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1. Introduction

This note discovers, derives, and then studies simple closed-form Taylor series expressions
for integer powers of arcsin(x). Specifically, we show that, for |x| ≤ 2 and N = 1,2, . . . ,

arcsin2N (x/2)
(2N)!

=
∞∑

k=1

HN (k)(
2k
k

)
k2
x2k, (1.1)

where H1(k)= 1/4 and

HN+1(k) := 1
4

k−1∑

n1=1

1
(
2n1

)2

n1−1∑

n2=1

1
(
2n2

)2 ···
nN−1−1∑

nN=1

1
(
2nN

)2 , (1.2)

and also that, for |x| ≤ 2 and N = 0,1,2, . . . ,

arcsin2N+1(x/2)
(2N + 1)!

=
∞∑

k=0

GN (k)
(

2k
k

)

2(2k+ 1)42k
x2k+1, (1.3)
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where G0(k)= 1 and

GN (k) :=
k−1∑

n1=0

1
(
2n1 + 1

)2

n1−1∑

n2=0

1
(
2n2 + 1

)2 ···
nN−1−1∑

nN=0

1
(
2nN + 1

)2 . (1.4)

The convention is that the sum is zero if the starting index exceeds the finishing index.
Nested sums are not new. The last decade saw many interesting results concerning Eu-

ler sums or multizeta values, wonderful generalizations of the classical ζ-function, whose
discovery can be traced to a letter from Goldbach to Euler [1, pages 99-100] and [2, Chap-
ter 3]—a letter that played a seminal role in the discovery of the ζ-function.

When Gauss was criticized for the lack of motivation in his writings, he remarked that
the architects of great cathedrals do not obscure the beauty of their work by leaving the
scaffolding in place after the construction has been completed. While we find (1.1) and
(1.3) worthy of undistracted attention, in truth their discovery was greatly facilitated by
the use of experimental mathematics—the relatively new approach to doing mathematical
research with the intelligent use of computers. This perspective is elucidated throughout
this paper. It is also illustrative of the changing speed of mathematical communication
that the special cases (2.1), (2.2), and (2.3), given below, are already online at [3].

2. Experiments and proofs

The first identity below is very well known:

arcsin2
(
x

2

)
= 1

2

∞∑

k=1

x2k
(

2k
k

)
k2
. (2.1)

It is explored at some length in [4, pages 384–386]. While it is seen in various calcu-
lus books (see [5, pages 88–90], where the series for arcsin3(x) is also proven), it dates
back to at least two centuries and was given by Ramanujan among many others; see [6,
pages 262-263]. As often in Mathematics, history is complicated. Equation (2.1) has been
rediscovered repeatedly. For example, an equivalent form is elegantly solved as a 1962
MAA Monthly problem [7, Problem E 1509, Page 232]. We quote in extenso, the editors’
attempts to trace the history of the formula:

The series was located in the Smithsonian Mathematical Formulae and Ta-
bles of Elliptic Functions, 6.42 No. 5, p. 122; Chrystal, Algebra, vol. 2. 1906
ed, Ex. xx, No. 7, p. 335, (cites Pfaff as source); Bromwich, An Introduction
to the Theory of Infinite Series, 1908 ed, Prob. 2, page 197 (claims known
to Euler); Knopp, Theory and Application of Infinite Series, Ex. 123, Chap.
VIII, p.271; Schuh, Leerboek der Differtiaal en Integraalrekening, vol. 2,
pp. 154–156; Hobson, Treatise on Plane Trigonometry, eqs. 20, 21, 22, pp.
279–280; M.R. Speigel, this Monthly, 60 (1953) 243–247; Taylor, Advanced
Calculus, p. 632; Edwards, Differential Calculus for Beginners (1899), p.78.

Note the appearance in the Monthly itself in 1953.
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The second identity, slightly rewritten (see [6]), is less well known,

arcsin4
(
x

2

)
= 3

2

∞∑

k=1

{ k−1∑

m=1

1
m2

}
x2k

(
2k
k

)
k2

, (2.2)

and when compared, they hint at the third and fourth identities below—subsequently
confirmed numerically—the prior flimsy pattern and numerical exploration suggest that

arcsin6
(
x

2

)
= 45

4

∞∑

k=1

{ k−1∑

m=1

1
m2

m−1∑

n=1

1
n2

}
x2k

(
2k
k

)
k2

,

arcsin8
(
x

2

)
= 315

2

∞∑

k=1

{ k−1∑

m=1

1
m2

m−1∑

n=1

1
n2

n−1∑

p=1

1
p2

}
x2k

(
2k
k

)
k2
.

(2.3)

Reassured by this confirmation, we conjectured that in general

arcsin2N (x/2)
(2N)!

=
∞∑

k=1

HN (k)(
2k
k

)
k2
x2k, (2.4)

where HN+1(k) is as in (1.1). Subsequently, we were naturally led to discover the corre-
sponding odd formulae.

We next provide a proof of both (1.1), equivalently (2.4), and (1.3).

Proof of (1.1) and (1.3). The formulae for arcsink(x) with 2≤ k ≤ 4 are given in [6, pages
262-263], and Berndt comments that [5] is the best source he knows for k = 2 and 3.
Berndt’s proof also implicitly gives our desired result since he establishes, via a differential
equation argument, that, for all real parameters a, one has

eaarcsin(x) =
∞∑

n=0

cn(a)
xn

n!
, (2.5)

where

c2n+1(a) := a
n∏

k=1

(
a2 + (2k− 1)2), c2n(a) :=

n∏

k=1

(
a2 + (2k− 2)2). (2.6)

Now, expanding the power of an on each side of (2.5) provides the asserted formula.
Note that (2.5) is equivalent to the somewhat-less-elegant if more-concise [8, Formula
10.49.33], specifically,

∞∑

k=0

(ia)k/2
k!(ia+ 1)−k/2

(−ix)k = exp
[

2asin−1
(
x

2

)]
. (2.7)
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Another proof can be obtained from the hypergeometric identity

sin(ax)
asin(x)

= 2F1

(
1 + a

2
,
1− a

2
;
3
2

;sin2(x)
)

(2.8)

given in [4, Exercise 16, page 189]. �

Maple can also prove identities such as (2.5) as the following code shows:
> ce:=n->product(a^2+(2*k)^2,k=0..n-1):
> co:=n->a*product(a^2+(2*k+1)^2,k=0..n-1):
> sum(ce(n)*x^(2*n)/(2*n)!,n=0..infinity) assuming x>0;

cosh(a arcsin(x))

> simplify(expand(sum(co(n)*x^(2*n+1)/(2*n+1)!,n=0..infinity)))
assuming x>0;

sinh(a arcsin(x))
A necessarily equivalent formula for powers of arcsin is listed by Hansen in [8, Formula

88.2.2],

∞∑

n=0

x2n
m−1∏

k=1

{ nk−1∑

nk=0

(
2nk−1− 2nk

)
!

[(
nk−1−nk

)
!
]2(

2nk−1− 2nk + 1
)22nk−2nk−1

}
(2nm−1)!

(nm−1!)2(2nm−1 + 1)
2−2nm−1

=
(

sin−1 x

x

)m
,

(2.9)

but its relation to (1.1) and (1.3) is not obvious; our nested-sum representations are def-
initely more elegant. While Ramanujan listed only the first two cases in his notebooks [6,
pages 262-263], his previous entries suggest that an approach for any power was being
assembled. One can only imagine how much farther his intuition would have taken him
if he had today’s computational power!

Powers of arcsin play an important role in analytical calculations of massive Feynman
diagrams, see [9], and in the construction of Laurent expansions of different types of
hypergeometric functions with respect to small parameters. In [9], series expansions for
small powers of arcsin are given, but they do not have the compact nested-sum form seen
in (1.1) and (1.3). Likewise, formula (2.5) has proven central to recent work on effec-
tive asymptotic expansions for Laguerre polynomials and Bessel functions, [10]. These
results are again motivated largely by applications in mathematical physics and in prime
computation.

3. Properties of coefficient functions

It is of some independent interest, at least to the present authors, to determine a few
properties of HN (k) and GN (k).

Corollary 3.1. The following properties obtain:
(a) HN (k)=GN (k)= 0 if N > k;
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(b) HN (k)=∑k−1
j=N−1(HN−1( j)/(2 j)2), GN (k)=∑k−1

j=N−1(GN−1( j)/(2 j + 1)2);

(c) Hk(k)= 1/4k(k− 1)!2, Gk(k)= 4kk!2/(2k)!2;
(d)

∑k
N=1(−4)NHN (k)= 0 for k ≥ 2,

∑k
N=0(−1)NGN (k)= 0 for k ≥ 1.

Proof. Parts (a)–(c) follow from the definition of HN (k) and GN (k). To prove part (d),
first note that (1.1) may be rewritten as

x2N = (2N)!
4N

∞∑

k=1

4k+NHN (k)(
2k
k

)
k2

(sinx)2k. (3.1)

Use this to obtain

1− 2sin2 x = cos(2x)= 1 +
∞∑

N=1

(−1)N4Nx2N

(2N)!

= 1 +
∞∑

N=1

(−1)N
∞∑

k=1

4k+NHN (k)(
2k
k

)
k2

(sinx)2k

= 1 +
∞∑

k=1

4k(sinx)2k
(

2k
k

)
k2

k∑

N=1

(−4)NHN (k).

(3.2)

Now, matching powers of (sinx)2 implies the first part of (d). Equation (1.3) may be
similarly manipulated to give the second part of (d). �

Correspondingly, we have the following corollary.

Corollary 3.2. For nonnegative integers N and k, one has

42kHN (k)(
2k
k

)
k2

=−
k−1∑

j=0

(
2 j
j

)(
2k−2 j
k− j

)

2 j− 1
GN (k− j), (3.3)

(
2k−2
k−1

)
GN (k− 1)

22k−1(2k− 1)
=−

k−1∑

j=0

(
2 j
j

)
4k−2 j

(k− j)(2 j− 1)
(

2k−2 j
k− j

)HN+1(k− j). (3.4)

Proof. Differentiate (1.3) to obtain

arcsin2N
(
x

2

)
=
√√√

1−
(
x

2

)2

(2N)!
∞∑

k=0

GN (k)
(

2k
k

)

16k
x2k. (3.5)

Using the binomial theorem and comparing to (1.1) gives (3.3). Similarly, differentiating
(1.1) leads to (3.4). �

Even the simplest case, with N = 1, yields the nonobvious identity

42k−1
(

2k
k

)
k2
=−

k−1∑

j=0

(
2 j
j

)(
2k−2 j
k− j

)

2 j− 1

k− j−1∑

n=0

1
(2n+ 1)2

. (3.6)
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Asking a student to prove this identity directly is instructive, particularly from an ex-
perimental mathematical perspective. While Maple stares dumbly at the right-hand side,
it immediately redeems itself after one interchanges the order of summation, producing

k−1∑

n=0

1
(2n+ 1)2

k−n−1∑

j=0

(
2 j
j

)(
2k−2 j
k− j

)

2 j− 1
=−

√
π4kΓ(k)

4kΓ(k+ 1/2)
, (3.7)

which may be easily rewritten as the desired expression (3.6).
A host of partition identities tumble directly from (1.3) and (2.4) on comparing vari-

ous ways of combining powers of arcsin.

Corollary 3.3. Given m, n, {Mi}mi=1 ≥ 1, and {Ni}ni=1 ≥ 0, let

T := 2M1 + ···+ 2Mm +
(
2N1 + 1

)
+ ···+ (2Nn + 1),

W := 2−n
(
2M1

)
!···(2Mm

)
!
(
2N1 + 1

)
!···(2Nn + 1

)
!.

(3.8)

Then, for any s≥ n, where s and n have the same parity,

W
∑
(

2k1

k1

)
···

(
2kn
kn

)
HM1

(
j1
)···HMm

(
jm
)
GN1

(
k1
)···GNn

(
kn
)
42n

(
2 j1
j1

)
···

(
2 jm
jm

)(
j1 ··· jm

)2(
2k1− 1

)···(2kn− 1
)
42k1+···+2kn

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4T!
HT/2(s/2)(

s
s/2

)
s2

, n even,

T!
2

(
s− 1
s− 1

2

)
G(T−1)/2

(
(s− 1)/2

)

s4s−1
, n odd,

(3.9)

where the sum is taken over all partitions of

s+n
2

= j1 + ···+ jm + k1 + ···+ kn, (3.10)

where j1, j2, . . . , jm ≥ 1 and k1,k2, . . . ,kn ≥ 1.

An interesting special case occurs when we specify n = 0, m = 2, M1 =M2 = 1, and
s= 2k:

k−1∑

j=1

1(
2 j
j

)(
2k−2 j
k− j

)
j2(k− j)2

= 6(
2k
k

)
k2

k−1∑

j=1

1
j2

, (3.11)

hence

lim
k→∞

k−1∑

j=1

(
2k
k

)

(
2 j
j

)(
2k−2 j
k− j

) k2

j2(k− j)2
= π2. (3.12)
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4. Powers of arcsin via iterated integrals

Since arcsin′(x) = 1/
√

1− x2, we may also express any power of arcsin(x) as an iterated
integral. Specifically,

arcsinn x
n!

=
∫ x

0

dy1√
1− y2

1

∫ y1

0

dy2√
1− y2

2

∫ y2

0

dy3√
1− y2

3

···
∫ yn−1

0

dyn√
1− y2

n

. (4.1)

To convert the multiple integral into a multiple sum, note that the binomial theorem gives

1√
1− x2

=
∞∑

k=0

1
4k

(
2k
k

)
x2k, (4.2)

which may be repeatedly used in (4.1) to yield

arcsinn x
n!

=
∞∑

k1,k2,...,kn=0

(
2k1

k1

)(
2k2

k2

)
···

(
2kn
kn

)
x2wn+n

4wn
(
2k1 + 1

)(
2k1 + 2k2 + 2

)···(2wn +n
)

= xn
∞∑

k=0

{ k∑

k1=0

(
2k1

k1

)

4k1
(
2k1 + 1

)
k−k1∑

k2=0

(
2k2

k2

)

4k2
(
2k1 + 2k2 + 2

) ···
k+kn−wn∑

kn=0

(
2kn
kn

)

4kn
(
2wn +n

)
}
xk

= xn
∞∑

k=0

{ k∑

k1=0

(
2k1

k1

)

(
2k1 + 1

)
k∑

k2=k1

(
2k2−2k1

k2−k1

)

(
2k2 + 2

) ···
k∑

kn=kn−1

(
2kn−2kn−1

kn−kn−1

)

(
2kn +n

) 1
4kn

}
xk,

(4.3)

where wn := k1 + k2 + ···+ kn.
Though this process also writes the coefficients in terms of nested sums, these terms

are not nearly as simple as HN and GN .

5. Related series manipulations

After having discovered formulae such as (1.1) and (1.3), the analyst’s natural inclination
is to “mine” them for striking examples. We rescale (1.1) and (1.3) to obtain

arcsin2N (x)= (2N)!
∞∑

k=1

HN (k)4k(
2k
k

)
k2

x2k,

arcsin2N+1(x)= (2N + 1)!
∞∑

k=0

GN (k)
(

2k
k

)

(2k+ 1)4k
x2k+1.

(5.1)

These series, or their derivatives, may be evaluated at values such as x = π/2, π/3, π/4,
π/6, i/2, and i to obtain many formulae along the lines of those found by Lehmer and
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others as described in [4, pages 384–386]. A few examples are

∞∑

k=1

HN (k)4k(
2k
k

)
k2

= 1
(2N)!

(
π

2

)2N

,
∞∑

k=1

HN (k)3k(
2k
k

)
k2

= 1
(2N)!

(
π

3

)2N

,

∞∑

k=1

HN (k)2k(
2k
k

)
k2

= 1
(2N)!

(
π

4

)2N

,
∞∑

k=1

HN (k)(
2k
k

)
k2
= 1

(2N)!

(
π

6

)2N

,

∞∑

k=1

HN (k)(−1)k(
2k
k

)
k2

= (−1)N

(2N)!

(
log

√
5− 1
2

)2N

,

∞∑

k=1

HN (k)(−4)k(
2k
k

)
k2

= (−1)N

(2N)!

(
log

(
1 +
√

2
))2N

.

(5.2)

Integrating (1.1) and (1.3) is, naturally, much more challenging. Replacing x by ix
in (1.1) and (1.3) provides the Maclaurin series for positive integer powers of the form
logN (x+

√
x2 + 1).

These expressions may then be integrated (or differentiated). In particular, see [4, Ex-
ercise 17, page 189], we have

1
4

∞∑

n=1

(−1)n+1

n3
(

2n
n

) =
∫ 1/2

0

log2 (x+
√
x2 + 1

)

x
dx = ζ(3)

10
. (5.3)

Likewise, with more work, see [11], we obtain

∫ 1/2

0

ln4 (x+
√
x2 + 1

)

x
dx =−3

2
Li5
(
g2)+ 3Li4

(
g2) ln(g) +

3
2
ζ(5)

− 12
5
ζ(3) ln2(g)− 4

15
π2 ln3(g) +

4
5

ln5(g),

(5.4)

where g = (
√

5− 1)/2 is the golden ratio and where Lin(z) =∑∞
k=1 z

k/kn is the polyloga-
rithm of order n.

This process may be generalized as follows. Define

�n := 2n

n!

∫ 1/2

0

lnn
(
x+
√
x2 + 1

)

x
dx. (5.5)

We leave it to the reader to determine the explicit series expression for �n, for n is even
and for n is odd.

Extensive experimentation with Maple coupled with pattern lookups with Sloane’s on-
line encyclopedia [12] produced

�n = ζ(n+ 1)− n
(− logg2

)n+1

2(n+ 1)!
−

n+1∑

j=2

(− logg2
)n+1− j

(n+ 1− j)!
Li j
(
g2). (5.6)
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Multiplying by xn, and summing over n≥ 1, shows that this is equivalent to the next
generating function, written in terms of ψ, the digamma function:

−x
∫ − logg

0

(
e2xy − 1

)
coth(y)dy = 1

2
+ x
(
γ+ψ(1− x)

)− 1/2 + x logg
e2x logg

+ e−2x logg
∞∑

k=2

Lik
(
g2)xk.

(5.7)

These observations can be made rigorous with the next result.

Theorem 5.1. For n≥ 1 and |x| ≤ 1,

1
n!

∫ x

0

arcsinn(y)
y

dy =−
n+1∑

k=2

Lik
((√

1− x2 + ix
)2) (−2i)1−k arcsin(x)n+1−k

(n+ 1− k)!

− iarcsinn+1(x)
(n+ 1)!

+
arcsinn(x)

n!
log

(
2x2−2ix

√
1− x2

)
+
(
i

2

)n
ζ(n+ 1).

(5.8)

Proof. The derivatives of each side match, and the equation holds for x = 0. Alternatively,
this is a reworking of [13, Formula (7.48), page 199]. �

In hindsight, this equation should not come as much of a surprise since Ramanujan’s
entries immediately preceding (2.1) give similar formulae using the Clausen functions.
One can substitute (1.1) or (1.3) to obtain further formulae. This allows for extensions to
the complex plane. For example, we have the following corollary.

Corollary 5.2. For n≥ 1, |x| ≤ 1, and Re(x)≥ 0,

(−1)n

2

∞∑

k=1

Hn(k)(−4)k(
2k
k

)
k3

x2k =−
2n+1∑

k=2

Lik
((
x−

√
1 + x2

)2)21−karcsinh(x)2n+1−k

(2n+ 1− k)!

+
arcsinh2n+1(x)

(2n+ 1)!
+

arcsinh2n(x)
2n!

log
(
2x
√

1 + x2− 2x2)

+
ζ(2n+ 1)

4n
.

(5.9)

Example 5.3. Substituting x = i gives

1
2

∞∑

k=1

Hn(k)4k(
2k
k

)
k3

=
n∑

k=1

(
1− 2−2k)ζ(2k+ 1)

(
− 1

4

)k (π/2)2n−2k

(2n− 2k)!

+
(π/2)2n

(2n)!
log2 +

(
− 1

4

)n
ζ(2n+ 1),

(5.10)
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with the special case n= 1 yielding

∞∑

k=1

4k(
2k
k

)
k3
= π2 log2− 7

2
ζ(3). (5.11)

6. Conclusion

We hope this examination of (1.1) and (1.3) encourages readers to similarly explore what
transpires for arctan and other functions. Armed with a good computer algebra system
and an internet connection, one can quite fearlessly undertake this task.

Acknowledgment

Research is supported by NSERC and by the Canada Research Chair Programme.

References

[1] J. M. Borwein and D. Bailey, Mathematics by Experiment, A K Peters, Natick, Mass, USA, 2004.
[2] J. M. Borwein, D. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Nat-

ick, Mass, USA, 2004.
[3] E. W. Weisstein, “Inverse Sine,” from MathWorld-A Wolfram Web Resource. http://mathworld

.wolfram.com/InverseSine.html.
[4] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Com-

putational Complexity, Canadian Mathematical Society Series of Monographs and Advanced
Texts, John Wiley & Sons, New York, NY, USA, 1987.

[5] J. Edwards, Differential Calculus, MacMillan, London, UK, 2nd edition, 1982.
[6] B. C. Berndt, Ramanujan’s Notebooks—Part I, Springer, New York, NY, USA, 1985.
[7] A. G. Konheim, J. W. Wrench Jr., and M. S. Klamkin, “A Well-Known Series,” American Mathe-

matical Monthly, vol. 69, no. 10, p. 1011, December 1962.
[8] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.
[9] M. Yu. Kalmykov and A. Sheplyakov, “lsjk—a C++ library for arbitrary-precision numeric eval-

uation of the generalized log-sine functions,” Computer Physics Communications, vol. 172, no. 1,
pp. 45–59, 2005.

[10] D. Borwein, J. M. Borwein, and R. E. Crandall, “Effective laguerre asymptotics,” submitted to
SIAM Journal on Numerical Analysis.

[11] J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, “Central binomial sums, multiple Clausen
values, and zeta values,” Experimental Mathematics, vol. 10, no. 1, pp. 25–34, 2001.

[12] N. J. Sloane, “Online Encyclopedia of Integer Sequences,” (http://www.research.att.com/
∼njas/sequences/).

[13] L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, NY, USA, 1981.

Jonathan M. Borwein: Faculty of Computer Science, Dalhousie University, Halifax,
NS, Canada B3H2W5
Email address: jborwein@cs.dal.ca

Marc Chamberland: Department of Mathematics and Statistics, Grinnell College,
Grinnell, IA 50112, USA
Email address: chamberl@math.grinnell.edu

http://mathworld.wolfram.com/InverseSine.html
http://mathworld.wolfram.com/InverseSine.html
(http://www.research.att.com/~njas/sequences/)
(http://www.research.att.com/~njas/sequences/)
mailto:jborwein@cs.dal.ca
mailto:chamberl@math.grinnell.edu

	1. Introduction
	2. Experiments and proofs
	3. Properties of coefficient functions
	4. Powers of arcsin via iterated integrals
	5. Related series manipulations
	6. Conclusion
	Acknowledgment
	References

