
A NOTE ON ALMOST CONTRA-PRECONTINUOUS
FUNCTIONS

C. W. BAKER AND ERDAL EKICI

Received 17 January 2006; Revised 30 May 2006; Accepted 5 June 2006

New characterizations of almost contra-precontinuity are presented. These characteriza-
tions are used to develop a new weak form of almost contra-precontinuity. This new weak
form is then used to extend several results in the literature concerning almost contra-
precontinuity.
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1. Introduction

Almost contra-precontinuous functions were introduced by Ekici [7] and recently have
been investigated further by Noiri and Popa [13]. The purpose of this note is to de-
velop some new characterizations of almost contra-precontinuous functions and to intro-
duce a new weak form of almost contra-precontinuity, which we call subalmost contra-
precontinuity. It is shown that subalmost contra-precontinuity implies subalmost weak
continuity and is independent of subweak continuity. Subalmost contra-precontinuity is
used to extend several results in the literature concerning almost contra-precontinuity.
For example, we show that the graph of a subalmost contra-precontinuous function
with a Hausdorff codomain is P-regular and that the domain of a subalmost contra-
precontinuous injection with a weakly Hausdorff codomain is pre-T1. These results ex-
tend the analogous results for an almost contra-precontinuous function.

2. Preliminaries

The symbols X and Y denote topological spaces with no separation axioms assumed un-
less explicitly stated. All sets are considered to be subsets of topological spaces. The closure
and interior of a set A are signified by Cl(A) and Int(A), respectively. A set A is regular
open if A = Int(Cl(A)). A set A is preopen [12] (resp., semiopen [11], β-open [1]) pro-
vided that A ⊆ Int(Cl(A)) (resp., A ⊆ Cl(Int(A)), A ⊆ Cl(Int(Cl(A)))). A set is θ-open
provided that it contains a closed neighborhood of each of its points. A set A is pre-
closed (resp., semiclosed, β-closed, regular closed, θ-closed) if its complement is preopen
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(resp., semiopen, β-open, regular open, θ-open). The preclosure [8] of A, denoted by
pCl(A), is the intersection of all preclosed sets containing A. The semiclosure [5] of a set
A denoted by sCl(A), and β-closure [2] of a set A denoted by βCl(A) are defined anal-
ogously. The θ-semi-closure [9] of a subset A of a space X , denoted by sClθ(A), is the
set of all x ∈ X such that Cl(V)∩A �= ∅ for every semiopen subset V of X containing
x. The set of all preopen subsets of a space X is denoted by PO(X) and the collection
of all preopen subsets of X containing a fixed point x is denoted by PO(X ,x). The sets
SO(X), SO(X ,x), βO(X), βO(X ,x), PC(X), and RO(X) are defined analogously. Finally,
if an operator is used with respect to a proper subspace, then a subscript will be added to
the operator. Otherwise, it is assumed that the operator refers to the space X or Y .

Definition 2.1. A function f : X → Y is said to be almost contra-precontinuous [7] if
f −1(V)∈ PC(X) for every V ∈ RO(Y).

Definition 2.2. A function f : X → Y is said to be subweakly continuous [14] (resp., subal-
most weakly continuous [3], subweakly β-continuous [4]) provided that there is an open
base � for the topology onY such that for everyV ∈�, Cl( f −1(V))⊆ f −1(Cl(V)) (resp.,
pCl( f −1(V))⊆ f −1(Cl(V)), βCl( f −1(V))⊆ f −1(Cl(V))).

Definition 2.3. A function f : X → Y is said to be semicontinuous [11] if f −1(V)∈ SO(X)
for every open subset V of Y .

3. Almost contra-precontinuous functions

Noiri and Popa proved the following characterizations of almost contra-precontinuity.

Theorem 3.1 (Noiri and Popa [13]). For a function f : X → Y , the following properties are
equivalent:

(a) f is almost contra-precontinuous;
(b) f (pCl(A))⊆ sClθ( f (A)) for every subset A of X ;
(c) pCl( f −1(B))⊆ f −1(sClθ(B)) for every subset B of Y .

We extend these characterizations by showing that Theorem 3.1(c) can be stated for
open sets only. The following lemmas will be useful.

Lemma 3.2. If V is an open set, then sClθ(V)= sCl(V).

Proof. Obviously sCl(V) ⊆ sClθ(V). Suppose that x /∈ sCl(V). Then there exists U ∈
SO(X ,x) such that U ∩V =∅. Then, since V is open, Cl(U)∩V =∅. Therefore x /∈
sClθ(V). Hence sClθ(V)⊆ sCl(V). �

Lemma 3.3 (Di Maio and Noiri [6]). If V is an open set, then sCl(V)= Int(Cl(V)).

Theorem 3.4. For a function f : X → Y , the following conditions are equivalent:
(a) f is almost contra-precontinuous;
(b) pCl( f −1(V))⊆ f −1(sClθ(V)) for every open subset V of Y ;
(c) pCl( f −1(V))⊆ f −1(sCl(V)) for every open subset V of Y ;
(d) pCl( f −1(V))⊆ f −1(Int(Cl(V))) for every open subset V of Y ;
(e) Cl(Int( f −1(V)))⊆ f −1(Int(Cl(V))) for every open subset V of Y .
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Proof. (a)⇒(b) follows from Theorem 3.1(c).
(b)⇒(c) follows from Lemma 3.2.
(c)⇒(d) follows form Lemma 3.3.
(d)⇒(e). Since pCl( f −1(V)) = f −1(V)∪ Cl(Int( f −1(V))), it follows from (d) that

Cl(Int( f −1(V)))⊆ f −1(Int(Cl(V))).
(e)⇒(a). Let V ∈ RO(Y). Then by (e), Cl(Int( f −1(V)))⊆ f −1(Int(Cl(V)))= f −1(V).

Therefore f −1(V) is preclosed, which proves that f is almost contra-precontinuous. �

The next result is an immediate consequence of Theorems 3.1 and 3.4.

Theorem 3.5. Let f : X → Y be a function and let � be any collection of subsets of Y con-
taining the open sets. Then f is almost contra-precontinuous if and only if pCl( f −1(S)) ⊆
f −1(sClθ(S)) for every S∈�.

Corollary 3.6. For a function f : X → Y , the following properties are equivalent:
(a) f is almost contra-precontinuous;
(b) pCl( f −1(V))⊆ f −1(sClθ(V)) for every V ∈ SO(Y);
(c) pCl( f −1(V))⊆ f −1(sClθ(V)) for every V ∈ PO(Y);
(d) pCl( f −1(V))⊆ f −1(sClθ(V)) for every V ∈ βO(Y).

4. Subalmost contra-precontinuous functions

We define a function f : X → Y to be subalmost contra-precontinuous provided that
there exists an open base � for the topology on Y such that pCl( f −1(V))⊆ f −1(sCl(V))
for every V ∈ �. Obviously almost contra-precontinuity implies subalmost contra-
precontinuity. The following example shows that the converse does not hold.

Recall that a space X is extremally disconnected (ED) if the closure of every open set
is open in X .

Example 4.1. Let X be a non-ED, T1-space and let Y = X have the discrete topology. The
identity mapping f : X → Y is subalmost contra-precontinuous with respect to the base
for Y consisting of the singleton sets. However, f is not almost contra-precontinuous.
Note that for y ∈ Y , pClX( f −1({y}))= {y}. Also, since X is non-ED, there exists an open
set V of X such that ClX(V) is not open. Then f −1(sClY (V))= V , but pClX( f −1(V))=
ClX(V).

Since sCl(A) ⊆ Cl(A) for every set A, it follows that subalmost contra-precontinuity
implies subalmost weak continuity, and hence it also implies subweak β-continuity. The
following example shows that subalmost contra-precontinuity and subalmost weak con-
tinuity are not equivalent.

Example 4.2. Let X = {a,b,c} have the topology τ = {X ,∅,{a},{b},{a,b}}. The iden-
tity mapping f : X → X is obviously subalmost weakly continuous (in fact, continuous).
However, f is not subalmost contra-precontinuous because any base for τ must contain
{a} and pCl( f −1({a})) � f −1(sCl({a})).

Since the function in Example 4.2 is obviously subweakly continuous, we see that sub-
weak continuity does not imply subalmost contra-precontinuity. The following example
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completes the proof that subalmost contra-precontinuity is independent of subweak con-
tinuity.

Example 4.3. Let X be an indiscrete space with at least two points and let Y = X have the
discrete topology. Since pCl({x})= {x} for very x ∈ X , the identity mapping f : X → Y is
subalmost contra-precontinuous with respect to the base for Y consisting of the singleton
sets. However, since every singleton set of X is dense, f is not subweakly continuous.

The following characterizations of subalmost contra-precontinuity are analogous to
those in Theorem 3.4 for almost contra-precontinuity.

Theorem 4.4. For a function f : X → Y , the following conditions are equivalent:
(a) f is subalmost contra-precontinuous;
(b) there exists an open base � for Y such that pCl( f −1(V))⊆ f −1(sClθ(V)) for every

V ∈�;
(c) there exists an open base � for Y such that pCl( f −1(V)) ⊆ f −1(Int(Cl(V))) for

every V ∈�;
(d) there exists an open base � for Y such that Cl(Int( f −1(V)))⊆ f −1(Int(Cl(V))) for

every V ∈�.

Theorem 4.5. If f : X → Y is subalmost weakly continuous and satisfies the additional
property that images of preclosed sets are open, then f is subalmost contra-precontinuous.

Proof. Since f is subalmost weakly continuous, there exists an open base � for Y such
that pCl( f −1(V)) ⊆ f −1(Cl(V)) for every V ∈ �. Since images of preclosed sets are
open, we have f (pCl( f −1(V)))⊆ Int(Cl(V)) or pCl( f −1(V))⊆ f −1(Int(Cl(V))). There-
fore by Theorem 4.4, f is subalmost contra-precontinuous. �

Since subweak continuity implies subalmost weak continuity, we have the following
result.

Corollary 4.6. If f : X → Y is subweakly continuous and satisfies the additional property
that images of preclosed sets are open, then f is subalmost contra-precontinuous.

Theorem 4.7. If f : X → Y is subalmost contra-precontinuous and semicontinuous, then f
is subweakly continuous.

Proof. Since f is subalmost contra-precontinuous, there exists an open base � for the
topology on Y such that pCl( f −1(V)) ⊆ f −1(sCl(V)) for every V ∈ �. Because f is
semicontinuous, f −1(V) is semiopen for every V ∈ �, and hence pCl( f −1(V)) =
Cl( f −1(V)) for every V ∈ �. Finally, since sCl(A) ⊆ Cl(A) for every set A, we have
Cl( f −1(V)) = pCl( f −1(V)) ⊆ f −1(sCl(V)) ⊆ f −1(Cl(V)). Therefore, f is subweakly
continuous. �

5. Graph-related properties of subalmost contra-precontinuous functions

By the graph of a function f : X → Y , we mean the subset G( f )= {(x, f (x)) : x ∈ X} of
the product space X ×Y .

Definition 5.1. The graph of a function f : X → Y , G( f ) is said to be P-regular [7] pro-
vided that for every (x, y) ∈ X × Y −G( f ), there exist a preclosed subset U of X and
regular open subset V of Y such that (x, y)∈U ×V ⊆ X ×Y −G( f ).
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Theorem 5.2. If f : X → Y is subalmost contra-precontinuous and Y is Hausdorff, then the
graph of f , G( f ) is P-regular.

Proof. Let (x, y) ∈ X × Y −G( f ). Then y �= f (x). Let � be an open base for Y such
that pCl( f −1(V)) ⊆ f −1(Int(Cl(V))) for every V ∈�. Since Y is Hausdorff, there ex-
ist disjoint open sets V and W such that f (x) ∈ V , y ∈W , and V ∈ �. Then, since
Int(Cl(V))∩ Int(Cl(W))=∅, it follows that (x, y)∈ pCl( f −1(V))× Int(Cl(W))⊆ X ×
Y −G( f ), which proves that G( f ) is P-regular. �

Corollary 5.3 (Ekici [7, Theorem 17]). If f : X → Y is almost contra-precontinuous and
Y is Hausdorff, then G( f ) is P-regular.

Recall that the graph function of a function f : X → Y is the function g : X → X ×Y
given by g(x)= (x, f (x)) for every x ∈ X .

Theorem 5.4. Let f : (X ,τ)→ (Y ,σ) be a function and let � be an open base for σ . Let
�= {U ×V : U ∈ τ,V ∈�}. If the graph function of f , g : X → X ×Y is subalmost contra-
precontinuous with respect to �, then f is subalmost contra-precontinuous with respect to
�.

Proof. If V ∈�, then pCl( f −1(V)) = pCl(g−1(X ×V)) ⊆ g−1(sCl(X ×V)) = g−1(X ×
sCl(V))= f −1(sCl(V)). Hence f is subalmost contra-precontinuous with respect to �.

�

If we let �= σ in Theorem 5.4, we obtain the following result.

Corollary 5.5. If the graph function of f : X → Y is subalmost contra-precontinuous with
respect to the usual base for the product topology for the product space X × Y , then f is
almost contra-precontinuous.

Corollary 5.6 (Ekici [7, Theorem 4]). If the graph function of f : X →Y is almost contra-
precontinuous, then f is almost contra-precontinuous.

Recall that a space X is said to be zero-dimensional provided that X has a clopen base.

Theorem 5.7. If the function f : X → Y is subalmost contra-precontinuous and X is
zero-dimensional, then the graph function of f , g : X → X ×Y is subalmost contra-precon-
tinuous.

Proof. Let � be an open base for Y such that pCl( f −1(V))⊆ f −1(Int(Cl(V))) for every
V ∈�. Then �= {U ×V : U ⊆ X is clopen and V ∈�} is a base forX ×Y . ForU ×V ∈
�, we have pCl(g−1(U ×V)) = pCl(U ∩ f −1(V)) ⊆ U ∩ pCl( f −1(V)) ⊆ Int(Cl(U))∩
f −1(Int(Cl(V))) = g−1(Int(Cl(U))× Int(Cl(V))) = g−1(Int(Cl(U ×V))). Therefore the
graph function g is subalmost contra-precontinuous. �

Remark 5.8. In Theorem 5.7 the requirement that X be zero-dimensional can be replaced
by the assumption that X is an ED space.

6. Additional properties of subalmost contra-precontinuous functions

The following generalizations of the T1 and Hausdorff properties will be useful.
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Definition 6.1. A space X is said to be pre-T1 [10] provided that for every pair of distinct
points x and y of X , there exist preopen sets U and V containing x and y, respectively,
with y /∈U and x /∈V .

Definition 6.2. A space X is said to be weakly Hausdorff [15] if each element of X is an
intersection of regular closed sets.

Theorem 6.3. If f : X → Y is a subalmost contra-precontinuous injection and Y is weakly
Hausdorff, then X is pre-T1.

Proof. Let x1 and x2 be distinct points in X . Then f (x1) �= f (x2), and since Y is weakly
Hausdorff, there exists a regular closed subset F of Y such that f (x1)∈ F and f (x2) /∈ F.
Then f (x2) ∈ X − F, which is regular open. Let � be an open base for Y such that
pCl( f −1(V)) ⊆ f −1(sCl(V)) for every V ∈�. Then let V ∈� such that f (x2) ∈ V ⊆
Y − F. Then x2 /∈ X − pCl( f −1(V)), which is preopen. Also f (x1) ∈ F, which is regu-
lar closed and therefore also semiopen. Since F ∩V =∅, it follows that f (x1) /∈ sCl(V),
and hence x1 /∈ f −1(sCl(V)). Then x1 ∈ X − f −1(sCl(V)) ⊆ X − pCl( f −1(V)). There-
fore, X − pCl( f −1(V)) is a preopen set containing x1 but not x2, which proves that X is
pre-T1. �

Corollary 6.4 (Ekici [7, Theorem 11]). If f : X → Y is an almost contra-precontinuous
injection and Y is weakly Hausdorff, then X is pre-T1.

The following example shows that the restriction of a subalmost contra-precontinuous
function is not necessarily subalmost contra-precontinuous.

Example 6.5. Let X = {a,b,c,d} have the topology τ = {X ,∅,{a,b}} and let Y = X have
the discrete topology. Since the singleton subsets of X are preclosed [10], the identity
mapping f : X → Y is subalmost contra-precontinuous with respect to the base for Y
consisting of the singleton sets. However, if A= {a,c}, then f |A : A→ Y fails to be subal-
most contra-precontinuous.

Next we show that the restriction of a subalmost contra-precontinuous function to a
semiopen set is subalmost contra-precontinuous. The following lemma will be useful.

Lemma 6.6 (Baker [3]). If B ⊆A⊆ X and A is semiopen in X , then pClA(B)⊆ pCl(B).

Theorem 6.7. If f : X → Y is subalmost contra-precontinuous with respect to the open
base � for Y and A is a semiopen subset of X , then f |A : A → Y is subalmost contra-
precontinuous with respect to �.

Proof. LetV∈�. Then using Lemma 6.6, we see that pClA( f |−1
A (V))⊆A∩pCl( f |−1

A (V))=
A∩pCl( f −1(V)∩A)⊆A∩pCl( f −1(V))∩pCl(A)=A∩pCl( f −1(V))⊆ A∩ f −1(sCl(V))
= f |−1

A (sCl(V)). Hence, f |A : A→ Y is subalmost contra-precontinuous with respect to
�. �

If we take � to be the topology on Y in Theorem 6.7, we obtain the following result.

Corollary 6.8 (Ekici [7, Theorem 2]). If f : X → Y is almost contra-precontinuous and
A is a semiopen subset of X , then f |A : A→ Y is almost contra-precontinuous.
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Theorem 6.9. If f : X → Y is subalmost contra-precontinuous and A is an open subset of Y
with f (X)⊆ A, then f : X → A is subalmost contra-precontinuous.

Proof. Let � be an open base for Y such that pCl( f −1(V))⊆ f −1(sCl(V)) for every V ∈
�. Then �= {V ∩A : V ∈�} is an open base for the relative topology on A. For V ∈�,
we have pCl( f −1(V ∩ A)) = pCl( f −1(V)) ⊆ f −1(Int(Cl(V))) = f −1(Int(Cl(V)) ∩ A).
Now we show that Int(Cl(V))∩A⊆ IntA(ClA(V ∩A)).

Let y ∈ Cl(V)∩A and let W ⊆ A be open in the relative topology on A with y ∈W .
Since A is open in Y , we see that W is open in Y . Because y ∈ Cl(V), V ∩W �= ∅. Then
W ∩ (V ∩A)=W ∩V �= ∅, and hence y ∈ ClA(V ∩A). Then Cl(V)∩A⊆ ClA(V ∩A),
and therefore Int(Cl(V)∩A)⊆ Int(ClA(V ∩A)). Since Int(Cl(V)∩A)= Int(Cl(V))∩A
and Int(ClA (V ∩A))⊆ IntA(ClA(V ∩A)), it follows that Int(Cl(V))∩A⊆ IntA(ClA(V ∩
A)).

Recall that we established in the first part of the proof that pCl( f −1(V ∩ A)) ⊆
f −1(Int(Cl(V))∩A). Therefore pCl( f −1(V ∩A)) ⊆ f −1(IntA(ClA(V ∩A))), which by
Theorem 4.4 proves that f : X → A is subalmost contra-precontinuous with respect to
the base �. �

Theorem 6.10. If f : X → Y is subalmost contra-precontinuous, then for every θ-open
(resp., θ-closed) subset W of Y , f −1(W) is a union of preclosed sets (resp., an intersection of
preopen sets).

Proof. Let � be an open base for Y such that pCl( f −1(V)) ⊆ f −1(sCl(V)) for every
V ∈�. Let W be a θ-open set of Y and let x ∈ f −1(W). Let V ∈� such that f (x) ∈
V ⊆ Cl(V)⊆W . Then x ∈ pCl( f −1(V))⊆ f −1(sCl(V))⊆ f −1(Cl(V))⊆ f −1(W). Since
pCl( f −1(V)) is preclosed, it follows that f −1(W) is a union of preclosed sets. An argu-
ment using complements will prove the remaining part of the theorem. �

References

[1] M. E. Abd El-Monsef, S. N. El-Deeb, and R. A. Mahmoud, β-open sets and β-continuous mapping,
Bulletin of the Faculty of Science. Assiut University. A 12 (1983), no. 1, 77–90.

[2] M. E. Abd El-Monsef, R. A. Mahmoud, and E. R. Lashin, β-closure and β-interior, Journal of
Faculty of Education, Ain Shams University 10 (1986), 235–245.

[3] C. W. Baker, On a weak form of almost weakly continuous functions, Demonstratio Mathematica
33 (2000), no. 4, 865–872.

[4] , Subweakly β-continuous functions, Far East Journal of Mathematical Sciences 8 (2003),
no. 2, 151–160.

[5] S. G. Crossley and S. K. Hildebrand, Semi-closure, The Texas Journal of Science 22 (1971), 99–
112.

[6] G. Di Maio and T. Noiri, On s-closed spaces, Indian Journal of Pure and Applied Mathematics 18
(1987), no. 3, 226–233.

[7] E. Ekici, Almost contra-precontinuous functions, Bulletin of the Malaysian Mathematical Sciences
Society. Second Series 27 (2004), no. 1, 53–65.

[8] S. N. El-Deeb, I. A. Hasanein, A. S. Mashhour, and T. Noiri, On p-regular spaces, Bul-
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