathbb{R}^{2} \times \mathbb{R}^{2}$ by

$$
\begin{equation*}
F((r, x),(s, y))=f(s, y) \mathscr{T}_{(r, x)} g(s, y) \tag{3.5}
\end{equation*}
$$

Then, we have for all $(s, y),(\mu, \lambda) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\widetilde{\mathscr{F}}_{\alpha} \otimes I(F)((\mu, \lambda),(s, y))=j_{\alpha}(s \mu) \exp (i \lambda y) f(s, y) \widetilde{\mathscr{F}}_{\alpha}(g)(\mu, \lambda), \tag{3.6}
\end{equation*}
$$

where I is the identity operator. Since $\widetilde{\mathscr{F}}_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself, we deduce that the function $\widetilde{\mathscr{F}}_{\alpha} \otimes I(F)$ belongs to the space $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$ and consequently, $F \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$. Then, (i) follows from the relation

$$
\begin{equation*}
V(f, g)((r, x),(\mu, \lambda))=I \otimes \mathscr{F}_{\alpha}(F)((r, x),(\mu, \lambda)) \tag{3.7}
\end{equation*}
$$

and the fact that \mathscr{F}_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into $\mathscr{S}_{*}(\Gamma)$.
(ii) We get the result from Remark 3.2(i), Proposition 2.4, Minkowski's inequality for integrals (see [4, page 186]), and from the relation (2.16).
Theorem 3.4. For all $f, g \in \mathscr{F}_{*}\left(\mathbb{R}^{2}\right),(\mu, \lambda) \in \Gamma$ and $(r, x) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
\mathscr{F}_{\alpha} \otimes \mathscr{F}_{\alpha}^{-1}(V(f, g))((\mu, \lambda),(r, x))=\bar{\varphi}_{\mu, \lambda}(r, x) f(r, x) \mathscr{F}_{\alpha}(g)(\mu, \lambda) . \tag{3.8}
\end{equation*}
$$

Proof. This theorem follows from the relations (2.20) and (3.7).
Using the previous theorem and the relation (2.25), we get the following result.
Corollary 3.5. For $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,
(i) for all $(\mu, \lambda) \in \Gamma$,

$$
\begin{equation*}
\int_{\mathbb{R}} \int_{0}^{\infty} \mathscr{F}_{\alpha} \otimes \mathscr{F}_{\alpha}^{-1}(V(f, g))((\mu, \lambda),(r, x)) d \nu(r, x)=\mathscr{F}_{\alpha}(f)(\mu, \lambda) \mathscr{F}_{\alpha}(g)(\mu, \lambda) ; \tag{3.9}
\end{equation*}
$$

(ii) for all $(r, x) \in[0,+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
\iint_{\Gamma} \mathscr{F}_{\alpha} \otimes \mathscr{F}_{\alpha}^{-1}(V(f, g))((\mu, \lambda),(r, x)) d \gamma(\mu, \lambda)=f(r, x) g(r, x) . \tag{3.10}
\end{equation*}
$$

Theorem 3.6. Let $f, g \in L^{1}(d \nu) \cap L^{2}(d \nu)$, such that $c=\int_{\mathbb{R}} \int_{0}^{\infty} g(r, x) d v(r, x) \neq 0$. Then,

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\frac{1}{c} \int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((r, x),(\mu, \lambda)) d \nu(r, x) . \tag{3.11}
\end{equation*}
$$

Proof. From the relation (3.1), we have for all $(\mu, \lambda) \in \Gamma$,

$$
\begin{align*}
\int_{\mathbb{R}} \int_{0}^{\infty} & V(f, g)((r, x),(\mu, \lambda)) d v(r, x) \\
\quad & =\int_{\mathbb{R}} \int_{0}^{\infty}\left(\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) \varphi_{\mu, \lambda}(s, y) \mathscr{T}_{(r, x)} g(s, y) d v(s, y)\right) d v(r, x) . \tag{3.12}
\end{align*}
$$

Then, the result follows from the relation (2.15), Definition 2.3, the fact that

$$
\begin{equation*}
\forall(r, x) \in\left[0,+\infty\left[\times \mathbb{R}, \forall(\mu, \lambda) \in \Gamma, \quad\left|\varphi_{\mu, \lambda}(r, x)\right| \leqslant 1,\right.\right. \tag{3.13}
\end{equation*}
$$

and Fubini's theorem.
Corollary 3.7. With the hypothesis of Theorem 3.6, if $\mathscr{F}_{\alpha}(f) \in L^{1}(d \gamma)$, the following inversion formula for the Fourier-Wigner transform V holds:

$$
\begin{equation*}
f(r, x)=\frac{1}{c} \iint_{\Gamma} \bar{\varphi}_{\mu, \lambda}(r, x)\left[\int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((s, y),(\mu, \lambda)) d \nu(s, y)\right] d \gamma(\mu, \lambda), \tag{3.14}
\end{equation*}
$$

for almost every $(r, x) \in \mathbb{R}^{2}$.

4. Weyl transform associated with Riemann-Liouville operator

In this section, we introduce and study the Weyl transform and give its connection with the Fourier-Wigner transform. To do this, we must define the class of pseudodifferential operators [14].

Defintion 4.1. Let $m \in \mathbb{R}$. Define S^{m} to be the set of symbols, consisting of all infinitely differentiable functions $\sigma((r, x),(\mu, \lambda))$ on $\mathbb{R}^{2} \times \Gamma$, even with respect to the variables r and μ, such that for all $k_{1}, k_{2}, k_{3}, k_{4} \in \mathbb{N}$, there exists a positive constant $C=C\left(k_{1}, k_{2}, k_{3}, k_{4}, m\right)$
satisfying

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial r}\right)^{k_{1}}\left(\frac{\partial}{\partial x}\right)^{k_{2}}\left(\frac{\partial}{\partial \mu}\right)^{k_{3}}\left(\frac{\partial}{\partial \lambda}\right)^{k_{4}} \sigma((r, x),(\mu, \lambda))\right| \leqslant C\left(1+\mu^{2}+2 \lambda^{2}\right)^{m-\left(k_{3}+k_{4}\right)} \tag{4.1}
\end{equation*}
$$

Defintion 4.2. For $\sigma \in S^{m}, m \in \mathbb{R}$, define the operator H_{σ} on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right) \times \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, for all $(r, x) \in \mathbb{R}^{2}$,

$$
\begin{gather*}
H_{\sigma}(f, g)(r, x)=\iint_{\Gamma}\left\{\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s, y),(\mu, \lambda)) \varphi_{\mu, \lambda}(r, x)\right. \tag{4.2}\\
\times V(f, g)((s, y),(\mu, \lambda)) d v(s, y)\} d \gamma(\mu, \lambda), \\
\mathbb{H}_{\sigma}(f, g)=H_{\sigma}(f, g)(0,0) . \tag{4.3}
\end{gather*}
$$

Proposition 4.3. Let σ be the symbol given by

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2}, \quad \forall(\mu, \lambda) \in \Gamma, \quad \sigma((r, x),(\mu, \lambda))=-\left(\mu^{2}+\lambda^{2}\right) . \tag{4.4}
\end{equation*}
$$

Then for $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2}, \quad \mathrm{H}_{\sigma}(f, g)(r, x)=c \ell_{\alpha} f(r,-x), \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\int_{\mathbb{R}} \int_{0}^{\infty} g(r, x) d \nu(r, x), \quad \ell_{\alpha}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r} . \tag{4.6}
\end{equation*}
$$

Proof. From relations (3.1), (4.2) and Fubini's theorem we get, for all $(r, x) \in \mathbb{R}^{2}$,

$$
\begin{align*}
\mathrm{H}_{\sigma}(f, g)(r, x)=\iint_{\Gamma}-\left(\mu^{2}+\lambda^{2}\right) \varphi_{\mu, \lambda}(r, x)\left\{\int_{\mathbb{R}} \int_{0}^{\infty}\right. & f(t, z) \varphi_{\mu, \lambda}(t, z) \\
& \left.\times\left[\int_{\mathbb{R}} \int_{0}^{\infty} \mathscr{T}_{(t, z)} g(s, y) d \nu(s, y)\right] d \nu(t, z)\right\} d \gamma(\mu, \lambda) . \tag{4.7}
\end{align*}
$$

Now, by relation (2.15), it follows that

$$
\begin{equation*}
\mathrm{H}_{\sigma}(f, g)(r, x)=c \iint_{\Gamma}-\left(\mu^{2}+\lambda^{2}\right) \mathscr{F}_{\alpha}(f)(\mu, \lambda) \varphi_{\mu, \lambda}(r, x) d \gamma(\mu, \lambda) . \tag{4.8}
\end{equation*}
$$

The result follows from relation (2.25) and the fact that

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Gamma, \quad-\left(\mu^{2}+\lambda^{2}\right) \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\mathscr{F}_{\alpha}\left(\ell_{\alpha} f\right)(\mu, \lambda) . \tag{4.9}
\end{equation*}
$$

Defintion 4.4. Let $\sigma \in S^{m}, m<-(\alpha+3 / 2)$. The Weyl transform associated with the Riemann-Liouville operator is the mapping W_{σ} defined on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, for all $(r, x) \in \mathbb{R}^{2}$, by

$$
\begin{equation*}
W_{\sigma}(f)(r, x)=\iint_{\Gamma}\left[\int_{\mathbb{R}} \int_{0}^{\infty} \varphi_{\mu, \lambda}(r, x) \sigma((s, y),(\mu, \lambda)) \mathscr{T}_{(r, x)} f(s, y) d v(s, y)\right] d \gamma(\mu, \lambda) . \tag{4.10}
\end{equation*}
$$

Theorem 4.5. Let $\sigma \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$. The Weyl transform W_{σ} is a continuous mapping from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into itself.
Proof. Let $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, since $\widetilde{\mathscr{F}}_{\alpha}$ is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto itself, and

$$
\begin{equation*}
\forall(\mu, \lambda) \in \mathbb{R}^{2}, \quad \widetilde{\mathscr{F}}_{\alpha}\left(\mathscr{T}_{(r, x)} f\right)(\mu, \lambda)=j_{\alpha}(r \mu) \exp (i \lambda x) \widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda), \tag{4.11}
\end{equation*}
$$

we deduce that for all $(r, x) \in\left[0,+\infty\left[\times \mathbb{R}\right.\right.$, the function $(s, y) \mapsto \mathscr{T}_{(r, x)} f(s, y)$ belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$. Then, by the inversion formula for $\tilde{\mathscr{F}}_{\alpha}$, we get, for all $(s, y) \in \mathbb{R}^{2}$;

$$
\begin{equation*}
\mathscr{T}_{(r, x)} f(s, y)=\int_{\mathbb{R}} \int_{0}^{+\infty} j_{\alpha}(r \mu) \exp (i \lambda x) \widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda) j_{\alpha}(s \mu) \exp (i \lambda y) d \nu(\mu, \lambda) . \tag{4.12}
\end{equation*}
$$

By Definition 4.4 and Fubini's theorem, we obtain, for all $(r, x) \in \mathbb{R}^{2}$,

$$
\begin{align*}
& W_{\sigma}(f)(r, x) \\
&=\iint_{\Gamma} \varphi_{\mu, \lambda}(r, x)[\int_{\mathbb{R}} \int_{0}^{\infty} \widetilde{\mathscr{F}}_{\alpha}(f)(t, z) j_{\alpha}(r t) \exp (i x z) \\
&\left.\times\left\{\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s, y),(\mu, \lambda)) j_{\alpha}(s t) \exp (i y z) d v(s, y)\right\} d \nu(t, z)\right] d \gamma(\mu, \lambda) \\
&=\iint_{\Gamma} \varphi_{\mu, \lambda}(r, x)[\int_{\mathbb{R}} \int_{0}^{\infty} \widetilde{\mathscr{F}}_{\alpha}(f)(t, z) j_{\alpha}(r t) \exp (i x z) \\
&\left.\times \widetilde{\mathscr{F}}_{\alpha}^{-1}(\sigma((\cdot, \cdot),(\mu, \lambda)))(t, z) d v(t, z)\right] d \gamma(\mu, \lambda) . \tag{4.13}
\end{align*}
$$

Now, the function

$$
\begin{equation*}
((t, z),(\mu, \lambda)) \longmapsto \widetilde{\mathscr{F}}_{\alpha}^{-1}(\sigma((\cdot, \cdot),(\mu, \lambda)))(t, z) \tag{4.14}
\end{equation*}
$$

belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$.
On the other hand, the mapping $f \mapsto G_{f}$, given for all $((t, z),(\mu, \lambda)) \in \mathbb{R}^{2} \times \Gamma$ by

$$
\begin{equation*}
G_{f}((t, z),(\mu, \lambda))=\widetilde{\mathscr{F}}_{\alpha}(f)(t, z) \widetilde{\mathscr{F}}_{\alpha}^{-1}(\sigma((\cdot, \cdot),(\mu, \lambda)))(t, z), \tag{4.15}
\end{equation*}
$$

is continuous from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ into $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$, and for all $(r, x) \in \mathbb{R}^{2}$, we have

$$
\begin{align*}
W_{\sigma}(f)(r, x) & =\iint_{\Gamma}\left(\int_{\mathbb{R}} \int_{0}^{\infty} G_{f}((t, z),(\mu, \lambda)) j_{\alpha}(r t) \exp (i x z) \bar{\varphi}_{\mu, \lambda}(r,-x) d \nu(t, z)\right) d \gamma(\mu, \lambda) \\
& =\widetilde{F}_{\alpha}^{-1} \otimes \mathscr{F}_{\alpha}^{-1}\left(G_{f}\right)((r, x),(r,-x)) . \tag{4.16}
\end{align*}
$$

Since $\mathscr{F}_{\alpha}^{-1}$ is an isomorphism from $\mathscr{S}_{*}(\Gamma)$ onto $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, we deduce that $\widetilde{\mathscr{F}}_{\alpha}^{-1} \otimes \mathscr{F}_{\alpha}^{-1}$ is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$ onto $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$.

Lemma 4.6. Let $\sigma \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$. Then, the function k defined on $\mathbb{R}^{2} \times \mathbb{R}^{2}$ by

$$
\begin{equation*}
k((r, x),(s, y))=\iint_{\Gamma} \varphi_{\mu, \lambda}(r, x) \mathscr{T}_{(r,-x)}(\sigma((\cdot, \cdot),(\mu, \lambda)))(s, y) d \gamma(\mu, \lambda) \tag{4.17}
\end{equation*}
$$

belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$.
Proof. The function k can be written in the form

$$
\begin{equation*}
k((r, x),(s, y))=\mathscr{T}_{(r,-x)}\left(I \otimes \mathscr{F}_{\alpha}^{-1}(\sigma)((\cdot, \cdot),(r,-x))\right)(s, y) . \tag{4.18}
\end{equation*}
$$

Since the Fourier transform \mathscr{F}_{α} is an isomorphism from $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ onto $\mathscr{S}_{*}(\Gamma)$, we deduce that the function $I \otimes \mathscr{F}_{\alpha}^{-1}(\sigma)$ belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$.

Then, the lemma follows from the fact that for all $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$, the function

$$
\begin{equation*}
((r, x),(s, y)) \longmapsto \mathscr{T}_{(r,-x)}(g((\cdot, \cdot),(r,-x)))(s, y) \tag{4.19}
\end{equation*}
$$

belongs to $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}\right)$.
Theorem 4.7. Let $\sigma \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$.
(i) For all $f \in \mathscr{Y}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2}, \quad W_{\sigma}(f)(r, x)=\int_{\mathbb{R}} \int_{0}^{\infty} k((r, x),(s, y)) f(s, y) d v(s, y) . \tag{4.20}
\end{equation*}
$$

(ii) For $f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ and $p, p^{\prime} \in[1,+\infty]$ such that $1 / p+1 / p^{\prime}=1$,

$$
\begin{equation*}
\left\|W_{\sigma}(f)\right\|_{p^{\prime}, \nu} \leqslant\|k\|_{p^{\prime}, \nu \otimes v}\|f\|_{p, v} . \tag{4.21}
\end{equation*}
$$

(iii) For $p \in\left[1,+\infty\left[\right.\right.$, the operator W_{σ} can be extended to a bounded operator from $L^{p}(d \nu)$ into $L^{p^{\prime}}(d \nu)$.
In particular

$$
\begin{equation*}
W_{\sigma}: L^{2}(d \nu) \longmapsto L^{2}(d \nu) \tag{4.22}
\end{equation*}
$$

is a Hilbert-Schmidt operator, and consequently it is compact.
Proof. (i) Let f be in $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$. From Definition 4.4, for all $(\mu, \lambda) \in \mathbb{R}^{2}$, we have

$$
\begin{align*}
W_{\sigma}(f)(r, x) & =\iint_{\Gamma}\left(\int_{\mathbb{R}} \int_{0}^{\infty} \varphi_{\mu, \lambda}(r, x) \sigma((s, y),(\mu, \lambda)) \mathscr{T}_{(r, x)} f(s, y) d v(s, y)\right) d \gamma(\mu, \lambda) \\
& =\iint_{\Gamma} \varphi_{\mu, \lambda}(r, x)\left(\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s, y),(\mu, \lambda)) \mathscr{T}_{(r, x)} f(s, y) d v(s, y)\right) d \gamma(\mu, \lambda) . \tag{4.23}
\end{align*}
$$

Using Fubini's theorem, and the equality

$$
\begin{align*}
& \int_{\mathbb{R}} \int_{0}^{\infty} \sigma((s, y),(\mu, \lambda)) \mathscr{T}_{(r, x)} f(s, y) d \nu(s, y) \tag{4.24}\\
& \quad=\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) \mathscr{T}_{(r,-x)}(\sigma((\cdot, \cdot),(\mu, \lambda)))(s, y) d \nu(s, y),
\end{align*}
$$

we get

$$
\begin{align*}
W_{\sigma}(f)(r, x) & =\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y)\left\{\iint_{\Gamma} \varphi_{\mu, \lambda}(r, x) \mathscr{T}_{(r,-x)}(\sigma((\cdot, \cdot),(\mu, \lambda)))(s, y) d \gamma(\mu, \lambda)\right\} d v(s, y) \\
& =\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y) k((r, x),(s, y)) d v(s, y) . \tag{4.25}
\end{align*}
$$

(ii) follows from (i), Hölder's inequality, and Lemma 4.6.
(iii) From (ii) and the fact that the space $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ is dense in $L^{p}(d \nu), p \in[1,+\infty[$, we deduce that W_{σ} can be extended to a continuous mapping from $L^{p}(d \nu)$ into $L^{p^{\prime}}(d \nu)$.

By Lemma 4.6, the kernel k belongs to $L^{2}(d \nu \otimes d \nu)$, hence W_{σ} is a Hilbert-Schmidt operator. In particular, it is compact.

Theorem 4.8. Let $\sigma \in S^{m}, m<-(\alpha+3 / 2)$. For all $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{equation*}
\mathbb{H}_{\sigma}(f, g)=\left\langle\frac{W_{\sigma}(g)}{\bar{f}}\right\rangle, \tag{4.26}
\end{equation*}
$$

where $\langle\cdot / \cdot\rangle$ is the inner product of $L^{2}(d \nu)$.
Proof. From Definition (3.1) and relations (4.2), (4.3), we get

$$
\begin{align*}
\mathbb{H}_{\sigma}(f, g)=\iint_{\Gamma}\left\{\int _ { \mathbb { R } } \int _ { 0 } ^ { \infty } \sigma ((r , x) , (\mu , \lambda)) \left(\int_{\mathbb{R}} \int_{0}^{\infty}\right.\right. & f(s, y) \varphi_{\mu, \lambda}(s, y) \\
& \left.\left.\times \mathscr{T}_{(r, x)} g(s, y) d \nu(s, y)\right) d \nu(r, x)\right\} d \gamma(\mu, \lambda) . \tag{4.27}
\end{align*}
$$

Using Fubini's theorem, we obtain

$$
\begin{align*}
\mathbb{H}_{\sigma}(f, g)=\int_{\mathbb{R}} \int_{0}^{\infty} f(s, y)\left\{\int \int _ { \Gamma } \varphi (\mu , \lambda) (s , y) \left(\int_{\mathbb{R}} \int_{0}^{\infty}\right.\right. & \sigma((r, x),(\mu, \lambda)) \\
& \left.\left.\times \mathcal{T}_{(r, x)} g(s, y) d \nu(r, x)\right) d \gamma(\mu, \lambda)\right\} d \nu(s, y) \tag{4.28}
\end{align*}
$$

The theorem follows from Definition 4.4 and the fact that for all $((r, x),(s, y)) \in[0$, $+\infty[\times \mathbb{R}$,

$$
\begin{equation*}
\mathscr{T}_{(r, x)} g(s, y)=\mathscr{T}_{(s, y)} g(r, x) . \tag{4.29}
\end{equation*}
$$

5. Weyl transform associated with symbol in $L^{p}(d \nu \otimes d \gamma), 1 \leqslant p \leqslant 2$

In this section, we will see that relation (4.26) allows us to prove that the Weyl transform with symbol in $L^{p}(d \nu \otimes d \gamma), 1 \leqslant p \leqslant 2$, is a compact operator.

We denote by $\mathscr{B}\left(L^{2}(d \nu)\right)$ the \mathbb{C}^{*}-algebra of bounded operators ψ from $L^{2}(d \nu)$ into itself, equipped with the norm

$$
\begin{equation*}
\|\psi\|_{*}=\sup _{\|f\|_{2, v}=1}\|\psi(f)\|_{2, v^{*}} \tag{5.1}
\end{equation*}
$$

Theorem 5.1. For $p \in[1,2]$, there exists a unique bounded operator Q from $L^{p}(d \nu \otimes d \gamma)$ into $\mathscr{B}\left(L^{2}(d \nu)\right): \sigma \mapsto Q_{\sigma}$, such that for all $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{gather*}
\left\langle\frac{Q_{\sigma}(g)}{\bar{f}}\right\rangle=\iint_{\Gamma}\left(\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((r, x),(\mu, \lambda)) V(f, g)((r, x),(\mu, \lambda)) d v(r, x)\right) d \gamma(\mu, \lambda), \tag{5.2}\\
\left\|Q_{\sigma}\right\|_{*} \leqslant\|\sigma\|_{p, v \otimes \gamma} .
\end{gather*}
$$

Proof. (i) The case $p=2$.
Let $\sigma \in \mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$. For $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, we put $Q_{\sigma}(g)=W_{\sigma}(g)$.
From Theorem 4.8, we obtain

$$
\begin{align*}
\left\langle\frac{Q_{\sigma}(g)}{\bar{f}}\right\rangle & =\left\langle\frac{W_{\sigma}(g)}{\bar{f}}\right\rangle=\mathbb{W}_{\sigma}(f, g) \tag{5.3}\\
& =\iint_{\Gamma}\left(\int_{\mathbb{R}} \int_{0}^{\infty} \sigma((r, x),(\mu, \lambda)) V(f, g)((r, x),(\mu, \lambda)) d v(r, x)\right) d \gamma(\mu, \lambda) .
\end{align*}
$$

On the other hand, from Proposition 3.3(ii) and Cauchy-Shwartz inequality, we have

$$
\begin{equation*}
\left|\left\langle\frac{Q_{\sigma}(g)}{\bar{f}}\right\rangle\right| \leqslant\|\sigma\|_{2, v \otimes \gamma}\|f\|_{2, v}\|g\|_{2, v} \tag{5.4}
\end{equation*}
$$

This implies that $Q_{\sigma} \in \mathscr{B}\left(L^{2}(d \nu)\right)$ and

$$
\begin{equation*}
\left\|Q_{\sigma}\right\|_{*} \leqslant\|\sigma\|_{2, \nu \otimes \gamma} . \tag{5.5}
\end{equation*}
$$

We complete the proof by using the fact that the space $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$ is dense in $L^{2}(d \nu \otimes d \gamma)$.
(ii) The case $p=1$ can be obtained by the same way.
(iii) Using the cases $p=1, p=2$, and the Riesz-Thorin theorem [10, 11], we complete the proof for all $p \in[1,2]$.

Remark 5.2. In the following, the operator Q_{σ} will be denoted by W_{σ}.
Theorem 5.3. For $\sigma \in L^{p}(d \nu \otimes d \gamma), 1 \leqslant p \leqslant 2$, the operator W_{σ} from $L^{2}(d \nu)$ into itself is a compact operator.

Proof. Let $\sigma \in L^{p}(d \nu \otimes d \gamma), 1 \leqslant p \leqslant 2$, and let $\left(\sigma_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$, such that

$$
\begin{equation*}
\left\|\sigma_{k}-\sigma\right\|_{p, \nu \otimes \gamma} \xrightarrow[k \rightarrow+\infty]{ } 0 \tag{5.6}
\end{equation*}
$$

From relation (5.5), we have $\left\|W_{\sigma_{k}}-W_{\sigma}\right\|_{*} \leqslant\left\|\sigma_{k}-\sigma\right\|_{p, v \otimes \gamma}$. This implies that

$$
\begin{equation*}
W_{\sigma_{k}} \xrightarrow[k \rightarrow+\infty]{ } W_{\sigma}, \quad \text { in } \mathscr{B}\left(L^{2}(d \nu)\right) \tag{5.7}
\end{equation*}
$$

Weyl transforms
But from Theorem 4.7, we know that for all $k \in \mathbb{N}$, the operator $W_{\sigma_{k}}$ is compact, then the result of the theorem follows from the fact that the subspace $\mathscr{K}\left(L^{2}(d \nu)\right)$ of $\mathscr{B}\left(L^{2}(d \nu)\right)$ consisting of compact operators is a closed ideal of $\mathscr{B}\left(L^{2}(d \nu)\right)$.

6. Weyl transform with symbol in $S_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$

We denote by
(i) $\mathscr{Y}_{*}^{\prime}\left(\mathbb{R}^{2}\right)$ the space of tempered distributions on \mathbb{R}^{2}, even with respect to the first variable. It is the topological dual of $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$;
(ii) $\mathscr{S}_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$ the space of tempered distributions on $\mathbb{R}^{2} \times \Gamma$, even with respect to the first variables of \mathbb{R}^{2} and Γ. It is the topological dual of $\mathscr{S}_{*}\left(\mathbb{R}^{2} \times \Gamma\right)$.

Defintion 6.1. For $\sigma \in \mathscr{G}_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$ and $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, define the operator $W_{\sigma}(g)$ on $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, by

$$
\begin{equation*}
\left[W_{\sigma}(g)\right](f)=\sigma(V(f, g)), \quad f \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right) \tag{6.1}
\end{equation*}
$$

where V is the mapping given by (3.1).
Remark 6.2. From Proposition 3.3, it is clear that $W_{\sigma}(g)$ given by (6.1) belongs to $S_{*}^{\prime}\left(\mathbb{R}^{2}\right)$.
For a slowly increasing function h on $\mathbb{R}^{2} \times \Gamma$, we denote by σ_{h} the element of $S_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$ defined by

$$
\begin{equation*}
\sigma_{h}(F)=\iint_{\Gamma} \int_{\mathbb{R}} \int_{0}^{\infty} F((r, x),(\mu, \lambda)) h((r, x),(\mu, \lambda)) d \nu(r, x) d \gamma(\mu, \lambda) . \tag{6.2}
\end{equation*}
$$

Then, we have the following.
Proposition 6.3. Let $\sigma_{1} \in S_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$, given by the function equal to 1 . One has

$$
\begin{equation*}
W_{\sigma_{1}}(g)=c \delta \tag{6.3}
\end{equation*}
$$

where $c=\int_{\mathbb{R}} \int_{0}^{\infty} g(r, x) d \nu(r, x)$ and δ is the Dirac distribution at $(0,0)$.
Proof. By relation (6.1), we have for all f in $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$,

$$
\begin{align*}
{\left[W_{\sigma_{1}}(g)\right](f) } & =\sigma_{1}(V(f, g)), \\
& =\iint_{\Gamma}\left(\int_{\mathbb{R}} \int_{0}^{\infty} V(f, g)((r, x)(\mu, \lambda)) d v(r, x)\right) d \gamma(\mu, \lambda), \tag{6.4}
\end{align*}
$$

and by Theorem 3.6

$$
\begin{equation*}
\left[W_{\sigma_{1}}(g)\right](f)=c \iint_{\Gamma} \mathscr{F}_{\alpha}(f)(\mu, \lambda) d \gamma(\mu, \lambda) \tag{6.5}
\end{equation*}
$$

We complete the proof by using relation (2.25).

Remark 6.4. From Proposition 6.3, we deduce that there exists $\sigma \in \mathscr{G}_{*}^{\prime}\left(\mathbb{R}^{2} \times \Gamma\right)$ given by a function in $L^{\infty}\left(\mathbb{R}^{2} \times \Gamma\right)$, such that for all $g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ satisfying

$$
\begin{equation*}
c=\int_{\mathbb{R}} \int_{0}^{\infty} g(r, x) d \nu(r, x) \neq 0, \tag{6.6}
\end{equation*}
$$

the distribution $W_{\sigma}(g)$ is not given by a function of $L^{2}(d \nu)$.
7. Weyl transform with symbol in $L^{p}(d \nu \otimes d \gamma), 2<p<\infty$

Theorem 7.1. Let $p \in] 2,+\infty$ [. There exists a function $\sigma \in L^{p}(d \nu \otimes d \gamma)$, such that the Weyl transform W_{σ} defined by (6.1) is not a bounded linear operator on $L^{2}(d \nu)$.

We break down the proof into two lemmas, of which the theorem is an immediate consequence.

Lemma 7.2. Let $2<p<\infty$. Suppose that for all $\sigma \in L^{p}(d \nu \otimes d \gamma)$, the Weyl transform W_{σ} given by relation (6.1) is a bounded linear operator on $L^{2}(d \nu)$. Then, there exists a positive constant M such that

$$
\begin{equation*}
\left\|W_{\sigma}\right\|_{*} \leqslant M\|\sigma\|_{p, v \otimes \gamma}, \quad \forall \sigma \in L^{p}(d \nu \otimes d \gamma) \tag{7.1}
\end{equation*}
$$

Proof. Under the assumption of the lemma, there exists for each $\sigma \in L^{p}(d \nu \otimes d \gamma)$ a positive constant C_{σ} such that

$$
\begin{equation*}
\left\|W_{\sigma}(g)\right\|_{2, v} \leqslant C_{\sigma}\|g\|_{2, v}, \quad \text { for } g \in L^{2}(d \nu) \tag{7.2}
\end{equation*}
$$

Let $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$ such that $\|f\|_{2, v}=\|g\|_{2, v}=1$, and let us define the operator

$$
\begin{equation*}
Q_{f, g}: L^{p}(d \nu \otimes d \gamma) \longrightarrow \mathbb{C} \tag{7.3}
\end{equation*}
$$

by

$$
\begin{equation*}
Q_{f, g}(\sigma)=\left\langle\frac{W_{\sigma}(g)}{\bar{f}}\right\rangle . \tag{7.4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\sup _{\|f\|_{2, v}=\|g\|_{2, v}=1}\left|Q_{f, g}(\sigma)\right| \leqslant C_{\sigma} . \tag{7.5}
\end{equation*}
$$

By the Banach-Steinhauss theorem, the operator $Q_{f, g}$ is bounded on $L^{p}(d \nu \otimes d \gamma)$, then there exists a positive constant M such that

$$
\begin{equation*}
\left\|Q_{f, g}\right\|_{*}=\sup _{\|\sigma\|_{p, v \otimes \gamma}=1}\left|Q_{f, g}(\sigma)\right| \leqslant M \tag{7.6}
\end{equation*}
$$

From this, we deduce that for all $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, and $\sigma \in L^{p}(d \nu \otimes d \gamma)$, we have

$$
\begin{equation*}
\left|\left\langle\frac{W_{\sigma}(g)}{\bar{f}}\right\rangle\right| \leqslant M\|\sigma\|_{p, v \otimes \gamma}\|f\|_{2, v}\|g\|_{2, v} \tag{7.7}
\end{equation*}
$$

which implies (7.1).

Lemma 7.3. For $2<p<\infty$, there is no positive constant M satisfying (7.1).
Proof. Suppose that there exists $M>0$ such that relation (7.1) holds.
Let p^{\prime} be such that $1 / p+1 / p^{\prime}=1$, then $\left.p^{\prime} \in\right] 1,2[$.
We consider for $f, g \in \mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, the function $V(f, g)$ given by the relation (3.1). We have

$$
\begin{equation*}
\|V(f, g)\|_{p^{\prime}, \nu \otimes \gamma}=\sup _{\|\sigma\|_{p, v \otimes \gamma}=1}\left|\left\langle\frac{W_{\sigma}(g)}{\bar{f}}\right\rangle\right| \leqslant \sup _{\|\sigma\|_{p, v \otimes \gamma}=1}\left\|W_{\sigma}(g)\right\|_{2, v}\|f\|_{2, v}, \tag{7.8}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\|V(f, g)\|_{p^{\prime}, \nu \otimes \gamma} \leqslant M\|f\|_{2, v}\|g\|_{2, v} . \tag{7.9}
\end{equation*}
$$

Now, let $f, g \in L^{2}(d \nu)$, we choose sequences $\left(f_{k}\right)_{k \in \mathbb{N}}$ and $\left(g_{k}\right)_{k \in \mathbb{N}}$ in $\mathscr{S}_{*}\left(\mathbb{R}^{2}\right)$, approximating f and g in the $\|\cdot\|_{2, v}$-norm.

From (7.9), we get

$$
\begin{equation*}
\left\|V\left(f_{k}, g_{k}\right)\right\|_{p^{\prime}, v \otimes \gamma} \leqslant M\left\|f_{k}\right\|_{2, v}\left\|g_{k}\right\|_{2, v}, \tag{7.10}
\end{equation*}
$$

which implies that $\left(V\left(f_{k}, g_{k}\right)\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in $L^{p^{\prime}}(d \nu \otimes d \gamma)$. Then, it converges to some function F in $L^{p^{\prime}}(d \nu \otimes d \gamma)$.

Now, using Proposition 3.3, we deduce that $F=V(f, g)$, and

$$
\begin{equation*}
\forall f, g \in L^{2}(d \nu), \quad\|V(f, g)\|_{p^{\prime}, \nu \otimes \gamma} \leqslant M\|f\|_{2, v}\|g\|_{2, v} \tag{7.11}
\end{equation*}
$$

We will exhibit an example where the relation (7.11) leads to a contradiction. Let f be defined on \mathbb{R}^{2}, even with respect to the first variable, and supported in $[-1,1] \times[-1,1]$. Then, for all $((r, x),(\mu, \lambda)) \in \mathbb{R}^{2} \times \Gamma$,

$$
\begin{equation*}
|V(f, f)((r, x),(\mu, \lambda))| \leqslant|f| *|\check{f}|(r,-x), \tag{7.12}
\end{equation*}
$$

where $*$ is the convolution product given by Definition 2.2. From (2.18), we deduce that for all $(\mu, \lambda) \in \Gamma$, the function $(r, x) \mapsto V(f, f)((r, x),(\mu, \lambda))$ is supported in $[-2,2] \times$ $[-2,2]$.

On the other hand, by Hölder's inequality, we have

$$
\begin{align*}
& \left(\iint_{\Gamma}\left|\int_{-2}^{2} \int_{0}^{2} V(f, f)((r, x),(\mu, \lambda)) d v(r, x)\right|^{p^{\prime}} d \gamma(\mu, \lambda)\right)^{1 / p^{\prime}} \\
& \quad \leqslant\left(\int_{-2}^{2} \int_{0}^{2} d \nu(r, x)\right)^{1 / p}\left(\iint_{\Gamma} \int_{-2}^{2} \int_{0}^{+\infty}|V(f, f)((r, x),(\mu, \lambda))|^{p^{\prime}} d v(r, x) d \gamma(\mu, \lambda)\right)^{1 / p^{\prime}} \\
& \quad=\left(\int_{-2}^{2} \int_{0}^{2} d \nu(r, x)\right)^{1 / p}\|V(f, f)\|_{p^{\prime}, v \otimes \gamma} \leqslant M\left(\int_{-2}^{2} \int_{0}^{2} d \nu(r, x)\right)^{1 / p}\|f\|_{2, v}^{2} . \tag{7.13}
\end{align*}
$$

The last inequality follows from (7.9). Now, Theorem 3.6 implies that the function

$$
\begin{equation*}
(\mu, \lambda) \longmapsto \int_{\mathbb{R}} \int_{0}^{+\infty} V(f, f)((r, x),(\mu, \lambda)) d \nu(r, x)=c \mathscr{F}_{\alpha}(f)(\mu, \lambda) \tag{7.14}
\end{equation*}
$$

belongs to $L^{p^{\prime}}(d \gamma)$, here $c=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) d v(r, x)$.
If we pick $c=\int_{\mathbb{R}} \int_{0}^{+\infty} f(r, x) d \nu(r, x) \neq 0$, and the last inequality, we deduce that the function $\mathscr{F}_{\alpha}(f)$ belongs to $L^{p^{\prime}}(d \gamma)$, and

$$
\begin{equation*}
\left\|\mathscr{F}_{\alpha}(f)\right\|_{p^{\prime}, \gamma} \leqslant \frac{M}{|c|}\left(\int_{-2}^{2} \int_{0}^{2} d \nu(r, x)\right)^{1 / p}\|f\|_{2, \gamma}^{2} \tag{7.15}
\end{equation*}
$$

In the following, we consider the particular function f given by

$$
\begin{equation*}
f(r, x)=|r|^{\beta} \mathbf{1}_{[-1,1]}(r) \mathbf{1}_{[-1,1]}(x), \tag{7.16}
\end{equation*}
$$

where $\mathbf{1}_{[-1,1]}$ is the characteristic function of the interval $[-1,1]$.
This function belongs to $L^{1}(d \nu) \cap L^{2}(d \nu)$, for $\beta>-(\alpha+1)$, and we have

$$
\begin{equation*}
\tilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda)=\frac{1}{2^{\alpha-1} \Gamma(\alpha+1) \sqrt{2 \pi}} \frac{\sin \lambda}{\lambda} \int_{0}^{1} r^{\beta+2 \alpha+1} j_{\alpha}(r \mu) d r, \tag{7.17}
\end{equation*}
$$

so

$$
\begin{equation*}
\left\|\tilde{\mathscr{F}}_{\alpha}(f)\right\|_{p^{\prime}, \nu}^{p^{\prime}}=\frac{2^{p^{\prime}}}{\left(2^{\alpha} \Gamma(\alpha+1) \sqrt{2 \pi}\right)^{p^{\prime}+1}} \int_{\mathbb{R}}\left|\frac{\sin \lambda}{\lambda}\right|^{p^{\prime}} d \lambda \times \int_{0}^{+\infty}\left|\int_{0}^{1} r^{\beta+2 \alpha+1} j_{\alpha}(r \mu) d r\right|^{p^{\prime}} \mu^{2 \alpha+1} d \mu . \tag{7.18}
\end{equation*}
$$

However

$$
\begin{equation*}
\int_{0}^{1} r^{\beta+2 \alpha+1} j_{\alpha}(r \mu) d r=\frac{1}{\mu^{\beta+2 \alpha+2}} \int_{0}^{\mu} r^{\beta+2 \alpha+1} j_{\alpha}(r) d r . \tag{7.19}
\end{equation*}
$$

Using the asymptotic expansion of j_{α} (see $[7,12]$), given by

$$
\begin{equation*}
j_{\alpha}(r)=\frac{2^{\alpha+1 / 2} \Gamma(\alpha+1)}{\sqrt{\pi} r^{\alpha+1 / 2}}\left[\cos \left(r-\alpha \frac{\pi}{2}-\frac{\pi}{4}\right)+O\left(\frac{1}{r}\right)\right], \quad \text { as }(r \longrightarrow+\infty), \tag{7.20}
\end{equation*}
$$

we deduce that for $-(\alpha+1)<\beta<-(\alpha+1 / 2)$, the integral

$$
\begin{equation*}
a=\int_{0}^{+\infty} r^{\beta+2 \alpha+1} j_{\alpha}(r) d r \tag{7.21}
\end{equation*}
$$

exists and is finite. This involves that

$$
\begin{equation*}
\int_{0}^{1} r^{\beta+2 \alpha+1} j_{\alpha}(r \mu) d r \sim \frac{a}{\mu^{\beta+2 \alpha+2}}, \quad \text { as }(\mu \longrightarrow+\infty) \tag{7.22}
\end{equation*}
$$

Then, there exist $A, B>0$ such that for

$$
\begin{equation*}
\mu>A, \quad\left|\int_{0}^{1} r^{\beta+2 \alpha+1} j_{\alpha}(r \mu) d r\right| \geqslant \frac{B}{\mu^{\beta+2 \alpha+2}} . \tag{7.23}
\end{equation*}
$$

Replacing in relation (7.18), we get

$$
\begin{equation*}
\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{p^{\prime}, \gamma}^{p^{\prime}} \geqslant \frac{(2 B)^{p^{\prime}}}{\left(2^{\alpha} \Gamma(\alpha+1) \sqrt{2 \pi}\right)^{p^{\prime}+1}} \int_{\mathbb{R}}\left|\frac{\sin \lambda}{\lambda}\right|^{p^{\prime}} d \lambda \int_{A}^{+\infty} \frac{d \mu}{\mu^{p^{\prime}(2 \alpha+\beta+2)-2 \alpha-1}} . \tag{7.24}
\end{equation*}
$$

Thus, for $\beta<-(2 \alpha+2)+\left(2 \alpha+2 / p^{\prime}\right)$,

$$
\begin{equation*}
\left\|\mathscr{F}_{\alpha}(f)\right\|_{p^{\prime}, \gamma}^{p^{\prime}}=\left\|\widetilde{\mathscr{F}}_{\alpha}(f)\right\|_{p^{\prime}, \nu}^{p^{\prime}}=+\infty . \tag{7.25}
\end{equation*}
$$

This shows that relation (7.15) is false if we pick

$$
\begin{equation*}
\beta \in]-(\alpha+1), \min \left(-\left(\alpha+\frac{1}{2}\right),-(2 \alpha+2)+\frac{2 \alpha+2}{p^{\prime}}\right)[. \tag{7.26}
\end{equation*}
$$

References

[1] C. Baccar, N. B. Hamadi, and L. T. Rachdi, Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators, International Journal of Mathematics and Mathematical Sciences 2006 (2006), Article ID 86238, 26 pages.
[2] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, 2nd ed., CRC Press, Florida, 2006.
[3] J. A. Fawcett, Inversion of N-dimensional spherical averages, SIAM Journal on Applied Mathematics 45 (1985), no. 2, 336-341.
[4] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Pure and Applied Mathematics (New York), John Wiley \& Sons, New York, 1984.
[5] H. Hellsten and L.-E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems 3 (1987), no. 1, 111-124.
[6] M. Herberthson, A numerical implementation of an inverse formula for CARABAS raw data, Internal Report D 30430-3.2, National Defense Research Institute, FOA, Linköping, 1986.
[7] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[8] R. Ma and L. Peng, Weyl-Jacobi Transform, preprint, 2005.
[9] M. M. Nessibi, L. T. Rachdi, and K. Trimeche, Ranges and inversion formulas for spherical mean operator and its dual, Journal of Mathematical Analysis and Applications 196 (1995), no. 3, 861884.
[10] E. M. Stein, Interpolation of linear operators, Transactions of the American Mathematical Society 83 (1956), no. 2, 482-492.
[11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, New Jersey, 1971.
[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, London, 1966.
[13] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York, 1950.
[14] M. W. Wong, Weyl Transforms, Universitext, Springer, New York, 1998.
[15] J. Zhao and L. Peng, Wavelet and Weyl transforms associated with the spherical mean operator, Integral Equations and Operator Theory 50 (2004), no. 2, 279-290.
N. B. Hamadi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis, El Manar 2092, Tunis, Tunisia
E-mail address: nadia.zouari@edunet.tn
L. T. Rachdi: Department of Mathematics, Faculty of Sciences of Tunis, University Tunis, El Manar 2092, Tunis, Tunisia
E-mail address: lakhdartannech.rachdi@fst.rnu.tn

